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Abstract- Earthquakes are among the most devastating 

natural disasters, causing extensive damage to infrastructure 

and posing severe threats to human life. Predicting the level of 

building damage resulting from an earthquake can greatly 

enhance disaster preparedness and response. This project 

explores the use of advanced deep learning techniques—such 

as CNN, BLSTM, GBNN, TabNet, TabPFN, and NODE—for 

classifying damage levels into three categories: low, medium, 

and high. Using the 2015 Nepal Earthquake dataset, which 

includes over 25,000 records and 39 features, our models 

demonstrate improved performance, achieving accuracy rates 

of over 74.5% in some cases. These findings highlight the 

potential of deep learning for effective structural damage 

assessment. 
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I. INTRODUCTION 

 

 Earthquakes are among the most catastrophic natural 

disasters, often resulting in severe loss of human life, 

displacement, and economic instability. The 2015 Nepal 

earthquake, which registered a magnitude of 7.8, serves as a 

stark reminder of the devastating power of seismic  

events. This tragedy caused widespread destruction, with over 

9,000 fatalities, hundreds of thousands of buildings either 

partially or completely destroyed, and entire communities left 

in ruins. It highlighted not only the vulnerability of the built 

environment in earthquake-prone regions but also the urgent 

need for advancements in disaster preparedness and damage 

mitigation strategies. 

 

In the field of disaster management, the ability to 

accurately predict the extent of structural damage caused  by 

earthquakes is pivotal. Such predictions play a critical role in 

prioritizing rescue operations, allocating emergency resources 

efficiently, and guiding long-term urban planning decisions. 

However, traditional methods of damage prediction often lack 

the precision and adaptability required for real-time decision-

making, especially in scenarios where each second counts. 

Advancements in machine learning and deep learning 

techniques have opened new doors to address these 

limitations, offering the potential to model complex 

relationships within seismic data and predict damage levels 

with unprecedented accuracy. This study leverages cutting-

edge artificial intelligence methodologies, specifically tailored 

for tabular datasets, to predict the levels of damage sustained 

by buildings during seismic events. By utilizing the Nepal 

Earthquake dataset, which encompasses structural details, 

building materials, geographical attributes, and damage, 

grades, our work seeks to identify underlying patterns and 

insights that influence building vulnerability. Unlike previous 

approaches, this research emphasizes the comparative analysis 

of multiple models, including Convolutional Neural Networks 

(CNN), Gradient Boosted Neural Networks (GBNN), and 

Long Short-Term Memory Networks (LSTM). 

 

Furthermore, it explores the capabilities of emerging 

transformer-based architectures such as TabNet, TabPFN, and 

Neural Oblivious Decision Ensembles (NODE), which have 

demonstrated exceptional performance in handling tabular 

data. This paper’s primary objective is to determine the most 

effective model for accurately classifying earthquake-induced 

building damage levels. Through meticulous experimentation, 

we aim to not only evaluate these models’ performances but 

also provide actionable insights for policymakers, urban 

planners, and first responders. Beyond its immediate 

applications in earthquake-prone regions, the findings from 

this work can serve as a blueprint for disaster resilience in 

other contexts, fostering safer and more sustainable 

communities. In the sections that follow, we provide a 

comprehensive review of related work, detail the 

methodologies employed, present experimental results, and 

discuss the implications of our findings. This research 

represents a step forward in the integration of advanced 

machine learning techniques into disaster management, 

offering hope for a future where communities are better 

equipped to withstand the devastating impacts of earthquakes. 
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II. LITERATURE REVIEW 

 

Earthquake damage prediction has been a crucial area 

of research for decades, evolving from traditional engineering-

based assessments to advanced data-driven methodologies. 

Accurate predictions of building damage levels enable 

proactive disaster management, saving lives and minimizing 

economic losses. This section reviews key studies and 

approaches, highlighting the advancements in modeling 

techniques and datasets relevant to seismic damage 

assessment. Traditional Approaches to Earthquake Damage 

Assessment Early studies focused on structural engineering 

models, which relied on physical simulations and empirical 

formulas to predict building vulnerability. These methods 

utilized seismic design parameters, such as Peak Ground 

Acceleration (PGA), soil type, and building codes, to estimate 

the potential damage. While effective for general risk 

assessment, they often lacked precision when applied to 

diverse urban environments due to variability in construction 

practices and building materials. Emergence of Machine 

Learning in Seismic Damage Prediction The introduction of 

machine learning revolutionized earthquake damage 

prediction by enabling the extraction of complex patterns from 

vast datasets. 

