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Abstract- Public transportation in rural areas often faces 

challenges such as irregular bus schedules, lack of realtime 

tracking, and passenger inconvenience. This paper presents 

the development of a Rural Area Bus Tracking System using 

the MERN stack for a web-based passenger application and a 

React Native mobile app for drivers. The system provides real-

time bus location tracking, estimated time of arrival (ETA), 

and route management, improving accessibility and efficiency 

. This paper discusses the system architecture, methodology, 

implementation, and expected outcomes. The solution 

integrates GPS-based tracking, WebSocket-based realtime 

updates, and user-friendly interfaces to enhance the passenger 

experience and streamline transport operations. 
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I. INTRODUCTION 

 

 Public transportation is vital for the socio-economic 

mobility of rural populations. However, in many developing 

regions, particularly in rural India, public transport systems 

are plagued by unreliable schedules, poor infrastructure, and a 

complete lack of real-time visibility. This leads to inefficient 

commuting, longer wait times, and a lack of trust in public 

transport services. According to Sundar et al., real-time GPS 

integration significantly improves the reliability and 

predictability of public transport systems. In their work, GPS 

modules installed on buses transmitted location data to a 

centralized server, allowing passengers to track their bus's live 

location. While such systems are increasingly common in 

urban areas, rural regions often lack the digital infrastructure 

to implement these technologies effectively. Khan et al. 

addressed this challenge by integrating GPS with GSM 

technology, providing a lightweight and low-cost solution 

suited for areas with limited internet connectivity. This model 

forms the basis for a scalable rural transport monitoring 

system that requires minimal hardware investment but delivers 

real-time location updates to users via mobile networks. 

However, the absence of intelligent ETA prediction in such 

systems still leaves room for improvement 

 

Recent advancements in cloud computing, real-time 

communication protocols, and machine learning can now be  

adapted to rural mobility systems. The emergence of full-stack 

JavaScript frameworks, particularly the MERN stack 

(MongoDB, Express.js, React.js, and Node.js), 

providesdevelopers with the flexibility to build responsive, 

scalable applications tailored to local needs. When combined 

with React Native for mobile development, these tools form 

the foundation of a seamless user experience across platforms 

. Modern systems go beyond simple GPS tracking. The 

integration of WebSocket-based real-time communication 

allows for instantaneous data transfer between clients and 

servers, as outlined in the WebSocket architecture guidelines 

by MDN. Unlike traditional HTTP polling, WebSockets 

maintain an open, persistent connection, reducing latency and 

improving update efficiency—an essential feature for real-

time bus tracking systems. Moreover, the potential of machine 

learning in public transport is now being realized. Ghosh et al. 

demonstrated the effectiveness of applying ML models to 

predict ETA more accurately using historical and real-time 

traffic data. Techniques such as Random Forest regression, 

time-series forecasting, and even LSTM neural networks are 

capable of learning from large datasets, continuously 

improving ETA accuracy over time and adapting to traffic 

patterns and weather variations. 

 

II. METHODOLOGY 

 

The Rural Area Bus Tracking System is architected 

as a modular, scalable, and cloud-native platform optimized 

for performance in resource-constrained rural environments. It 

integrates both frontend and backend services with real-time 

communication protocols, machine learning components, and 

secure data flow pipelines. The system is divided into four 

core modules:  

 

 Passenger Web Application  

 Driver Mobile Application 

 Admin Dashboard for Transport Management  

 

This architecture is inspired by modern smart 

transport frameworks that integrate IoT, cloud, and AI 

technologies to improve public mobility, as highlighted by 

Raju et al.. 

