
IJSART - Volume 11 Issue 4 – APRIL 2025 ISSN [ONLINE]: 2395-1052

Page | 1013 www.ijsart.com

Multi- Factor Authentication (MFA) Using MERN

Stack

Sneha k1, Subasree D2, Yuvasri M3, Sashitika R4, Mrs. iyswarya k5

1, 2 Dept of Information Technology
1, 2, 3,4, 5 Sri Shakthi Institute of Engineering and Technology (Autonomous) Coimbatore-641062

Abstract- Protecting stoner data and preventing unwanted

access are crucial in today's digital world. Watchwords can

be stolen or guessed, therefore traditional word- based

authentication is no longer enough. This concept uses the

MERN mound—MongoDB, Express.js, Reply, and Node.js—to

integrate Multi-Factor Authentication (MFA) into an online

application. By requiring drug users to provide several pieces

of verification before allowing access, MFA improves security.

This technique mixes the stoner's known (word) and unknown

(OTP) commodities, which are typically sent via SMS,

dispatch, or an authenticator app. OTP generation,

verification, and stoner login are handled by the backend

(Node.js with Express).

I. INTRODUCTION

 Protecting user data is more crucial than ever in the

modern digital environment. Passwords can be readily

guessed, stolen, or leaked, therefore using them alone is no

longer secure. The requirement that users supply two or more

types of verification—usually a combination of something

they know (password), something they have (OTP or device),

or something they are (biometric)—is how Multi-Factor

Authentication (MFA) improves security. Unauthorized users

find it far more difficult to obtain access thanks to this multi-

layered strategy. Modern banking, enterprise, and web

applications all make extensive use of MFA. In order to

increase security and foster user trust, this project focuses on

integrating MFA into a MERN stack (MongoDB, Express.js,

React, and Node.js) application utilizing either email/SMS

OTP or an authenticator app.

OBJECTIVE

1. Boost Security is put in place a second line of

defense in addition to the conventional password-

based authentication.

2. Prevent Unauthorized Access to make sure that

sensitive information or services are only accessible

by authorized users.

3. Create and incorporate MFA capability into a web

application using the MERN stack (MongoDB,

Express.js, React, and Node.js).

4. Allow OTP-based verification using email, SMS, or

authenticator apps (like Google Authenticator) to

support multiple verification methods.

5. Boost System Reliability and User Trust by

implementing strong authentication, users can feel

more secure about the application's security.

II. LITERATURE SURVEY

Secure authentication is one of the most important

aspects of developing online applications in the current digital

era. Using just usernames and passwords for single- factor

authentication has shown to be inadequate in light of the

growing number of identity thefts and data breaches. This

problem is addressed by Multi-Factor Authentication (MFA),

which requires several verification techniques before allowing

users access. MFA usually combines the user's knowledge

(password), possessions (phone or OTP), and occasionally

identity (biometric verification). Any application's overall

security is greatly strengthened by this tiered approach.

Static password authentication, which has been

repeatedly demonstrated to be weak, was a major component

of earlier systems. Modern applications have begun

implementing MFA using email, SMS-based codes, and Time-

based One-Time Passwords (TOTP) in order to reduce these

vulnerabilities.

Static password authentication, which has been

repeatedly demonstrated to be weak, was a major component

of earlier systems. Modern applications have begun

implementing MFA employing email verification techniques,

SMS-based codes, and Time-based One- Time Passwords

(TOTP) in order to reduce these dangers. Open-source

libraries like otplib and speakeasy give developers the means

to create time-bound, secure OTPs. These tools' simplicity and

efficacy have led to their widespread use in MFA systems

today.

Recent academic projects and industry

implementations have successfully deployed MFA in MERN

applications using a combination of JWT for session

management, bcrypt for password hashing, and nodemailer for

IJSART - Volume 11 Issue 4 – APRIL 2025 ISSN [ONLINE]: 2395-1052

Page | 1014 www.ijsart.com

sending OTPs. Firebase Authentication, Authy, and Google

Authenticator have also been integrated with Node.js to enable

TOTP-based second-factor authentication. Studies have shown

that using MFA decreases the likelihood of account breaches

by up to 99.9%, according to Microsoft Security Reports.

Implementing MFA is not just a security upgrade but a

compliance requirement for many sectors such as healthcare,

banking, and e-commerce.

Recent research projects and industry

implementations have successfully deployed MFA in MERN

apps utilizing a combination of JWT for session management,

bcrypt for password hashing, and nodemailer for issuing

OTPs. To support TOTP-based second- factor authentication,

Node.js has also been integrated with Firebase Authentication,

Authy, and Google Authenticator. According to Microsoft

Security Reports, research indicates that implementing MFA

can reduce the risk of account breaches by as much as 99.9%.

III. METHODOLOGY

Initially, this project uses the MERN stack

(MongoDB, Express.js, React, and Node.js) to create Multi-

Factor Authentication (MFA) in a methodical manner. Users

first register by entering their password and basic information,

which is then safely hashed with bcrypt and saved in

MongoDB. By confirming the username and password during

login, the system carries out primary authentication. The

system generates a One-Time Password (OTP) as the next

step.

Second, this OTP can be generated as a time-based

token using the speakeasy library for use with authenticator

apps, or it can be provided to the user by SMS using Twilio or

email using Node mailer. After that, the user is asked to enter

the OTP, which the server verifies.

Thirdly, the system grants access to protected

resources by issuing a secure session or JWT token if the OTP

is accurate and hasn't expired.