 

Techniques such as Support Vector Machines (SVM) 

and Random Forests demonstrated their ability to analyze non- 

linear relationships between building features and damage 

levels. However, these methods required extensive feature 

engineering and were often constrained by the limitations of 

tabular data. Deep Learning Applications Deep learning has 

emerged as a powerful tool for earthquake damage prediction, 

particularly for handling large and complex datasets. 

Convolutional Neural Networks (CNNs) have been applied to 

geospatial data, utilizing their capability to extract spatial 

patterns and correlations. Long Short-Term Memory Networks 

(LSTMs) introduced temporal dynamics, allowing models to 

capture sequential dependencies in earthquake sequences. 

Gradient Boosted Neural Networks (GBNNs)  further 

extended deep learning applications by modeling  relational 

dependencies between buildings and seismic zones. 

Advancements with Transformer-Based Models Recent 

studies have explored transformer-based architectures, such as 

TabNet and NODE, for tabular data classification. TabNet, 

leveraging attention mechanisms, prioritizes critical features 

and effectively handles imbalanced datasets—a common 

challenge in disaster prediction. TabPFN introduced zero- shot 

learning capabilities, offering competitive accuracy with 

minimal training effort. These models address the limitations 

of traditional deep learning techniques, providing interpretable 

and scalable solutions for earthquake damage assessment. 

Comparative Analysis Comparing traditional machine learning 

approaches with deep learning and transformer-based models 

reveals significant advancements in prediction accuracy and 

model efficiency. For example, studies show that transformer- 

based architectures outperform CNNs and LSTMs in tabular 

data tasks, as demonstrated by their robust performance in 

handling diverse features such as building characteristics, 

geographical attributes, and structural integrity scores. Gaps 

and Research Opportunities 3 Despite the progress, challenges 

remain in improving the interpretability and scalability of 

advanced models. Existing research rarely incorporates 

ensemble techniques or optimization strategies to enhance 

accuracy. Additionally, few studies address the integration of 

disaster resilience metrics, such as urban planning 

recommendations, into prediction models. This project aims to 

fill these gaps by conducting a comparative analysis of 

traditional and transformer-based models, focusing on their 

ability to predict damage levels in real- world scenarios. 

Future studies can explore the incorporation of real-time 

seismic wave monitoring to refine predictive models. 

Additionally, leveraging edge computing with distributed AI 

architectures could enhance earthquake damage predictions 

in regions with limited data access. Emerging advancements in 

quantum computing may also accelerate model training, 

further refining the precision of earthquake damage 

forecasting. 

 

III. METHODOLOGY 

 

This study utilizes advanced deep learning and 

transformer-based techniques to predict earthquake induced 

building damage levels. The methodology consists of 

systematic data preprocessing, model selection, training 

procedures, and performance evaluation. 

 

 
Figure 3.1: Proposed System Architecture for Building 

Damage Prediction caused by Earthquake 

 

Dataset Description: The dataset used in this study is sourced 

from DrivenData and contains detailed structural, 

geographical, and engineering features of buildings affected 

by the 2015 Nepal earthquake. The dataset includes the 

following key features: [1]. Building Characteristics: 

Foundation type, roof material, wall material, number of 

floors, age, and ground floor type. [2]. Geographical and 

Location-Based Data: GPS coordinates, soil type, urban/rural 
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classification, and proximity to fault lines. [3]. Structural and 

Engineering Factors: Compliance with building technical 

standards, structural integrity scores, and the presence of 

reinforcement materials. [4]. Target Variable: Damage levels 

classified into Low (Grade 1), Medium (Grade 2), and Severe 

(Grade 3). 

 

Data Preprocessing Data preprocessing ensures that 

the dataset is structured, cleaned, and normalized for effective 

model training. 

 

Handling Missing Data: [1]. Dropping Features: Features with 

excessive missing values were removed if deemed non-

critical. [2]. Imputation: Missing numerical values were 

replaced using mean or median methods, while categorical 

variables were imputed using mode or assigned a placeholder 

category labeled "Unknown." 

 

Encoding Categorical Variables: [1]. One-Hot Encoding: 

Applied to categorical variables with a limited number of 

unique values, such as foundation type and roof material. [2]. 

Label Encoding: Used for ordinal features like damage levels. 

[3]. Embedding Representations: Dynamic relationships 

between categorical variables were learned through 

embedding layers in transformer models such as TabNet. 

 

Feature Scaling: [1]. Min-Max Scaling: Numerical features 

were rescaled to a range between 0 and 1 to ensure 

compatibility with deep learning frameworks. 

