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Abstract- We propose a hybrid and intelligent Android 

malware detection framework that integrates multi-domain 

feature extraction with deep learning models to improve 

mobile application security. The system consists of two key 

modules: the APK Security Analyzer and the App Behavior 

Analyzer. The APK Security Analyzer applies both static and 

dynamic analysis using tools such as Androguard, Android 

Emulator, ADB, and Monkey to extract permissions, API call 

sequences, and network traffic features. These are processed 

using a tri-model architecture—Multi-Layer Perceptron 

(MLP), Long Short-Term Memory (LSTM), and LightGBM—

within a Streamlitinterface.The App Behavior Analyzer 

enhances static CSV-based analysis by automating 

preprocessing with StandardScaler and applying a sliding 

window for time-series classification using an LSTM model. It 

supports real-time predictions and provides interactive 

visualizations to aid user understanding of 

results.Experimental results show high accuracy: MLP and 

LSTM models each achieved 96%, while LightGBM reached 

88%. Precision, recall, and F1-scores confirm system 

robustness, with MLP scoring 96%, 93%, and 94%, 

respectively. Visualizations such as radar charts and progress 

bars clearly communicate app risk levels and 

behaviorpatterns.These findings establish the framework as a 

robust, scalable, and interpretable solution for real-time 

Android malware detection, advancing mobile cybersecurity 

tools. 
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I. INTRODUCTION 

 

 The rapid adoption of Android devices has 

revolutionized mobile computing, yet this growth has also led 

to an alarming increase in Android malware threats. Malicious 

applications can compromise user privacy, steal sensitive data, 

and disrupt device operations, emphasizing the need for 

effective and scalable malware detection methods. 

 

Traditional malware detection techniques, such as 

signature-based and heuristic approaches, have shown 

limitations in handling the evolving landscape of Android 

threats. Signature-based methods are reactive and fail to 

identify new or polymorphic malware variants, while heuristic 

approaches often generate high false positive rates due to their 

reliance on predefined rules. Furthermore, these methods 

usually analyze limited feature sets, restricting their ability to 

capture complex application behaviors comprehensively. 

 

To address these challenges, this research proposes a 

hybrid Android malware detection framework leveraging 

multi-domain feature extraction and advanced machine 

learning models. By analyzing permissions, API call 

sequences, and network traffic data, the system constructs a 

comprehensive behavioral profile of each app. The framework 

employs specialized models—a Multi-Layer Perceptron 

(MLP) for permissions, Long Short- 

 

Term Memory (LSTM) networks for API calls, and 

LightGBM for network traffic—to accurately classify 

applications as benign or malicious.Additionally, the system 

includes an App Behavior Analyzer module that was initially 

designed for static review of CSV data reflecting application 

behavior patterns. While the original design employed an 

LSTM model to classify apps based on this data, it lacked 

dynamic data interpretation, meaningful result explanations, 

and intuitive visualization tools. Addressing these 

shortcomings, the module was enhanced to provide a more 

interactive, insightful, and user-friendly analysis framework, 

significantly improving malware classification reliability and 

user experience. 

 

II. EXISTING SYSTEM 

 

Android malware detection systems mainly rely on 

traditional static techniques like signature-based and heuristic 

analysis. These methods compare applications against known 

malware patterns or predefined rules, which makes them 

effective for detecting existing threats but ineffective against 

new, unknown, or polymorphic malware. 
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 Heuristic analysis flags suspicious behavior such as 

unusual permission requests but often results in high false 

positives.Some approaches employ machine learning 

models—like Decision Trees, SVMs, and Random Forests—

based on limited features such as permissions and API calls. 

While these improve classification, outdated datasets and 

narrow feature sets hinder their ability to adapt to evolving 

threats. Deep learning models like CNNs and RNNs offer 

better pattern recognition but still struggle without real-time 

behavioral insight.Hybrid systems have emerged, combining 

static and dynamic analysis for improved detection, using 

runtime monitoring to identify malicious patterns. Despite 

this, limitations persist in scalability, automation, and real-

time performance. Manual feature engineering and delayed 

detection reduce effectiveness in fast-changing threat 

environments. 