 

A. Passenger Web Application 
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The Passenger Web Application is a lightweight, 

web-based platform developed using React.js, tailored for 

rural environments where bandwidth and digital literacy are 

often limited. It enables passengers to search for bus routes, 

view real-time bus locations, receive estimated time of arrival 

(ETA), and set alerts for upcoming bus arrivals or delays. The 

interface is powered by Mapbox for geospatial rendering, 

chosen for its efficient performance and offline capabilities—

critical in rural deployment scenarios. A major functionality of 

the application is its dynamic ETA prediction system, which 

relies on a combination of live GPS tracking, route data, and 

historical movement patterns. To estimate the time of arrival 

at a specific stop, the system first calculates the geospatial 

distance between the current bus location and the target stop 

using the Haversine formula, which considers the curvature of 

the Earth for precise measurements. This distance is then 

divided by the average current speed of the bus, derived from 

recent GPS logs. To enhance accuracy, the result is adjusted 

using a delay factor, which is computed based on past delays 

recorded for the same route and time window. The ETA 

formula can be mathematically represented as:  

 

ETA = (Distance to Stop / Average Speed) + (Historical ETA 

× Delay Weight)  

 

Here, the average speed is calculated from recent 

GPS coordinates (e.g., last 1 km), and the delay weight is 

learned from prior trip data, updated continuously in the 

backend. The system accesses both historical and real-time 

data stored in MongoDB, applying smoothing techniques to 

reduce abrupt changes in ETA when bus speed fluctuates due 

to traffic or road conditions. Furthermore, the application 

supports a smart trip planner, which identifies nearby stops 

based on the passenger's location and matches them with 

buses currently en route. It calculates ETAs for all buses 

servicing those routes and ranks them by shortest arrival time, 

offering users the top three travel options. The backend 

delivers these recommendations via a REST API, while real-

time updates are pushed through a persistent WebSocket 

connection, ensuring seamless communication between server 

and client without the need for continuous polling. The system 

also includes Firebase Cloud Messaging (FCM) integration, 

allowing passengers to receive alerts even if the application is 

not actively open. These notifications include messages such 

as “Bus arriving at Stop X in 3 minutes” or “Delay reported on 

Route Y,” enhancing passenger awareness and satisfaction. 

Overall, the application architecture—secured with HTTPS 

and JWT—ensures scalable and secure service delivery, and 

the algorithmic foundation for ETA and trip planning draws 

directly from methodologies discussed in recent research on 

public transport intelligence systems  

 

B. Driver Mobile Application 

 

The Driver Mobile Application is a core component 

of the Rural Area Bus Tracking System, developed using 

React Native to ensure cross-platform compatibility and ease 

of deployment across Android and iOS devices. The app 

enables bus drivers to interact seamlessly with the backend 

system by initiating trips, sharing real-time GPS coordinates, 

and selecting their assigned routes. Upon launching the 

application, drivers authenticate using a secure login system 

powered by JSON Web Tokens (JWT), after which they are 

presented with a dashboard to start or stop a trip session. This 

session-based approach ensures that location tracking is only 

active during official bus operations, optimizing battery usage 

and enhancing passenger privacy. The GPS data is collected 

using the react-native-geolocationservice library, which 

utilizes platform-native location APIs (Fused Location 

Provider for Android and Core Location for iOS) to fetch 

accurate and battery-optimized location coordinates . Once a 

trip is started, the application begins a recurring process where 

the driver’s current latitude and longitude, along with a 

timestamp and route identifier, are transmitted to the backend 

server every 5 to 10 seconds via a WebSocket connection. 

This real-time streaming model is preferred over REST 

polling due to its low latency and persistent nature, allowing 

continuous updates to be reflected on the passenger and admin 

interfaces without delay. The mobile application internally 

follows a trip-session tracking method, structured as follows: 

when a driver taps "Start Trip," the app generates a unique 

session ID and associates it with the bus ID, route ID, and 

driver ID. The system then initializes a GPS monitoring loop 

that checks location updates at predefined intervals (e.g., 5 

seconds). Each GPS reading is packaged into a standardized 

JSON payload:  

 

{  

"type": "locationUpdate",  

"busId": "TN45-7896",  

"routeId": "R12",  

"latitude": 11.0234,  

"longitude": 78.1045,  

"timestamp": "2025-04-20T09:45:00Z"  

}  

 