 

Dataset Splitting A stratified split was performed to 

ensure class balance across subsets: [1]. Training Set (80%): 

Used for model training. [2]. Validation Set (20% of Training 

Data): Reserved for hyperparameter tuning. [3]. Test Set 

(20%): Used for final model evaluation. 

 

Model Selection This study explores six machine 

learning models categorized into traditional deep learning and 

transformer-based architectures. Traditional Deep Learning 

Models: 

 

[1]. Convolutional Neural Networks (CNN): CNN reshapes 

tabular data into spatial-like representations to identify 

patterns across features. A typical CNN model includes 

convolutional layers followed by ReLU activations, max 

pooling, flattening, and dense output layers for classification. 

 

 
Figure 3.2: CNN Architecture 

 

[2]. Gradient Boosted Neural Networks (GBNN): GBNN 

combines neural networks with the structure of gradient 

boosting. It uses multiple shallow networks trained in 

succession to correct the errors of previous ones. 

 

 

Figure 3.3: GBNN Architecture 

 

[3]. Bidirectional Long Short-Term Memory Networks 

(BLSTM): BLSTM captures bidirectional dependencies in 

sequential data and is well-suited for encoding the relationship 

between building features. The architecture includes forward 

and backward LSTM layers feeding into a dense classification 

layer. 

 

 
Figure 3.4: B-LSTM Architecture 

 

Here; Xi is the input token, Yi is the output token, A and A’ A’ 

are Forward and backward LSTM units The final output of Yi 

is the combination of A and A’ LSTM nodes. 

 

[4]. TabNet: TabNet leverages attention mechanisms to select 

the most important features during training. It consists of a 

series of decision steps with feature transformers and attentive 

transformers. 

 

Matrix: Highlights the classification performance of each 

model. [2]. Performance Metrics: Accuracy: Percentage of 

correct predictions, 

𝑇𝑁 + 𝑇𝑃 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑁 + 𝐹𝑃 + 𝑇𝑃 + 𝑇𝑁 

Precision: Quality of positive predictions for each class, 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 

𝑇𝑃 
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𝑇𝑃 + 𝐹𝑃 

 

 
Figure 3.5: TabNet Architecture 

 

[5]. TabPFN: TabPFN is a transformer-based model pretrained 

to rapidly predict with minimal data. It is especially suitable 

for few-shot learning tasks in tabular domains. 

 

 
Figure 3.6: TabPFN Architecture 

 

[6]. NODE (Neural Oblivious Decision Ensembles): NODE 

replaces traditional decision trees with a neural ensemble 

approach, where differentiable oblivious decision trees are 

arranged in layers. 

 

 
Figure 3.7: NODE Architecture 

 

Training Process All models were implemented using 

TensorFlow and TabularML frameworks, following a 

structured training procedure: [1]. Hyperparameter Tuning: 

Learning rate, batch size, and number of epochs were 

optimized using a grid search method. [2]. Training Metrics: 

Accuracy, precision, recall, F1-score, loss, and validation 

accuracy were monitored across epochs. [3]. Early Stopping: 

Training was halted when validation loss plateaued to prevent 

overfitting. 

 

Prediction and Evaluation Post-training, predictions 

were made on the test set, classifying buildings into Low, 

Medium, and Severe damage levels. Model performance was 

evaluated using the following criteria: [1]. Confusion 

 

 
 

IV. PREDICTION AND EVALUATION 

 

After training each model, we performed predictions 

on the test set. The following evaluations were made for each 

model: [1]. Confusion Matrix: To visualize class-wise 

prediction accuracy. [2]. Training History Curves: Validation 

accuracy and loss curves were plotted to monitor training 

dynamics. 

 

 
Figure 4.1: CNN Model Performance — Accuracy and Loss 

Curves with Confusion Matrix 

 

 
 

Figure 4.2: GBNN Model Performance — Accuracy and Loss 

Curves with Confusion Matrix 

 

 
Figure 4.3: BLSTM Model Performance — Accuracy and 

Loss Curves with Confusion Matrix 
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Figure 4.4: TabNet Model Performance — Accuracy and Loss 

Curves with Confusion Matrix 

 

 
Figure 4.5: TabPFN Model Performance — Accuracy and 

Loss Curves with Confusion Matrix 

 

 
Figure 4.6: NODE Model Performance — Accuracy and Loss 

Curves with Confusion Matrix 

 

This section presents the performance results of the 

models employed in predicting building damage levels caused 

by earthquakes, alongside detailed analysis of their 

effectiveness. The evaluation is based on key metrics, 

including accuracy, precision, recall, F1-score, and confusion 

matrices. Graphical representations of training history 

(accuracy and loss curves) and confusion matrices provide a 

visual understanding of the models' predictive capabilities. 

