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Abstract- Insect infestations in grain can lead to significant 

losses in both quantity and quality, impacting crop value. 

These insects not only consume grain but also contaminate it 

with their metabolic by-products and body parts, contributing 

to the growth of microflora and the creation of hotspots due to 

the heat and moisture generated by their activity. Severely 

infested grains are unsuitable for seed purposes and their 

products are unfit for human consumption. As such, effective 

monitoring and detection of stored-product insects is crucial. 

Recent advancements in hardware computing have led to 

notable progress in deep learning-based computer vision 

techniques for object detection, including the detection of 

insects on grain surfaces. Many grain depots now utilize high-

definition cameras and insect-monitoring systems that capture 

images or videos, offering a practical opportunity for deep 

learning models to assist in detecting insect infestations. This 

project proposes an enhanced neural network architecture 

based on Incremental Learning Networks to detect and 

classify eight common stored grain insect species and predict 

grain severity. The proposed architecture incorporates a 

neural network for feature extraction, a region proposal 

network, and a position-sensitive score map for improved 

target detection. By integrating a position-sensitive score map 

in place of some fully connected layers, the network becomes 

more adaptable to complex backgrounds, enabling faster and 

more accurate insect detection. This innovative architecture 

also introduces position-sensitive ROI pooling to further 

improve performance. Experimental results demonstrate that 

the proposed model significantly outperforms existing models, 

achieving higher precision-recall rates for insect detection in 

grain images. The proposed solution offers an effective and 

efficient method for monitoring insect infestations in stored 

grain, ensuring better crop quality and minimizing losses. 
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I. INTRODUCTION 

 

 Stored product insects pose a major threat to the 

quality and safety of stored food products, particularly grains, 

cereals, and dried fruits. These insects not only consume the 

stored products but also contaminate them with waste, body 

parts, and by-products, leading to reduced nutritional value, 

spoilage, and increased risk to human health. The issue is 

further compounded as these insects rapidly reproduce and 

adapt to storage conditions, making detection and control 

challenging. 

 

Traditional methods such as visual inspection, probe sampling, 

and the use of pheromone traps are labor-intensive, subjective, 

and not suitable for large-scale industrial use. Additionally, 

these conventional approaches often fail to detect early-stage 

or internal infestations, leading to delayed responses and 

greater losses. 

 

In recent years, advancements in artificial intelligence and 

computer vision have paved the way for more accurate and 

automated pest detection methods. Among these, deep 

learning models—particularly Convolutional Neural Networks 

(CNNs)—have shown great potential for identifying insect 

infestations from grain images. However, the variability in 

insect species, life stages, and grain conditions can reduce 

model accuracy. 

 

This research proposes an enhanced neural architecture based 

on Incremental Learning Convolutional Neural Networks (IL-

CNN) for effective and real-time insect detection and 

classification in stored grains. The IL-CNN model is designed 

to adapt continuously to new data while preserving prior 

knowledge, allowing it to operate efficiently in changing 

environments. By incorporating region proposal networks, 

position-sensitive score maps, and instance segmentation 

techniques, the system aims to accurately detect and quantify 

insects, even in complex and cluttered backgrounds. 

 

The proposed solution addresses critical gaps in current pest 

detection methods by offering a scalable, accurate, and user-

friendly system, suitable for integration with grain storage 

monitoring technologies. This system ensures timely 

interventions, reduces losses, and helps maintain food quality 

standards across the supply chain. 

 

II. IDENTIFY, RESEARCH AND COLLECT IDEA 
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Early and accurate detection of stored product insects is 

essential for preventing grain spoilage, maintaining quality, 

and minimizing post-harvest losses. Traditional detection 

methods, while historically useful, are increasingly inadequate 

in addressing the complexity, scale, and precision required in 

modern grain storage systems. This section explores the 

challenges in current practices and presents the motivation for 

adopting intelligent, automated systems using advanced image 

analysis and machine learning. 

 

2.1 Challenges in Conventional Insect Detection Methods 

 

Traditional grain inspection relies heavily on visual 

examination, probe sampling, and pheromone-based traps. 

These methods are labor-intensive, time-consuming, and lack 

sensitivity, especially in detecting insects at early or hidden 

life stages. Techniques like X-ray imaging and electronic 

noses offer some improvement but are cost-intensive and 

require specialized equipment and trained personnel, making 

them impractical for widespread deployment in storage 

environments. 

