
IJSART - Volume 11 Issue 5 – MAY 2025 ISSN [ONLINE]: 2395-1052

Page | 875 www.ijsart.com

Android Malware Detection Using Multi-Domain

Feature Analysis And Deep Learning Models

Sharon R1,Janapriya S2, Nishmitha R3, Prof.Mrs.Ramya R4

1, 2, 3, 4 Dept of Artificial Intelligence and Data Science
1, 2, 3, 4 Misrimal Navajee Munoth Jain Engineering College, Chennai, Tamilnadu – 600097.

Abstract- We propose a hybrid and intelligent Android

malware detection framework that integrates multi-domain

feature extraction with deep learning models to improve

mobile application security. The system consists of two key

modules: the APK Security Analyzer and the App Behavior

Analyzer. The APK Security Analyzer applies both static and

dynamic analysis using tools such as Androguard, Android

Emulator, ADB, and Monkey to extract permissions, API call

sequences, and network traffic features. These are processed

using a tri-model architecture—Multi-Layer Perceptron

(MLP), Long Short-Term Memory (LSTM), and LightGBM—

within a Streamlitinterface.The App Behavior Analyzer

enhances static CSV-based analysis by automating

preprocessing with StandardScaler and applying a sliding

window for time-series classification using an LSTM model. It

supports real-time predictions and provides interactive

visualizations to aid user understanding of

results.Experimental results show high accuracy: MLP and

LSTM models each achieved 96%, while LightGBM reached

88%. Precision, recall, and F1-scores confirm system

robustness, with MLP scoring 96%, 93%, and 94%,

respectively. Visualizations such as radar charts and progress

bars clearly communicate app risk levels and

behaviorpatterns.These findings establish the framework as a

robust, scalable, and interpretable solution for real-time

Android malware detection, advancing mobile cybersecurity

tools.

Keywords- Android malware detection, machine learning,

static and dynamic analysis, Deep learning, behavioral

analysis.

I. INTRODUCTION

 The rapid adoption of Android devices has

revolutionized mobile computing, yet this growth has also led

to an alarming increase in Android malware threats. Malicious

applications can compromise user privacy, steal sensitive data,

and disrupt device operations, emphasizing the need for

effective and scalable malware detection methods.

Traditional malware detection techniques, such as

signature-based and heuristic approaches, have shown

limitations in handling the evolving landscape of Android

threats. Signature-based methods are reactive and fail to

identify new or polymorphic malware variants, while heuristic

approaches often generate high false positive rates due to their

reliance on predefined rules. Furthermore, these methods

usually analyze limited feature sets, restricting their ability to

capture complex application behaviors comprehensively.

To address these challenges, this research proposes a

hybrid Android malware detection framework leveraging

multi-domain feature extraction and advanced machine

learning models. By analyzing permissions, API call

sequences, and network traffic data, the system constructs a

comprehensive behavioral profile of each app. The framework

employs specialized models—a Multi-Layer Perceptron

(MLP) for permissions, Long Short-

Term Memory (LSTM) networks for API calls, and

LightGBM for network traffic—to accurately classify

applications as benign or malicious.Additionally, the system

includes an App Behavior Analyzer module that was initially

designed for static review of CSV data reflecting application

behavior patterns. While the original design employed an

LSTM model to classify apps based on this data, it lacked

dynamic data interpretation, meaningful result explanations,

and intuitive visualization tools. Addressing these

shortcomings, the module was enhanced to provide a more

interactive, insightful, and user-friendly analysis framework,

significantly improving malware classification reliability and

user experience.

II. EXISTING SYSTEM

Android malware detection systems mainly rely on

traditional static techniques like signature-based and heuristic

analysis. These methods compare applications against known

malware patterns or predefined rules, which makes them

effective for detecting existing threats but ineffective against

new, unknown, or polymorphic malware.

IJSART - Volume 11 Issue 5 – MAY 2025 ISSN [ONLINE]: 2395-1052

Page | 876 www.ijsart.com

 Heuristic analysis flags suspicious behavior such as

unusual permission requests but often results in high false

positives.Some approaches employ machine learning

models—like Decision Trees, SVMs, and Random Forests—

based on limited features such as permissions and API calls.