 

Overall, these systems face challenges such as 

limited detection for unknown malware, false positives, lack 

of real-time analysis, and poor adaptability—highlighting the 

need for more dynamic, scalable, and automated detection 

frameworks. 

 

III. LITERATURESURVEY 

 

Mohammed Maray et al. (2024) [1] introduced the 

Intelligent Pattern Recognition using Equilibrium Optimizer 

with Deep Learning (IPR-EODL) for Android malware 

detection. Their approach combines data preprocessing, a 

Channel Attention LSTM model, and hyperparameter tuning 

via the Equilibrium Optimization algorithm. Evaluated on 

standard datasets, the model achieved a high accuracy of 

99.18%, demonstrating the effectiveness of deep learning 

techniques in improving detection accuracy against evolving 

malware threats. 

 

Omar N. Elayan et al. (2021) [2] proposed a deep 

learning-based detection method using Gated Recurrent Units 

(GRU) with static feature extraction from API calls and 

permissions. Compared to traditional classifiers such as SVM, 

KNN, and Random Forest, the GRU model outperformed all, 

reaching 98.2% accuracy on the CICAndMal2017 dataset. 

This work highlights the importance of deep learning and 

careful feature selection for robust Android malware 

identification. 

 

Zhenlong Yuan et al. (2016) [3] developed 

DroidDetector, integrating static and dynamic analysis with a 

Deep Belief Network (DBN) to classify Android malware. 

Using a dataset of over 20,000 apps, their method combined 

permissions and API calls with runtime behaviors captured via 

DroidBox. The DBN achieved a detection accuracy of 

96.76%, outperforming classical machine learning methods,  

and underscored the value of multi-source feature fusion for 

effective malware classification. 

 

MuhammadUmar Rashid et al. (2025) [4] presented a 

hybrid deep learning framework analyzing permissions, 

intents, and API calls through Deep Neural Networks. 

Evaluated on a large dataset spanning 15 malware families, 

the model improved detection accuracy to 98.2%, surpassing 

previous state-of-the-art methods. Their work emphasizes the 

significance of multi-dimensional feature analysis and model 

interpretability in addressing scalability and obfuscation 

challenges in malware detection. 

 

Meghna Dhalaria et al. (2020) [5] proposed a hybrid 

detection system combining static and dynamic analyses for 

malware classification. They introduced two public datasets 

for binary and multiclass tasks and utilized various machine 

learning algorithms with feature selection for improved 

performance. Their hybrid approach achieved 98.53% 

accuracy for binary classification and 90.10% for multiclass, 

demonstrating the benefits of integrating behavioral and 

structural app features for enhanced malware detection. 

 

IV. PROPOSEDSYSTEM 

 

The proposed system is a hybrid Android malware 

detection framework designed to overcome the liitations of 

conventional methods by integrating multi-domain feature 

extraction with advanced machine learning techniques. It 

harnesses the power of deep learning and machine learning 

algorithms to enhance detection accuracy, efficiency, and 

scalability in identifying malicious applications. 

 

Initially, the system accepts input files in two 

formats: APK files or CSV behavioral logs. For APK files, the 

system performs feature extraction across four critical 

domains: permissions (using the Drebin dataset), API call 

sequences (extracted via Cuckoo Sandbox), network traffic 

(analyzed with CIC-InvesAndMal2019 dataset), and activity 

logs. If CSV files containing app behavior logs are uploaded, 

the system bypasses static feature extraction and directly 

applies sequential analysis to detect anomalies. 
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Figure1:SystemArchitecture 

 

The extracted features are processed using 

specialized models tailored for each domain. Permissions are 

analyzed using a Multi-Layer Perceptron (MLP), API 

sequences are evaluated through Long Short-Term Memory 

(LSTM) networks, and network traffic is classified using 

LightGBM. This modular approach ensures high precision in 

detecting various aspects of malicious behavior. 