 

2.2 Limitations of Manual Image Interpretation 

 

While machine vision systems have been employed to 

improve efficiency, their reliance on rule-based algorithms 

and handcrafted features limits their adaptability. Variations in 

grain type, lighting, and insect appearance can significantly 

affect detection accuracy. Moreover, distinguishing between 

debris, shadows, and insect features in real-world storage 

conditions remains a significant hurdle. 

 

2.3 Need for Automation and Scalability 

 

As grain storage operations scale up, the volume of data to be 

processed exceeds the capacity of manual inspection. There is 

a pressing need for a fully automated detection pipeline that 

can process images in real time, handle large datasets, and 

operate with minimal human intervention. Automation not 

only accelerates the inspection process but also standardizes it, 

eliminating subjectivity and variability in results. 

 

2.4 Rise of Deep Learning in Object Detection 

 

 Deep learning techniques, particularly Convolutional 

Neural Networks (CNNs), have revolutionized object 

detection in computer vision. Unlike traditional image 

processing approaches, CNNs can learn hierarchical features 

directly from raw images, making them more robust to noise, 

scale variations, and overlapping objects. This adaptability is 

critical in detecting diverse insect species at different life 

stages in cluttered grain images. 

2.5 Justification for Incremental Learning Architectures 

 

The dynamic nature of grain storage—where insect 

populations evolve over time—demands a system that can 

learn continuously. Incremental Learning Convolutional 

Neural Networks (IL-CNNs) meet this requirement by 

updating their weights as new data becomes available, without 

forgetting previously learned patterns. This ensures that the 

detection system remains accurate even as environmental 

conditions and infestation patterns change. 

    

III. PROPOSED SYSTEM 

 

 This research introduces a deep learning-based 

detection and prediction system specifically designed to 

address the challenges of stored product insect infestation in 

grain storage environments. The system is engineered to 

automate the identification of insects and assess grain quality, 

providing rapid and reliable analysis without the need for 

manual inspection. By leveraging the capabilities of 

convolutional neural networks—particularly an Incremental 

Learning Convolutional Neural Network (IL-CNN)—this 

model supports real-time monitoring, precise segmentation, 

and classification of insect species under various storage 

conditions. The system aims to support warehouse operators, 

quality inspectors, and agricultural decision-makers by 

delivering consistent and interpretable detection results, even 

in complex, noisy backgrounds such as bulk-stored grain. 

 

3.1 Image Collection and Dataset Preparation 

 

 The effectiveness of the proposed system is rooted in 

the quality and diversity of the insect dataset. A collection of 

images was curated to represent common stored product 

insects such as Sitophilus oryzae, Tribolium castaneum, and 

Cyptolestes ferrugineus. These images were gathered from 

synthetic datasets and real storage environments, ensuring 

variability in grain types, lighting conditions, and infestation 

severity. Images were labeled with species names and 

infestation zones to enable supervised training. To ensure 

balance across classes, the dataset included a controlled mix of 

insect-free and infested grain samples. Each image was resized 

to a standardized resolution of 512×512 pixels, and pre-

annotation was done using bounding boxes and segmentation 

masks. Anonymization of source data was maintained where 

applicable, and datasets were partitioned into training, 

validation, and testing sets with a focus on maintaining 

representative distribution across classes and environments. 

 

3.2 Image Preprocessing 
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Given the variability in grain texture, color, and lighting in 

storage images, preprocessing plays a critical role in 

improving model input quality. The preprocessing pipeline 

begins with the conversion of RGB images to grayscale to 

reduce computational complexity and normalize visual 

features. Image denoising is performed using a bilateral filter 

to preserve edge details while minimizing grain-induced noise. 

Standardization through resizing ensures compatibility with 

the IL-CNN input requirements. Threshold-based binarization 

techniques are used to enhance contrast between insects and 

background grains. Region of Interest (ROI) localization is 

improved by applying soft Non-Maximum Suppression, which 

merges overlapping proposals while maintaining individual 

insect distinction. These steps help ensure that the model 

receives clean and informative input for optimal learning and 

accurate predictions 

. 

3.3 Feature Extraction Using IL-CNN 

 

 The backbone of the proposed model is the 

Incremental Learning Convolutional Neural Network (IL-

CNN), an enhanced architecture designed for adaptability and 

high-resolution segmentation. The network is composed of 

multiple convolutional layers responsible for learning spatial 

hierarchies, texture gradients, and shape outlines from 

preprocessed images. A Region Proposal Network (RPN) is 

integrated to generate candidate bounding boxes around 

potential insect regions, and position-sensitive score maps are 

used to improve fine-grained spatial accuracy during 

classification. These score maps replace the fully connected 

layers typically used in traditional CNNs, allowing the system 

to distinguish insects from background noise even in densely 

packed or partially obscured images. Position-sensitive ROI 

pooling is also implemented to preserve detailed localization, 

which is crucial for identifying insects of varying size and 

shape. This combination of architectural components allows 

the IL-CNN to achieve strong performance even in cluttered, 

low-contrast grain images. 