While these improve classification, outdated datasets and

narrow feature sets hinder their ability to adapt to evolving

threats. Deep learning models like CNNs and RNNs offer

better pattern recognition but still struggle without real-time

behavioral insight.Hybrid systems have emerged, combining

static and dynamic analysis for improved detection, using

runtime monitoring to identify malicious patterns. Despite

this, limitations persist in scalability, automation, and real-

time performance. Manual feature engineering and delayed

detection reduce effectiveness in fast-changing threat

environments.

Overall, these systems face challenges such as

limited detection for unknown malware, false positives, lack

of real-time analysis, and poor adaptability—highlighting the

need for more dynamic, scalable, and automated detection

frameworks.

III. LITERATURESURVEY

Mohammed Maray et al. (2024) [1] introduced the

Intelligent Pattern Recognition using Equilibrium Optimizer

with Deep Learning (IPR-EODL) for Android malware

detection. Their approach combines data preprocessing, a

Channel Attention LSTM model, and hyperparameter tuning

via the Equilibrium Optimization algorithm. Evaluated on

standard datasets, the model achieved a high accuracy of

99.18%, demonstrating the effectiveness of deep learning

techniques in improving detection accuracy against evolving

malware threats.

Omar N. Elayan et al. (2021) [2] proposed a deep

learning-based detection method using Gated Recurrent Units

(GRU) with static feature extraction from API calls and

permissions. Compared to traditional classifiers such as SVM,

KNN, and Random Forest, the GRU model outperformed all,

reaching 98.2% accuracy on the CICAndMal2017 dataset.

This work highlights the importance of deep learning and

careful feature selection for robust Android malware

identification.

Zhenlong Yuan et al. (2016) [3] developed

DroidDetector, integrating static and dynamic analysis with a

Deep Belief Network (DBN) to classify Android malware.

Using a dataset of over 20,000 apps, their method combined

permissions and API calls with runtime behaviors captured via

DroidBox. The DBN achieved a detection accuracy of

96.76%, outperforming classical machine learning methods,

and underscored the value of multi-source feature fusion for

effective malware classification.

MuhammadUmar Rashid et al. (2025) [4] presented a

hybrid deep learning framework analyzing permissions,

intents, and API calls through Deep Neural Networks.

Evaluated on a large dataset spanning 15 malware families,

the model improved detection accuracy to 98.2%, surpassing

previous state-of-the-art methods. Their work emphasizes the

significance of multi-dimensional feature analysis and model

interpretability in addressing scalability and obfuscation

challenges in malware detection.

Meghna Dhalaria et al. (2020) [5] proposed a hybrid

detection system combining static and dynamic analyses for

malware classification. They introduced two public datasets

for binary and multiclass tasks and utilized various machine

learning algorithms with feature selection for improved

performance. Their hybrid approach achieved 98.53%

accuracy for binary classification and 90.10% for multiclass,

demonstrating the benefits of integrating behavioral and

structural app features for enhanced malware detection.

IV. PROPOSEDSYSTEM

The proposed system is a hybrid Android malware

detection framework designed to overcome the liitations of

conventional methods by integrating multi-domain feature

extraction with advanced machine learning techniques. It

harnesses the power of deep learning and machine learning

algorithms to enhance detection accuracy, efficiency, and

scalability in identifying malicious applications.

Initially, the system accepts input files in two

formats: APK files or CSV behavioral logs. For APK files, the

system performs feature extraction across four critical

domains: permissions (using the Drebin dataset), API call

sequences (extracted via Cuckoo Sandbox), network traffic

(analyzed with CIC-InvesAndMal2019 dataset), and activity

logs. If CSV files containing app behavior logs are uploaded,

the system bypasses static feature extraction and directly

applies sequential analysis to detect anomalies.

IJSART - Volume 11 Issue 5 – MAY 2025 ISSN [ONLINE]: 2395-1052

Page | 877 www.ijsart.com

Figure1:SystemArchitecture

The extracted features are processed using

specialized models tailored for each domain. Permissions are

analyzed using a Multi-Layer Perceptron (MLP), API

sequences are evaluated through Long Short-Term Memory

(LSTM) networks, and network traffic is classified using

LightGBM. This modular approach ensures high precision in

detecting various aspects of malicious behavior.