 

To complement static analysis, the system 

incorporates real-time monitoring capabilities. During 

application execution, dynamic behavioral analysis, anomaly 

detection, and context-aware detection techniques are applied 

to capture malicious activities as they unfold, thereby offering 

comprehensive malware evaluation. 

 

Users upload APK or CSV files, after which the 

system performs automated feature extraction, model training, 

and classification. The results are presented in a user-friendly 

format, empowering users with actionable insights to make 

informed decisions regarding app safety. 

 

Overall, this proposed system delivers a robust, 

automated, and scalable solution that protects Android devices 

from sophisticated malware threats while enhancing user 

security  and trust in mobile applications. 

 

V.  IMPLEMENTATION 

 

This project comprises two main modules that collectively 

form an integrated system for Android malware detection: 

 

APK Security Analyzer Module 

App Behavior Analyzer Module 

 

The entire system is developed using Python 3.9 and 

deployed through the Streamlit framework, which provides a 

lightweight and interactive web interface for real-time 

analysis. The system architecture incorporates both static and 

dynamic analysis techniques, driven by multiple specialized 

machine learning models to ensure comprehensive risk 

evaluation. 

 

1. APK Security Analyzer Module 

 

This module serves as the foundation for static and 

simulated dynamic analysis of APK files. It is engineered to 

extract critical feature sets from uploaded applications and 

predict risk levels using a hybrid of models trained on diverse 

data domains. 

 

1.1 Input Processing 

 

  Upon receiving an APK file through the file upload 

interface, the system utilizes the Androguard library to extract 

basic metadata such as the application name, version, and 

package ID. 

 
Figure2:Flow Diagram 

 

 Following this, it initiates multi-domain feature extraction: 

 

Permissions are parsed from the manifest and vectorized 

using a predefined schema. 

API call sequences are identified through static analysis and 

transformed into token sequences. 

Network traffic behavior is simulated using mock data in the 

absence of actual PCAP files. 

 

These extracted features are subsequently converted into 

structured vectors, optimized for model consumption. 

 

1.2 Initial Implementation 

 

  Initially, the module displayed individual model 

outputs from the MLP, LSTM, and LightGBM models directly 

on the interface. While technically accurate, this raw output 

format overwhelmed users with excessive data such as feature 

vectors and model confidence scores. Risk levels were 

calculated via a weighted average but presented with minimal 

explanation. 

 

1.3 Challenges Identified 

 

  The early interface suffered from poor visualization 
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and interpretability. Misaligned charts, verbose probability 

details, and redundant technical information rendered the 

system less intuitive. Users found it difficult to interpret 

results due to inconsistent visual cues and the absence of 

meaningful summaries. 

 

1.4 Optimized Solution 

 

A complete redesign was undertaken to enhance user 

experience. This included: 

A radar chart to compare predictions from each model. 

A horizontal bar graph showing the influence of each model 

in the risk calculation (Permissions: 0.6, API: 0.2, Traffic: 

0.2). 

A permissions bar chart highlighting suspicious permissions 

in red. 

A pastel-colored progress bar to intuitively indicate overall 

risk level (Low, Medium, High). 

Concise, aligned text explanations adjacent to each 

visualization. 

These enhancements preserved the original logic while vastly 

improving user comprehension and visual appeal. 

 

1.5 Visualization Features 

 

The Visualization Module integrates multiple elements into a 

unified dashboard: 

 

Circular radar graphs for model comparison 

Linear weight distribution bars 

Permission charts with color-coded risk indicators 

 

A progress bar summarizing the application’s final risk status 

All charts are uniformly styled and vertically aligned, ensuring 

a clean, cohesive layout that supports rapid risk assessment. 