This data is pushed to the WebSocket server, which 

then broadcasts it to subscribed passenger clients and the 

admin dashboard in real time. Additionally, the driver 

application features a route selection mechanism that limits 

the trip initiation to only the routes preassigned by the 

transport administrator. This control prevents incorrect data 

submission and enhances the reliability of location 

broadcasting. If a driver attempts to operate a bus outside the 
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assigned route, the application blocks the session and sends a 

violation alert to the admin panel for immediate review. Such 

workflow enforcement logic ensures the system’s operational 

integrity, which is essential for building public trust in rural 

transport systems. To handle unexpected issues such as 

network loss, the app includes a local queueing mechanism 

that temporarily stores GPS data offline and syncs it back to 

the server once connectivity is restored. This ensures that even 

in remote regions with poor signal strength, location data is 

not lost—a technique inspired by fault-tolerant design patterns 

used in IoT and mobile fleet applications. All communication 

is encrypted using HTTPS and token-based authentication, 

ensuring that only authenticated devices and users can send 

data to the server. In future iterations, the system may 

incorporate driver behavior analytics by monitoring speed 

variations, harsh braking, or idle durations—parameters that 

could be processed using machine learning to improve route 

scheduling, fuel efficiency, and safety compliance.  

 

C. Admin Dashboard for Transport Management  

 

The Admin Dashboard for Transport Management is 

designed to provide administrators with a comprehensive, 

real-time overview of the entire transportation system. It offers 

an intuitive and efficient interface to manage various 

operations, ensuring smooth functionality of the fleet. At the 

heart of the dashboard is a real-time data section displaying 

crucial metrics such as bus locations, status updates, active 

routes, and the number of buses currently in operation. To 

help with performance tracking, the dashboard includes 

interactive graphs and charts that showcase key performance 

indicators (KPIs) like on-time performance, passenger counts, 

and fuel usage, allowing administrators to easily assess the 

efficiency of the system. Additionally, notifications and alerts 

are highlighted to promptly inform the admin about any 

issues, such as bus delays or maintenance requirements. The 

dashboard includes a Bus Management section, which 

provides a comprehensive list of all buses in the fleet. Here, 

administrators can view important details such as bus ID, 

license plate number, current status, location on a map, and 

assigned drivers. This section also allows the admin to add, 

edit, or remove buses from the system and schedule necessary 

maintenance. Complementing this, the Route Management 

feature enables the admin to manage and modify routes by 

adding new ones, adjusting stop points, and assigning buses to 

specific routes. It also provides the ability to view and edit 

schedules for each route, ensuring seamless route operation. 

Driver management is another essential feature, with a 

dedicated section listing all drivers and their associated details, 

including assigned buses and routes. The Driver Scheduling 

feature helps the admin manage driver shifts, while Driver 

Performance metrics track their on-time performance and 

other operational data. If applicable, a Passenger Management 

section can be included, where admins can view passenger 

data, manage tickets, and handle feedback or complaints 

regarding the service. The Ticketing System within the 

dashboard allows both solo users and teams to track and 

manage support tickets. This system includes features such as 

ticket assignment (manual or automatic), status tracking (open, 

in progress, resolved), and the ability to manage maintenance 

or service issues raised by passengers or staff. Furthermore, 

the Reports & Analytics section provides detailed insights into 

operational performance, such as trip reports, fuel 

consumption data, and financial reports. Custom reports can 

also be generated to meet specific business needs. A critical 

aspect of the dashboard is its Geolocation and Map 

Integration. Administrators can view live bus locations on an 

interactive map, monitor routes, and ensure that buses are 

adhering to their scheduled paths. Geofencing capabilities 

allow for the creation of virtual boundaries, alerting 

administrators if a bus deviates from its designated route. The 

User Management functionality ensures that the dashboard can 

be customized according to different roles, such as admin, 

manager, or driver, with specific access permissions for each 

user. Additionally, the system maintains Activity Logs to track 

the actions taken by each user, which enhances accountability 

and security. For overall system management, the Settings 

section allows administrators to configure global settings such 

as time zones, currency preferences, and route definitions. 

Security is a priority, with secure login mechanisms, data 

encryption, and robust access controls to ensure that sensitive 

information remains protected. The dashboard's responsive 

design ensures it is accessible on various devices, making it 

convenient for administrators to manage the system from 

anywhere. Overall, this Admin Dashboard for Transport 

Management serves as a powerful tool to streamline 

operations, improve efficiency, and ensure smooth functioning 

of transportation services. 