To complement static analysis, the system

incorporates real-time monitoring capabilities. During

application execution, dynamic behavioral analysis, anomaly

detection, and context-aware detection techniques are applied

to capture malicious activities as they unfold, thereby offering

comprehensive malware evaluation.

Users upload APK or CSV files, after which the

system performs automated feature extraction, model training,

and classification. The results are presented in a user-friendly

format, empowering users with actionable insights to make

informed decisions regarding app safety.

Overall, this proposed system delivers a robust,

automated, and scalable solution that protects Android devices

from sophisticated malware threats while enhancing user

security and trust in mobile applications.

V. IMPLEMENTATION

This project comprises two main modules that collectively

form an integrated system for Android malware detection:

APK Security Analyzer Module

App Behavior Analyzer Module

The entire system is developed using Python 3.9 and

deployed through the Streamlit framework, which provides a

lightweight and interactive web interface for real-time

analysis. The system architecture incorporates both static and

dynamic analysis techniques, driven by multiple specialized

machine learning models to ensure comprehensive risk

evaluation.

1. APK Security Analyzer Module

This module serves as the foundation for static and

simulated dynamic analysis of APK files. It is engineered to

extract critical feature sets from uploaded applications and

predict risk levels using a hybrid of models trained on diverse

data domains.

1.1 Input Processing

 Upon receiving an APK file through the file upload

interface, the system utilizes the Androguard library to extract

basic metadata such as the application name, version, and

package ID.

Figure2:Flow Diagram

 Following this, it initiates multi-domain feature extraction:

Permissions are parsed from the manifest and vectorized

using a predefined schema.

API call sequences are identified through static analysis and

transformed into token sequences.

Network traffic behavior is simulated using mock data in the

absence of actual PCAP files.

These extracted features are subsequently converted into

structured vectors, optimized for model consumption.

1.2 Initial Implementation

 Initially, the module displayed individual model

outputs from the MLP, LSTM, and LightGBM models directly

on the interface. While technically accurate, this raw output

format overwhelmed users with excessive data such as feature

vectors and model confidence scores. Risk levels were

calculated via a weighted average but presented with minimal

explanation.

1.3 Challenges Identified

 The early interface suffered from poor visualization

IJSART - Volume 11 Issue 5 – MAY 2025 ISSN [ONLINE]: 2395-1052

Page | 878 www.ijsart.com

and interpretability. Misaligned charts, verbose probability

details, and redundant technical information rendered the

system less intuitive. Users found it difficult to interpret

results due to inconsistent visual cues and the absence of

meaningful summaries.

1.4 Optimized Solution

A complete redesign was undertaken to enhance user

experience. This included:

A radar chart to compare predictions from each model.

A horizontal bar graph showing the influence of each model

in the risk calculation (Permissions: 0.6, API: 0.2, Traffic:

0.2).

A permissions bar chart highlighting suspicious permissions

in red.

A pastel-colored progress bar to intuitively indicate overall

risk level (Low, Medium, High).

Concise, aligned text explanations adjacent to each

visualization.

These enhancements preserved the original logic while vastly

improving user comprehension and visual appeal.

1.5 Visualization Features

The Visualization Module integrates multiple elements into a

unified dashboard:

Circular radar graphs for model comparison

Linear weight distribution bars

Permission charts with color-coded risk indicators

A progress bar summarizing the application’s final risk status

All charts are uniformly styled and vertically aligned, ensuring

a clean, cohesive layout that supports rapid risk assessment.

1.6 Module Outcome

 The final APK Security Analyzer provides users with

an intuitive, real-time risk assessment interface. Upon

analysis, it delivers a structured output containing metadata,

risk scores, and visual analytics. Suspicious permissions are

flagged clearly, and users are offered a downloadable JSON

report for offline review or compliance needs.

2. App Behavior Analyzer Module

The App Behavior Analyzer is responsible for

analyzingbehavioral patterns from CSV logs, focusing on

dynamic data obtained from runtime execution or monitoring

tools.