Lastly, by including an additional layer of

verification, this methodology guarantees improved security

while preserving a seamless and intuitive user experience.

IV. EXISTING SYSTEM

A single-factor system, usually consisting of a

username and password, is the only method used for user

authentication in the majority of conventional web services.

Despite being straightforward and popular, this approach has a

number of serious security dangers, including phishing, brute-

force attacks, password theft, and data breaches. Attackers can

quickly access user accounts and private data if a password

has been obtained. Basic safeguards like CAPTCHA and

password strength checks are included in some applications,

but they are insufficient to fend off complex attacks. Stronger,

multi- layered authentication methods like Multi-Factor

Authentication (MFA) must be implemented since

applications are extremely vulnerable to identity theft and

illegal access due to the current system's lack of a second

verification layer.

Disdvantages

• Passwords that are easily hacked are susceptible to

password leaks and brute- force assaults.

• Phishing susceptibility: Users may be duped into

disclosing their login information.

• Absence of a second line of defense Complete access

is given once a password has been compromised.

• Reusing passwords: People frequently use the same

passwords on several sites, which raises the risk.

• Weak password practices: A lot of people select

easy-to-guess passwords that are straightforward or

widely used.

• Absence of user activity alerts: Users might not be

aware of improper usage of their credentials.

• Absence of identity verification: Does not verify

whether the account is being accessed by the

legitimate user.

• Inadequate defense against social engineering:

Unable to identify or stop attacks focused on people.

proposed system

The proposed system is a secure, full-stack web

application that implements using the — MongoDB,

Express.js, React.js, and Node.js. The main objective of this

system is to enhance login security by requiring users to verify

their identity through : a password and a One-Time Password

(OTP). This proposed solution aims to overcome the

vulnerabilities of traditional username- password systems and

provide a robust method to protect user data from

unauthorized access.

In this system, the , offering a responsive and user-

friendly interface. It includes features like secure login,

registration, and an OTP verification screen. The user first

enters their registered email and password, which are verified

using on the backend. If the credentials are valid, the system

will generate a random OTP using packages like speakeasy or

otp-generator, and send it to the user's email using . Only upon

IJSART - Volume 11 Issue 4 – APRIL 2025 ISSN [ONLINE]: 2395-1052

Page | 1015 www.ijsart.com

successful OTP verification will the user be granted access to

the system.

The , which manage routes for login, registration,

password hashing, token generation, and OTP verification.

Passwords are stored securely using , and are used for session

management and route protection. This prevents unauthorized

access to protected APIs or pages even if the frontend is

manipulated. Additionally, all sensitive operations are secured

using environment variables (dotenv) and best practices such

as rate limiting, CORS handling, and error sanitization. is used

to store user data, including email, hashed passwords, and

OTP metadata. It supports fast data access, scalability, and

flexible schemas that are ideal for modern applications.

MongoDB also supports built-in security features like TLS

encryption and role-based access control, enhancing the safety

of stored user data.

Hardware requirements

• Processor: at least Intel Core i3

• RAM: 4 GB at minimum; 8 GB is advised for

efficient development.

• Storage: Project files should have at least 100 MB

available.

• Internet access is necessary to test OTP delivery and

use email and SMS services

Software requirements

• MONGO DB

• EXPRESS.JS

• RREACT.JS

• NODE.JS

• SOCKET.IO

Module description

1. Fete the types of authentication factors and their

beginning principles.

2. Dissect the advantages and disadvantages of colorful

MFA ways.

3. Set up and apply MFA across colorful pall services

and IT systems.

4. Examine MFA's donation to compliance and threat

reduction.

Account page

LOGIN PAGE

RESET PASSWORD

IJSART - Volume 11 Issue 4 – APRIL 2025 ISSN [ONLINE]: 2395-1052

Page | 1016 www.ijsart.com

V. CONCLUSION

By combining multiple authentication factors, multi-

factor authentication (MFA) greatly lowers the risk of

credential theft and security breaches. This module has given

learners a thorough understanding of the concepts,

configurations, and real-world applications of MFA. Armed

with both theoretical knowledge and practical skills, students

are now ready to implement strong authentication mechanisms

that improve the overall security posture of contemporary IT

systems. MFA is essential for bolstering access control and

safeguarding digital resources from unauthorized access.

REFERENCES

[1] Russell, Steve (2023-02-2 . ITNOW. (1): 42–45.

[2] Jacomme, Charlie; Kremer, Steve (Februar .

ACMTransacoitnsonPrviacyandSecurtiy. (2). New York

City: Association for Computing Machinery: 1–34.

[3] kaitlin.boeckl@nist.gov (2016-06-28). NIST. Archived

from on 2021-04-06. Retrieved 2021-04-06.

[4] Barrett, Brian (July 22, 2018). Retrieved 12 September

2020.

[5] Bruce Schneier (March 2005). .Schneieron Security.

Retrieved 20 September 2016.

[6] Siadati, Hossein; Nguyen, Toan; Gupta, Payas;

Jakobsson, Markus; Memon, Nasir\ Compuetrs&Securyti.

: 14–28.

[7] Khandelwal, Swati . The HackerNews. Retrieved 2017-

05-05.

[8] Hardcastle, Jessica Lyons (202 Retrieved 2023-08-24.

[9] Nichols, Shaun (10 July 2017). Retrieved 2017-07-11.

[10] Toorani, Mohsen; Beheshti, A. (2008). "SSMS - A secure

SMS messaging 70 protocol for the m-payment systems

mailto:kaitlin.boeckl@nist.gov