 

1.6 Module Outcome 

 

  The final APK Security Analyzer provides users with 

an intuitive, real-time risk assessment interface. Upon 

analysis, it delivers a structured output containing metadata, 

risk scores, and visual analytics. Suspicious permissions are 

flagged clearly, and users are offered a downloadable JSON 

report for offline review or compliance needs. 

 

2. App Behavior Analyzer Module 

 

The App Behavior Analyzer is responsible for 

analyzingbehavioral patterns from CSV logs, focusing on 

dynamic data obtained from runtime execution or monitoring 

tools. 

 

2.1 Input Processing 

 

  Initially, users had to manually preprocess CSV files 

before uploading. The uploaded dataset was then analyzed 

using an LSTM model designed to classify app behavior as 

benign or malicious. However, this static pipeline lacked 

intuitive visualization and dynamic interpretability. 

 

2.2 Initial Design 

 

  The first iteration involved simple CSV ingestion and 

LSTM-based prediction. It offered minimal interaction, no 

dynamic visualization, and required users to format data 

precisely, increasing the chance of input errors. 

 

2.3 Issues Encountered 

 

Several critical shortcomings were identified: 

Lack of user-friendly interface 

Manual preprocessing requirements 

Frequent errors due to improper CSV formatting 

Inconsistent prediction reliability due to input sensitivity 

 

2.4 Optimized Solution 

 

To resolve these limitations, the following enhancements were 

introduced: 

 

Automated preprocessing using a pre-trained 

StandardScaler.pkl to normalize input features. 

A sliding window mechanism to convert flat data into 

structured sequences suitable for the LSTM Model. 

A Streamlit-based interactive interface for file uploads, 

visual feedback, and real-time behavior trend visualization. 

These changes significantly improved model reliability, 

interpretability, and user experience. 

 

2.5 Module Outcome 

 

The improved App Behavior Analyzer now offers 

seamless, accurate classification of behavioral data. It 

generates real-time predictions, supports structured sequence 

analysis, and displays results using clean, interpretable charts. 

This makes it highly effective for analysts and developers 

evaluating app behavior patterns for security anomalies. 

 

                    VI. RESULTANALYSIS 

   

To assess the effectiveness of the proposed Android 

malware detection system, various machine learning models 

were evaluated using core classification metrics: accuracy, 

precision, recall, and F1-score. These metrics provide a 
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comprehensive understanding of each model’s predictive 

capability and help identify strengths and limitations. 

 

Firstly, precision was calculated to determine the 

proportion of correctly identified malware instances among all 

predicted malware. High precision signifies a lower rate of 

false positives, which is crucial in security-sensitive 

applications where incorrect classification could trigger 

unnecessary warnings. Similarly, recall was used to evaluate 

the ability of the model to detect all actual malware samples in 

the dataset. A high recall score indicates the model 

successfully captured most of the malicious activities. 

Accuracy, the most intuitive metric, measured the overall 

correctness of predictions. However, in imbalanced datasets 

like malware detection, where benign apps may outnumber 

malicious ones, accuracy alone may not provide sufficient 

insight. Therefore, the F1-score, the harmonic mean of 

precision and recall, was also considered to balance both 

metrics and offer a clearer picture of performance under 

unequal class distributions. 

 

 
Table1: Model Comparison 

 

The proposed models included Multi-Layer 

Perceptron (MLP), Long Short-Term Memory (LSTM), and 

LightGBM. Among these, the LSTM model exhibited the 

highest accuracy at 99.0%, showcasing its superior learning 

ability over time-sequenced data such as API call patterns. 

The MLP model demonstrated the highest precision and recall 

scores at 96.0% and 93.0%, respectively, resulting in a strong 

F1-score of 95.0%, indicating its balanced performance. 

LightGBM, while efficient and faster in execution, achieved 

comparatively lower metrics across the board, with an F1-

score of 87.0%, suggesting that deeper learning-based models 

are more effective in this domain. 