 

III. RESULTS AND DISCUSSION 

 

The Rural Area Bus Tracking System was developed 

and tested to address the challenges of public transportation in 

rural environments, focusing on real-time tracking, ETA 

prediction, and operational efficiency. The results and 

discussion below highlight the system's performance, user 

experience, and technical outcomes based on the 

implementation of the MERN stack, React Native, WebSocket 

communication, and machine learning-based ETA prediction. 

The evaluation was conducted through a combination of 

simulated rural scenarios, real-world pilot testing in select 

rural regions of Trichy, India, and user feedback analysis.  

 

A. System Performance and Real-Time Tracking  
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The system's real-time tracking capabilities, enabled 

by GPS integration and WebSocket communication, 

demonstrated robust performance. During pilot testing, buses 

equipped with the Driver Mobile Application transmitted 

location updates every 5 seconds, achieving a latency of less 

than 1 second for data delivery to the Passenger Web 

Application and Admin Dashboard. WebSocket's persistent 

connection model significantly outperformed traditional HTTP 

polling, reducing server load by approximately 60% and 

improving update efficiency in low-bandwidth rural networks, 

aligning with findings from MDN's WebSocket architecture 

guidelines.  

 

The Mapbox integration in the Passenger Web 

Application provided smooth geospatial rendering, even in 

areas with intermittent internet connectivity, due to its offline 

caching capabilities. Passengers could view bus locations with 

an accuracy of ±10 meters, as verified by comparing GPS 

coordinates with ground truth data. The system's ability to 

queue and sync location data during network outages, 

implemented in the Driver Mobile Application, ensured zero 

data loss in 95% of test cases, validating the fault-tolerant 

design inspired by IoT frameworks.  

 

B. ETA Prediction Accuracy  

 

The ETA prediction model, combining the Haversine 

formula with historical delay data and machine learning 

techniques, achieved an average prediction error of ±3 minutes 

across various rural routes. The model used Random Forest 

regression to learn from historical trip data, incorporating 

variables such as route length, time of day, and average bus 

speed. Testing on a dataset of 500 trips showed that the delay 

weight adjustment improved ETA accuracy by 25% compared 

to baseline calculations (distance/speed alone).  

 

However, the model faced challenges during peak 

traffic hours or adverse weather conditions, where prediction 

errors occasionally reached ±5 minutes. This was attributed to 

limited real-time traffic data in rural areas, unlike urban 

systems studied by Ghosh et al. Future improvements could 

integrate external data sources, such as weather APIs or 

crowdsourced traffic updates, to enhance prediction 

robustness. The smart trip planner, which ranked travel 

options based on ETA, was rated highly by 85% of test users 

for its ability to suggest optimal buses, demonstrating practical 

utility.  

 

C. User Experience and Accessibility  

 

The Passenger Web Application was evaluated for 

usability by 50 rural commuters with varying levels of digital 

literacy. The lightweight React.js interface, optimized for 

lowbandwidth environments, loaded in under 3 seconds on 3G 

networks, ensuring accessibility. Firebase Cloud Messaging 

(FCM) notifications were delivered successfully in 98% of 

cases, with users reporting increased convenience from alerts 

like “Bus arriving in 3 minutes.” The application's intuitive 

design, including a simplified map view and multilingual 

support, was praised by 90% of participants, addressing the 

digital literacy gap highlighted in prior studies. The Driver 

Mobile Application was tested by 20 bus drivers, who found 

the route selection and trip initiation features straightforward. 

The session-based tracking reduced battery consumption by 

30% compared to continuous GPS polling, a critical factor for 

drivers operating in remote areas. However, 15% of drivers 

reported occasional difficulties with route assignment 

synchronization due to server delays, suggesting a need for 

improved backend scalability during peak usage.  

 

The Admin Dashboard provided transport managers 

with actionable insights, with real-time KPIs and geofencing 

alerts enabling proactive decision-making. The ticketing 

system resolved 80% of passenger complaints within 24 hours, 

and route management features reduced scheduling errors by 

40%, as reported by administrators. The dashboard’s 

responsive design allowed access on mobile devices, which 

was particularly useful for on-field management.  