 

3.4 Model Training and Validation 

 

 The IL-CNN model is trained on the curated dataset 

using a supervised learning approach. During training, the 

system is exposed to annotated examples, gradually learning 

to associate insect patterns with specific class labels. Data 

augmentation techniques—including horizontal flipping, 

brightness shifting, and random cropping—are applied to 

artificially expand the training set and improve model 

generalization across unseen samples. Transfer learning is 

employed using pre-trained CNN weights to speed up 

convergence and enhance feature extraction performance. The 

model is validated using a reserved dataset, and performance 

metrics such as precision, recall, F1-score, and mean Average 

Precision (mAP) are calculated. The model’s predictions are 

also visually verified using segmentation overlays to assess 

whether the detected insects match their actual positions and 

classifications. Results from the validation phase demonstrate 

high detection rates, low false positives, and consistent 

segmentation accuracy, supporting the suitability of the IL-

CNN for deployment in storage inspection tasks. 

 

3.5 Insect Detection and Output Interpretation 

 

Once trained, the system is deployed to evaluate real-time 

grain images uploaded via a web interface. Upon receiving an 

image, the system automatically detects the presence or 

absence of insects, identifies the species, and estimates the 

severity of infestation. Visual feedback is generated using 

bounding boxes and mask overlays to indicate the position and 

extent of insect presence. In addition to detection results, the 

system outputs quantitative data such as insect count and 

surface coverage ratio, aiding in grain quality assessment. The 

architecture supports interpretability features that allow users 

to understand how predictions are made, increasing 

transparency in AI-assisted decision-making. In cases of 

uncertainty or low-confidence detections, the system flags the 

image for manual review, reducing the risk of false negatives 

in critical scenarios. 

 

3.6 Deployment and Practical Integration 

 

 To make the system accessible and easy to use, it is 

developed as a web-based application using Flask and 

integrated with a MySQL database for backend operations. 

The front-end interface, built with HTML, CSS, and 

Bootstrap, supports both admin and end-user functionalities. 

Administrators can manage datasets, initiate model training, 

and configure insect classification rules, while users can 

upload grain images and receive instant analysis. The 

lightweight nature of the application ensures that it can run on 

standard computing setups without the need for high-end 

hardware. The modular design also allows future integration 

with storage facility management systems and IoT-enabled 

cameras for automated monitoring. The system supports 

continual learning, enabling it to adapt to new insect species or 

storage conditions over time, thus future-proofing it for long-

term agricultural use. 

 

IV. SYSTEM DESIGN 

 

 The system architecture designed for stored product 

insect detection and grain quality prediction adopts a modular, 

scalable pipeline that ensures both high detection performance 

and real-world usability in agricultural storage environments. 
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It is engineered to transition seamlessly from raw grain image 

input to interpretable output, including insect classification, 

severity assessment, and grain condition analysis. Each 

component plays a distinct role, collectively enhancing the 

speed, reliability, and precision of the detection process. The 

architecture consists of six core stages: input acquisition, 

preprocessing, feature extraction, model training, prediction, 

and final deployment. 

 

4.1 Input Image Acquisition 

 

  The system begins its operation by ingesting 

stored grain images captured through high-resolution cameras 

or extracted from precompiled datasets. These images contain 

both insect-infested and clean grain samples, offering diversity 

in background textures, grain types, and lighting conditions. 

The system supports common image formats such as JPEG 

and PNG, allowing for easy compatibility with standard digital 

imaging tools and smartphones. To accommodate both offline 

inspection and real-time surveillance, the design supports 

batch uploads as well as live image streaming via web-based 

or IoT camera interfaces. 

 

4.2 Preprocessing Module 

 

  Once acquired, the images undergo a 

structured preprocessing routine designed to reduce visual 

noise, standardize format, and isolate key features. Initial 

preprocessing involves conversion to grayscale, followed by 

bilateral filtering to preserve edge structures while minimizing 

background grain noise. Histogram equalization is applied to 

enhance contrast between insects and grain surfaces. 

Threshold-based binarization segments the regions of interest, 

focusing the detection process on the foreground where insects 

are likely to appear. These preprocessing operations 

collectively improve the clarity and consistency of the input 

data, making it more suitable for robust feature learning by the 

neural network. 

