
IJSART - Volume 11 Issue 3 – MARCH 2025 ISSN [ONLINE]: 2395-1052

Page | 603 www.ijsart.com

WebRTC: A Study On Real-Time Peer-To-Peer

Communication

Amit Sureshchandra Kesarwani1, Surajnarayan Raut2, Prof. Sneha Yadav3

1, 2, 3 Dept of MCA
1, 2, 3 Mumbail University IDOL Mumbai, India

Abstract- Real-time communication is one of the vital com-

ponent in system design, enabling seemless interaction across

applications involving video conferencing, data transfer.

WebRTC has emerged as technology that facilitates peer to

peer communi- cation without relying on third party plugins.

It reduces latency & optimizes the bandwidth usage.

This paper explored the architecture of WebRTC,

NAT traver- sal(STUN, TURN) & process of media exchange.

This paper demonstrates the use of WebRTC for seemless &

low latency communication.

Keywords- webrtc, p2p, real-time, communication

I. INTRODUCTION

 In current time for real-time communication we have

many technologies like web-sockets, messaging queues,

server-sent- events, gRPC, etc. These technologies involves

central server that is being used to relay the messages. In case

we want to send message directly to receipant without

involving any relay server then the choice would be WebRTC.

A WebRTC web application (typically written as a mix of

HTML and JavaScript) interacts with web browsers through

the standardized WebRTC API, allowing it to properly exploit

and control the real-time browser function[1]. The WebRTC

web application also interacts with the browser, using both

WebRTC and other standardized APIs[1]. The WebRTC API

must therefore provide a wide set of functions, like connection

management (in a peer-to-peer fashion), encoding/decoding

capabilities negotiation, selection and control, media control,

firewall and NAT element traversal, etc[1].

In this paper we tried to create demo of webRTC application

using below

• Java & spring-boot based websocket backend app as

signaling server

• HTML for UI element

• VueJS for webapp

• webRTC for peer-to-peer media transfer

• For two user only with roomId concept

Before webRTC there are several technologies available

• Flash based solution : Adobe Flash Player and Flash

Me- dia Server had supported RTMP (Real-Time

Messaging Protocol) for the live streaming of audio

and video, which was used before the creation of

WebRTC.

Fig. 1. WebRTC Trapezoid model

Fig. 2. Demo App Architecture Diagram

• Proprietary Peer-to-Peer System : Skype uses a

propri- etary protocol for the transmission of

multimedia streams, plus it requires the installation of

a mobile application or desktop to access services

such as phone calls, messages, and video

conferences[2].

II. WebRTC ARCHITECTURE & KEY COMPONENTS

In the WebRTC Trapezoid model(Fig. 1)[4], both

browsers are running a web application, which is downloaded

from a different web server[1]. The purpose of Signaling

messages are used to set up and terminate communications.

They are trans- ported by the HTTP or WebSocket protocol

via web servers that can modify, translate, or manage them as

needed[1]. The Signaling process between browser and server

is not standardized in WebRTC. A PeerConnection allows

media to flow directly between browsers without any

intervening servers[1].

IJSART - Volume 11 Issue 3 –MARCH 2025 ISSN [ONLINE]: 2395-1052

Page | 604 www.ijsart.com

In our demo we have used the spring-boot based websocket

server as signaling server[3].

A. Media Stream

Fig. 3. Connection Seq Diagram

allows the browsers to discover enough information about the

topology of the network where they are deployed to find the

best exploitable communication path[1].

The Session Traversal Utilities for NAT (STUN)

protocol (RFC5389) allows a host application to discover the

presence of a network address translator on the network, and

in such a case to obtain the allocated public IP and port tuple

for the current connection. To do so, the protocol requires

assistance from a configured, third-party STUN server that

must reside on the public network[1]. The Traversal Using

Relays around NAT (TURN) protocol (RFC5766) allows a

host behind a NAT to obtain a public IP address and port from

a relay server residing on the public Internet[1]. Thanks to the

relayed transport address, the host can then receive media

from any peer that can send packets to the public Internet[1].

The PeerConnection mechanism uses the ICE

protocol MediaStream is an abstract representation of an

actual stream of data of audio and/or video[1]. It serves as a

handle for managing actions on the media stream, such as

displaying the stream’s content, recording it, or sending it to a

remote peer[1]. A Media Stream may be extended to represent

a stream that either comes from (remote stream) or is sent to

(local stream) a remote node[1].