2.1 Input Processing

 Initially, users had to manually preprocess CSV files

before uploading. The uploaded dataset was then analyzed

using an LSTM model designed to classify app behavior as

benign or malicious. However, this static pipeline lacked

intuitive visualization and dynamic interpretability.

2.2 Initial Design

 The first iteration involved simple CSV ingestion and

LSTM-based prediction. It offered minimal interaction, no

dynamic visualization, and required users to format data

precisely, increasing the chance of input errors.

2.3 Issues Encountered

Several critical shortcomings were identified:

Lack of user-friendly interface

Manual preprocessing requirements

Frequent errors due to improper CSV formatting

Inconsistent prediction reliability due to input sensitivity

2.4 Optimized Solution

To resolve these limitations, the following enhancements were

introduced:

Automated preprocessing using a pre-trained

StandardScaler.pkl to normalize input features.

A sliding window mechanism to convert flat data into

structured sequences suitable for the LSTM Model.

A Streamlit-based interactive interface for file uploads,

visual feedback, and real-time behavior trend visualization.

These changes significantly improved model reliability,

interpretability, and user experience.

2.5 Module Outcome

The improved App Behavior Analyzer now offers

seamless, accurate classification of behavioral data. It

generates real-time predictions, supports structured sequence

analysis, and displays results using clean, interpretable charts.

This makes it highly effective for analysts and developers

evaluating app behavior patterns for security anomalies.

 VI. RESULTANALYSIS

To assess the effectiveness of the proposed Android

malware detection system, various machine learning models

were evaluated using core classification metrics: accuracy,

precision, recall, and F1-score. These metrics provide a

IJSART - Volume 11 Issue 5 – MAY 2025 ISSN [ONLINE]: 2395-1052

Page | 879 www.ijsart.com

comprehensive understanding of each model’s predictive

capability and help identify strengths and limitations.

Firstly, precision was calculated to determine the

proportion of correctly identified malware instances among all

predicted malware. High precision signifies a lower rate of

false positives, which is crucial in security-sensitive

applications where incorrect classification could trigger

unnecessary warnings. Similarly, recall was used to evaluate

the ability of the model to detect all actual malware samples in

the dataset. A high recall score indicates the model

successfully captured most of the malicious activities.

Accuracy, the most intuitive metric, measured the overall

correctness of predictions. However, in imbalanced datasets

like malware detection, where benign apps may outnumber

malicious ones, accuracy alone may not provide sufficient

insight. Therefore, the F1-score, the harmonic mean of

precision and recall, was also considered to balance both

metrics and offer a clearer picture of performance under

unequal class distributions.

Table1: Model Comparison

The proposed models included Multi-Layer

Perceptron (MLP), Long Short-Term Memory (LSTM), and

LightGBM. Among these, the LSTM model exhibited the

highest accuracy at 99.0%, showcasing its superior learning

ability over time-sequenced data such as API call patterns.

The MLP model demonstrated the highest precision and recall

scores at 96.0% and 93.0%, respectively, resulting in a strong

F1-score of 95.0%, indicating its balanced performance.

LightGBM, while efficient and faster in execution, achieved

comparatively lower metrics across the board, with an F1-

score of 87.0%, suggesting that deeper learning-based models

are more effective in this domain.

In addition to evaluating advanced models, a

comparison was made with traditional classifiers such as J48,

Random Forest, and Decision Tree. Random Forest

outperformed other traditional approaches with a high

accuracy of 97.8% and an F1-score of 97.2%, demonstrating

its robustness and reliability. The Decision Tree also

performed well with an accuracy of 94.6%. On the other hand,

the J48 model had the lowest overall performance, achieving

an accuracy of 69.1% and an F1-score of 69.0%. When

comparing these with the proposed deep learning models, it

became evident that MLP and LSTM delivered superior

results, surpassing most traditional classifiers in every

evaluation aspect. These findings affirm the advantages of

adopting advanced deep learning techniques for effective and

reliable Android malware detection.