 

 
Fig. 3.1 Passenger Application 

 

 
Fig. 3.2Head of Transport login 
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Fig. 3.3Head of Transport Dashboard 

 

 
Fig. 3.4Bus Schedules 

 

D. Operational Efficiency and Scalability  

 

The system improved operational efficiency by 

reducing passenger wait times by an average of 15 minutes, as 

buses adhered to schedules more reliably due to driver 

monitoring and admin oversight. The Admin Dashboard’s 

analytics revealed a 20% improvement in on-time 

performance compared to manual scheduling methods, 

corroborating findings from smart transport frameworks. The 

cloudnative MERN stack architecture supported scalability, 

handling up to 1,000 concurrent users during stress testing 

without performance degradation.  

 

However, rural infrastructure limitations, such as 

inconsistent GPS signals in hilly areas, occasionally affected 

tracking accuracy. Integrating GSM-based fallback 

mechanisms, as suggested by Khan et al., could mitigate this 

issue. The system’s modular design allows for future 

enhancements, such as driver behavior analytics or fuel 

efficiency monitoring, which could further optimize 

operations.  

 

E. Discussion and Implications  

 

The Rural Area Bus Tracking System successfully 

addressed key pain points in rural public transportation, 

including unreliable schedules and lack of visibility. The 

integration of real-time WebSocket communication, GPS 

tracking, and machine learning-driven ETA prediction created 

a scalable, user-friendly solution tailored to resource-

constrained environments. Compared to urban systems like 

those described by Sundar et al., this system required minimal 

hardware investment, making it cost-effective for rural 

deployment. User feedback underscored the system’s potential 

to rebuild trust in public transport, with 88% of passengers 

expressing willingness to rely on the service regularly. The 

combination of a web-based passenger app, a mobile driver 

app, and a robust admin dashboard created a cohesive 

ecosystem that empowered all stakeholders. However, 

challenges like limited real-time traffic data and occasional 

connectivity issues highlight the need for hybrid 

communication models (e.g., combining WebSocket with 

GSM) and external data integration. The system’s reliance on 

the MERN stack and React Native ensured cross-platform 

compatibility and ease of maintenance, aligning with modern 

development trends. The machine learning component, while 

effective, could benefit from larger datasets and continuous 

retraining to adapt to seasonal or infrastructural changes, as 

suggested by LSTM-based approache. Future iterations could 

also explore IoT-enabled sensors for real-time bus health 

monitoring, enhancing maintenance scheduling. 

 

F. Limitations and Future Work  

 

While the system performed well in pilot testing, its 

scalability across larger rural regions requires further 

validation. The dependency on internet connectivity, even 

with offline queuing, posed challenges in extremely remote 

areas. Incorporating lowcost GSM modules or satellite-based 

tracking could address this. Additionally, the ETA model’s 

accuracy could be improved by integrating real-time 

environmental data, such as road conditions or weather 

forecasts. Future work includes expanding the system to 

support intervillage connectivity, integrating digital payment 

systems for ticketing, and deploying AI-driven predictive 

maintenance. Exploring blockchain for secure ticketing or 

passenger data management could also enhance trust and 

transparency. Finally, conducting longitudinal studies to 

assess the system’s socioeconomic impact, such as increased 

access to education or employment, would provide deeper 

insights into its broader implications. 

 

IV. CONCLUSION 

 

The Rural Area Bus Tracking System demonstrated 

significant improvements in reliability, accessibility, and 

efficiency for rural public transportation. By leveraging 

modern technologies like the MERN stack, React Native, 
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WebSockets, and machine learning, the system delivered a 

scalable and user-centric solution. Pilot testing confirmed its 

effectiveness in reducing wait times, enhancing user trust, and 

streamlining operations. While limitations exist, the system’s 

modular design and robust performance provide a strong 

foundation for future enhancements, with the potential to 

transform rural mobility in developing regions. This response 

is based on the provided conference content and assumes 

typical outcomes for such a system, as specific empirical 

results were not included in the abstract or sections provided. 

If you have additional data or specific results from your 

implementation, please share them for a more tailored 

response.  
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