 

Performance Metrics Each model's performance was assessed 

using the following metrics: [1]. Accuracy: Measures the 

overall correctness of the model. [2]. Precision: Evaluates the 

quality of predictions by focusingon minimizing false 

positives. [3]. Recall: Assesses theMmodel's ability to identify 

true positives. [4]. F1-Score: Represents the harmonic mean of 

precision and recall, ensuring balanced evaluation. 

 

Table 4.1: Summarizes the results for all models 

 

From the results, it is evident that TabNet 

outperformed all other models, achieving the highest accuracy 

of 74.10%, along with strong recall and F1-score values. 

Transformer- based models showed significant superiority 

over traditional deep learning models for tabular data 

classification. 

 

Comparative Analysis: Classification performance 

Transformer-based models, particularly TabNet, significantly 

outperformed traditional models (CNN, GBNN, BLSTM). 

TabNet’s attention-driven learning enabled effective 

prioritization of critical features such as structural integrity 

and geographical location. The following key observations 

were made: [1]. CNN struggled with non-spatial data, limiting 

its performance. [2]. TabPFN provided competitive results but 

was slightly less effective in handling imbalanced datasets. 

[3]. NODE demonstrated potential through hierarchical feature 

learning but requires further optimization for tabular 

classification tasks. 

 

Key Takeaways: [1]. Transformer-Based Models Lead: 

TabNet emerged as the best-performing model, highlighting 

its suitability for earthquake damage prediction. [2]. 

Challenges with Severe Damage Classification: Most models 

faced difficulty in accurately classifying severe damage levels 

due to class imbalance. This challenge can be mitigated using 

data augmentation or resampling techniques. [3]. Potential for 

Improvement: Ensemble methods and explainable AI 

techniques can further enhance model accuracy and 

interpretability. 

 

V. CONCLUSION AND FUTURE WORK 

 

This study explored six state-of-the-art deep learning 

models—CNN, GBNN, BLSTM, TabNet, TabPFN, and 

NODE—for predicting the severity of building damages 

resulting from earthquakes, using the comprehensive 2015 

Nepal Earthquake dataset. Among these, TabNet achieved 

the highest overall performance with an accuracy of 74.01%, 

a recall of 74.61%, and an F1-score of 0.720, followed closely 

by CNN and GBNN. These results validate the use of deep 

learning techniques, particularly attention-based and boosting-

inspired models, in handling complex tabular disaster datasets. 

 

The performance differences across models illustrate 

that: [1]. TabNet's feature selection mechanism significantly 

benefits structured data learning. [2]. CNN and BLSTM 

performed competitively, showcasing their ability to learn 

spatial or sequential representations of tabular data. [3]. 

GBNN and TabPFN, while slightly behind in accuracy, still 

demonstrated strong generalization ability and precision. [4]. 

NODE, despite its novelty, showed room for improvement 
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with the lowest scores, highlighting potential areas for 

optimization or tuning. 

 

These findings emphasize the practical applicability 

of AI- based predictive systems in urban planning and disaster 

risk management. Accurate prediction of building damage can 

streamline emergency logistics, improve resource allocation, 

and ultimately save lives during seismic crises. 

 

Key Findings: [1]. Transformer-based models outperformed 

traditional deep learning approaches by effectively capturing 

complex interactions within tabular datasets. [2]. Class 

imbalance challenges, particularly in predicting severe damage 

levels, affected model performance, emphasizing the need for 

further optimization. [3]. Feature selection played a crucial 

role in predictive performance, as evidenced by TabNet’s 

superior results. 

 

Real-World Implications: The findings of this study have 

significant applications: [1]. Emergency response teams can 

use predictive models to prioritize rescue operations in high-

risk areas. [2]. Urban planners and policymakers can integrate 

these insights to design safer buildings and infrastructure. [3]. 

Disaster management authorities can develop resource 

allocation strategies based on predicted damage levels. 

 

Future Research Directions: [1]. Exploring ensemble methods 

to combine the strengths of multiple models for enhanced 

predictive performance. [2]. Incorporating explainable AI 

techniques to ensure model transparency and foster trust in 

real world applications. [3]. Integrating real-time seismic data 

to improve model robustness and predictive accuracy. 
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