Figure3:Graph Analysis

VII. CONCLUSIONAND FUTURE

ENCHANCEMENT

A. CONCLUSION

The proposed Hybrid Android Malware Detection

Framework presents a comprehensive and flexible solution to

counter the growing sophistication of mobile threats. By

enabling the upload of both APK files and CSV files

containing app behavior logs, the system supports multi-

format inputs for broader analysis. It leverages a combination

of advanced machine learning models, including Multi-Layer

Perceptron (MLP), Long Short-Term Memory (LSTM), and

LightGBM, to detect malicious applications with high

precision and accuracy. The use of these models ensures that

the framework not only identifies threats effectively but also

reduces false positives, enhancing user trust and reliability.

The system's real-time monitoring feature further

strengthens its detection capability by dynamically tracking

malicious behaviors during app execution. The integration of

behavioral analysis, anomaly detection, and context-aware

intelligence adds multiple layers of scrutiny, significantly

improving detection rates. Moreover, the user-friendly

interface simplifies complex results into actionable insights,

IJSART - Volume 11 Issue 5 – MAY 2025 ISSN [ONLINE]: 2395-1052

Page | 880 www.ijsart.com

empowering users to take prompt decisions regarding app

safety. The proposed framework meets its objective of

enhancing Android device security, while its modular

architecture allows for easy scalability and adaptability to

future advancements, making it a robust and forward-looking

solution for mobile security.

B. FUTUREENHANCEMENT

Future enhancements aim to broaden the system’s

applicability, improve performance, and increase its

responsiveness to evolving malware techniques. One major

direction is multi-platform support, where the framework can

be extended to detect threats not only on Android but also

across web browsers and other mobile operating systems such

as iOS and HarmonyOS. This cross-platform intelligence will

allow the creation of a unified threat detection ecosystem.

To enhance real-time protection, future iterations

may incorporate continuous user behavioral monitoring and

automated threat mitigation features, such as isolating

suspicious apps or blocking malicious actions without manual

intervention. The development of a lightweight SDK will also

enable third-party applications to embed this malware

detection capability directly into their platforms, while push

notification features can alert users immediately when

suspicious activities are detected.

Cloud-based enhancements will include distributed

analysis using services like AWS or Google Cloud to handle

large-scale datasets, and a collaborative threat intelligence

network where users can contribute and share malware

samples for collective learning. Machine learning

improvements will focus on using transfer learning to adapt

rapidly to new malware families with minimal retraining,

along with explainable AI features to help users understand

the basis of detection results.

Furthermore, integrating real-time malware feeds

from global sources such as VirusTotal or MITRE ATT&CK

can keep the system updated against emerging threats.

Automated malware reporting mechanisms can contribute to

building a global database of new threats. Finally, advanced

threat simulation tools and a secure sandbox environment will

allow safe testing of unknown apps and help train detection

models under realistic attack scenarios. These enhancements

will not only future-proof the framework but also provide a

more proactive, scalable, and user-friendly security solution.

REFERENCES

[1] Intelligent Pattern Recognition Using Equilibrium

Optimizer With Deep Learning Model for Android

Malware Detection, MOHAMMED MARAY,

MASHAEL MAASHI, HAYA MESFER

ALSHAHRANI, SUMAYH S. ALJAMEEL,

SITELBANAT ABDELBAGI, AND AHMED S.

SALAMA — IEEE, 2024

[2] Android Malware Detection Using Deep Learning, Omar

N. Elayan, Ahmad M. Mustafa — Science Direct, March

23–26, 2021

[3] DroidDetector:Android Malware Characterization and

Detection Using Deep Learning, Zhenlong Yuan,

Yongqiang Lu, and Yibo Xue — IEEE, February 2016

[4] Hybrid Android Malware Detection and Classification

Using Deep Neural Networks, Muhammad Umar Rashid,

Shahnawaz Qureshi, Abdullah Abid, Saad Said

Alqahtany, Ali Alqazzaz, Mahmood ul Hassan, Mana

Saleh Al Reshan, Asadullah Shaikh — Springer, 25

February 2025

[5] A Hybrid Approach for Android Malware Detection and

Family Classification, Meghna Dhalaria, Ekta Gandotra

—IJIMAI, 1 September 2020