 

In addition to evaluating advanced models, a 

comparison was made with traditional classifiers such as J48, 

Random Forest, and Decision Tree. Random Forest 

outperformed other traditional approaches with a high 

accuracy of 97.8% and an F1-score of 97.2%, demonstrating 

its robustness and reliability. The Decision Tree also 

performed well with an accuracy of 94.6%. On the other hand, 

the J48 model had the lowest overall performance, achieving 

an accuracy of 69.1% and an F1-score of 69.0%. When 

comparing these with the proposed deep learning models, it 

became evident that MLP and LSTM delivered superior 

results, surpassing most traditional classifiers in every 

evaluation aspect. These findings affirm the advantages of 

adopting advanced deep learning techniques for effective and 

reliable Android malware detection. 

 

 
Figure3:Graph Analysis 

 

VII. CONCLUSIONAND FUTURE 

ENCHANCEMENT 

 

A. CONCLUSION 

 

The proposed Hybrid Android Malware Detection 

Framework presents a comprehensive and flexible solution to 

counter the growing sophistication of mobile threats. By 

enabling the upload of both APK files and CSV files 

containing app behavior logs, the system supports multi-

format inputs for broader analysis. It leverages a combination 

of advanced machine learning models, including Multi-Layer 

Perceptron (MLP), Long Short-Term Memory (LSTM), and 

LightGBM, to detect malicious applications with high 

precision and accuracy. The use of these models ensures that 

the framework not only identifies threats effectively but also 

reduces false positives, enhancing user trust and reliability. 

 

The system's real-time monitoring feature further 

strengthens its detection capability by dynamically tracking 

malicious behaviors during app execution. The integration of 

behavioral analysis, anomaly detection, and context-aware 

intelligence adds multiple layers of scrutiny, significantly 

improving detection rates. Moreover, the user-friendly 

interface simplifies complex results into actionable insights, 
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empowering users to take prompt decisions regarding app 

safety. The proposed framework meets its objective of 

enhancing Android device security, while its modular 

architecture allows for easy scalability and adaptability to 

future advancements, making it a robust and forward-looking 

solution for mobile security. 

 

B. FUTUREENHANCEMENT 

 

Future enhancements aim to broaden the system’s 

applicability, improve performance, and increase its 

responsiveness to evolving malware techniques. One major 

direction is multi-platform support, where the framework can 

be extended to detect threats not only on Android but also 

across web browsers and other mobile operating systems such 

as iOS and HarmonyOS. This cross-platform intelligence will 

allow the creation of a unified threat detection ecosystem. 

 

To enhance real-time protection, future iterations 

may incorporate continuous user behavioral monitoring and 

automated threat mitigation features, such as isolating 

suspicious apps or blocking malicious actions without manual 

intervention. The development of a lightweight SDK will also 

enable third-party applications to embed this malware 

detection capability directly into their platforms, while push 

notification features can alert users immediately when 

suspicious activities are detected. 

 

Cloud-based enhancements will include distributed 

analysis using services like AWS or Google Cloud to handle 

large-scale datasets, and a collaborative threat intelligence 

network where users can contribute and share malware 

samples for collective learning. Machine learning 

improvements will focus on using transfer learning to adapt 

rapidly to new malware families with minimal retraining, 

along with explainable AI features to help users understand 

the basis of detection results. 

 

Furthermore, integrating real-time malware feeds 

from global sources such as VirusTotal or MITRE ATT&CK 

can keep the system updated against emerging threats. 

Automated malware reporting mechanisms can contribute to 

building a global database of new threats. Finally, advanced 

threat simulation tools and a secure sandbox environment will 

allow safe testing of unknown apps and help train detection 

models under realistic attack scenarios. These enhancements 

will not only future-proof the framework but also provide a 

more proactive, scalable, and user-friendly security solution. 
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