A LocalMediaStream represents a media stream from

a local media-capture device (e.g., webcam, microphone, etc.).

To create and use a local stream, the web application must

request access from the user through the getUserMedia() func-

tion[1]. The application specifies the type of media—audio or

video—to which it requires access[1]. The devices selector in

the browser interface serves as the mechanism for granting or

denying access. Once the application is done, it may revoke its

own access by calling the stop() function on the

LocalMediaStream[1].

Browsers provide a media pipeline from sources to

sinks. In a browser, sinks are the ¡img¿, ¡video¿, and ¡audio¿

tags. A source can be a physical webcam, a microphone, a

local video or audio file from the user’s hard drive, a network

resource, or a static image. The media produced by these

sources typically do not change over time. These sources can

be considered static. The sinks that display such sources to the

users (the actual tags themselves) have a variety of controls

for manip- ulating the source content. The getUserMedia()

API method adds dynamic sources such as microphones and

cameras. The characteristics of these sources can change in

response to application needs. These sources can be

considered dynamic in nature[1].

B. Peer Connection

A PeerConnection enables two users to communicate

di- rectly browser to browser. These communications are

coordi- nated via a signaling server like websocket, after

establishing connection media streams can be sent directly to

the remote browser.

The PeerConnection mechanism uses the ICE

protocol together with the STUN and TURN servers to let

UDP- based media streams traverse NAT boxes and

firewalls[1]. ICE together with the STUN and TURN servers

to let UDP- based media streams traverse NAT boxes and

firewalls. ICE allows the browsers to discover enough

information about the topology of the network where they are

deployed to find the best exploitable communication path[1].

Using ICE also provides a security measure, as it prevents

untrusted web pages and applications from sending data to

hosts that are not expecting to receive them[1].

Calling new RTCPeerConnection(configuration)

creates an RTCPeerConnection object. The configuration has

the infor- mation to find and access the STUN and TURN

servers (there may be multiple servers of each type, with any

TURN server also acting as a STUN server). Optionally, it

also takes a MediaConstraints object “Media Constraints”.

When the RTCPeerConnection constructor is invoked, it also

creates an ICE Agent responsible for the ICE state machine,

controlled directly by the browser. The ICE Agent will

proceed with gathering the candidate addresses when the

IceTransports con- straint is not set to “none.” An

RTCPeerConnection object has two associated stream sets. A

local streams set, representing streams that are currently sent,

and a remote streams set, representing streams that are

currently received through this RTCPeerConnection object.

The stream sets are initialized to empty sets when the

RTCPeerConnection object is created[1].

IJSART - Volume 11 Issue 3 –MARCH 2025 ISSN [ONLINE]: 2395-1052

Page | 605 www.ijsart.com

C. Data Channel

The DataChannel API is designed to provide a

generic trans- port service allowing web browsers to exchange

generic data in a bidirectional peer-to-peer fashion[1]. The

encapsulation of SCTP over DTLS over UDP together with

ICE provides a NAT traversal solution, as well as

confidentiality, source authentication, and integrity protected

transfers. Moreover, this solution allows the data transport to

interwork smoothly with the parallel media transports, and

both can potentially also share a single transport layer port

number[1].

SCTP has been chosen since it natively supports

multi- ple streams with either reliable or partially reliable

delivery modes[1]. It provides the possibility of opening

several inde- pendent streams within an SCTP association

towards a peering

SCTP endpoint. Each stream actually represents a

unidirec- tional logical channel providing the notion of in-

sequence delivery. A message sequence can be sent either

ordered or unordered. The message delivery order is preserved

only for all ordered messages sent on the same stream.

However, the DataChannel API has been designed to be

bidirectional, which means that each DataChannel is

composed as a bundle of an incoming and an outgoing SCTP

stream[1].

The DataChannel setup is carried out (i.e., the SCTP

as- sociation is created) when the CreateDataChannel()

function is called for the first time on an instantiated

PeerConnection object[1]. Each subsequent call to the

CreateDataChannel() function just creates a new DataChannel

within the existing SCTP association[1].

The createDataChannel() method creates a new

RTCDat- aChannel object with the given label. The

RTCDataChan- nelInit dictionary can be used to configure

properties of the underlying channel, such as data

reliability[1]. The RTC- DataChannel interface represents a

bidirectional data channel between two peers. Each data

channel has an associated underlying data transport that is

used to transport data to the other peer. The properties of the

underlying data transport are configured by the peer as the

channel is created[1]. The properties of a channel cannot

change after the channel has been created. The actual wire

protocol between the peers is SCTP[1].