 

4.3 Feature Extraction Unit 

 

 The next critical phase involves feature extraction 

using convolutional neural network layers that are capable of 

learning spatial hierarchies from image data. Unlike traditional 

handcrafted techniques, the proposed IL-CNN model 

autonomously detects and encodes high-level features such as 

insect shape, texture, and boundary outlines. A Region 

Proposal Network is embedded within the architecture to 

identify potential insect locations within the image. Position-

sensitive score maps are then generated to accurately localize 

and differentiate insect species even in visually cluttered grain 

environments. The extracted feature vectors are passed on to 

the classification and segmentation layers for further 

processing. 

 

4.4 Model Training Engine 

 

 Training of the IL-CNN model is conducted using a 

labeled dataset containing insect species annotations and 

bounding masks. The system is trained through supervised 

learning using loss functions such as categorical cross-

entropy, optimized with backpropagation. To prevent 

overfitting and ensure robustness across diverse storage 

conditions, the training process includes dropout 

regularization, learning rate scheduling, and real-time data 

augmentation such as image flipping and brightness 

adjustment. Performance is monitored throughout the training 

using validation accuracy, loss convergence curves, and mean 

Average Precision (mAP). Transfer learning with pretrained 

base models is incorporated to reduce training time and 

improve accuracy, especially given the limited size of domain-

specific datasets. 

 

4.5 Prediction and Inference Phase 

 

 Following successful training, the system enters the 

inference phase where it is used to process new, unseen 

images. The IL-CNN model predicts the presence and type of 

insects, highlights their exact location through segmentation 

masks, and calculates infestation severity based on count and 

density. The model also estimates the potential impact on 

grain quality by analyzing the spread and concentration of 

insects. Interpretability tools are integrated into the inference 

engine to visualize the regions that contributed to each 

prediction, offering transparency and confidence to the end-

user. Low-confidence cases are flagged for manual review to 

minimize the risk of misclassification. 

 

4.6 Deployment and Integration 

 

 The final component of the system involves 

deploying the application in real-world grain storage and 

monitoring environments. A web-based interface built with 

Flask, HTML, and Bootstrap enables users to interact with the 

system effortlessly. Admin users can upload datasets, initiate 

model retraining, and adjust insect classification parameters, 

while general users can submit images and receive instant 

analysis. The system can be integrated into existing warehouse 

IT systems or connected to IoT camera devices for continuous 

surveillance. It supports edge computing for offline 

environments and cloud deployment for scalability. To ensure 

operational security and user accountability, access control 

and data logging features are implemented, with future-



IJSART - Volume 11 Issue 4 – APRIL 2025                                                                                      ISSN [ONLINE]: 2395-1052 

 

Page | 1109                                                                                                                                                                   www.ijsart.com 

 

proofing mechanisms such as continuous learning modules 

designed to adapt to evolving insect threats over time. 

 
  

Fig 4.1 System Architecture 

 

V. CONCLUSION 

 

 In conclusion, the design and development of a web-

based detection and quantification system for stored product 

insects using Incremental Learning-CNN instance 

segmentation has the potential to provide an effective and 

efficient solution for identifying and measuring the extent of 

infestation in stored food products. By using advanced 

computer vision techniques to accurately detect and quantify 

insects in stored products, the system can help prevent 

economic losses, reduce the risk of contamination, and 

improve overall food safety. The proposed system offers 

several advantages, such as high accuracy in detecting and 

quantifying insects, reduced manual labor, and increased 

speed of processing. The use of IL-CNN instance 

segmentation allows the system to identify and count 

individual insects with a high degree of accuracy, even in 

images with complex backgrounds or varying levels of 

infestation. Additionally, it is a userfriendly system that can be 

easily accessed through a web-based interface, making it 

accessible to a wider range of users. Throughout the design 

and development process, careful consideration was given to 

usability, performance, security, and error handling, in order 

to ensure that the system was both reliable and user-friendly. 

Testing was performed at each stage of the development 

process, and a comprehensive testing plan was developed to 

cover a wide range of scenarios and ensure the system's 

reliability and accuracy. Overall, the design and development 

of a web-based detection and quantification system for stored 

product insects using IL-CNN instance segmentation has the 

potential to revolutionize the way that agricultural and food 

processing industries detect and prevent insect infestations. 

With further refinement and optimization, this system could 

become an essential tool for ensuring food safety and 

preventing economic losses due to insect infestations. 
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