An RTCDataChannel can be configured to operate in

dif- ferent reliability modes. A reliable channel ensures that

data is delivered to the other peer through retransmissions. An

unreliable channel is configured to either limit the number of

retransmissions (maxRetransmits) or set a time during which

retransmissions are allowed[1]. These properties cannot be

used simultaneously and an attempt to do so will result in an

error. Not setting any of these properties results in the creation

of a reliable channel[1].

III. METHODOLOGY

A. Signaling Server

In (Fig. 3) sequence diagram[7] is presented that demon-

strates the flow of webRTC.

• Connection to signaling server : first websocket

con- nection to signaling server is established with

onmessage & onclose handling. onmessage event

handler is used to process message for various offer,

answer, end call & ICE data exchange.

• RTCPeerConnection connection : It is created with

stun & turn server config & all localstream track are

added to RTCPeerConnection track. At the same 2

event listeners are added on onicecandidate &

ontrack to share ice candidate data to other peer &

get remote stream from RTCPeerConnection.

• SDP offer generation from sender : Using

RTCPeer- Connection an offer is created & sent

using signaling server.

• SDP offer transmission through signaling server

& acceptance from receiver : other peer accepts the

offer

Fig. 4. Live Demo of webRTC

& adds the remote description in RTCPeerConnection. Then

sends the SDP answer back over signaling server.

• sending the SDP answer from receiver to sender

back: Once receiving the SDP answer sender also

updates the remote description of

RTCPeerConnection.

• sharing ice candidates over signaling server : both

parties exchanges the ice candidates.

• Final Step : a final step with help of ice candidates

the peer-to-peer connection is established & Now

media track can be exchanged.

IJSART - Volume 11 Issue 3 –MARCH 2025 ISSN [ONLINE]: 2395-1052

Page | 606 www.ijsart.com

IV. CHALLENGES & LIMITATIONS

• NAT Traversal and Firewall Issues : Making a con-

nection across many networks can be challenging due to

Network Address Translation (NAT) and firewall restric-

tions. Although techniques like STUN, TURN, and ICE is

helpful, it adds the complexity and may not always

guarantee the successful connection.

• Scalability : WebRTC is designed for peer-to-peer com-

munication but scaling it to support many peers requires

additional architectures changes, like mesh networks or

SFU/MCU (Selective Forwarding Unit/Multipoint Con-

trol Unit), which adds further complexities & challenges.

• Security Concerns : Although WebRTC includes built-

in encryption for media streams but it relies on secure

signaling channels which are not common standard. Any

mistakes in the signaling communication or in the han-

dling of ICE candidates can expose lot of vulnerabilities.

• Quality of Service : Change in network condition can

impact the quality of media streams.

V. CONCLUSION & FUTURE SCOPE

• Implementing adaptive bitrate and error correction strate-

gies.

• Advanced NAT Traversal Techniques

• Scalable Architectures for Multi-Party Communication

• Integration with Emerging Technologies like AI/ML

• Enhanced Security Protocols

VI. ACKNOWLEDGMENT

I sincerely appreciate the guidance and support of

Professor Sneha Yadav from Vidyavardhini’s College of

Engineering Technology. Her valuable insights and

encouragement have played a pivotal role in shaping this

research.

I am also deeply grateful to my parents for their

constant en- couragement, patience, and unwavering belief in

my abilities. Their support has been instrumental in my

academic journey.

Furthermore, I extend my heartfelt thanks to my

colleagues and friends for their collaboration, constructive

discussions, and motivation throughout this work. Their

shared knowledge and assistance have been invaluable in the

successful comple- tion of this research.

REFERENCES

[1] S. Loreto and S. Pietro, Real-Time Communication with

WebRTC: Peer- to-Peer in the Browser. O’Reilly Media,

2014.

[2] G. Suciu, S. Stefanescu, C. Beceanu, and M. Ceaparu,

”WebRTC role in real-time communication and video

conferencing,” 2020 Global Internet of Things Summit

(GIoTS), Dublin, Ireland, 2020, pp. 1–6, doi:

10.1109/GIOTS49054.2020.9119656.

[3] Pivotal Software, Inc., “Spring Boot,” Spring.io. [Online].

Available: https://spring.io/projects/spring-boot.

[4] PlantUML, “PlantUML: The UML Diagram Generator,”

Available: https://plantuml.com/.

