
IJSART - Volume 11 Issue 3 – MARCH 2025 ISSN [ONLINE]: 2395-1052

Page | 482 www.ijsart.com

State Management in Flutter:

A Performance Comparison of GetX, Provider,

Riverpod and BLoC

Dr. Uday Aswalekar1, Akhilesh Vishwakarma2
1Professor, Dept of MCA

2Dept of MCA
1, 2 Institute of Distance and Open Learning, University of Mumbai (IDOL), Mumbai, India

Abstract- — State management plays a vital role in Flutter

application development, directly influencing performance,

scalability, and maintainability. With multiple state

management solutions available, selecting the right approach

can significantly impact an app’s efficiency. This research

paper presents a comparative analysis of four widely used

state management solutions in Flutter: GetX, Provider,

Riverpod, and BLoC (Business Logic Component). The study

evaluates these approaches based on frame rendering time,

memory consumption, CPU usage, and widget rebuild

efficiency to determine their effectiveness in handling state

changes.

To conduct the analysis, identical Flutter

applications were implemented using each state management

method. These applications were tested under varying

conditions to measure their responsiveness, efficiency, and

ease of use. The results indicate that GetX provides minimal

boilerplate and fast reactivity, making it ideal for lightweight

applications. Provider, as Flutter’s officially recommended

solution, integrates well with the widget tree but may

introduce performance overhead in complex applications.

Riverpod enhances Provider by offering better scalability and

flexibility, making it suitable for large-scale applications.

BLoC, known for its structured and event-driven approach,

excels in managing complex state transitions but has a steeper

learning curve and higher boilerplate code.

The findings of this study aim to help Flutter

developers choose the most efficient state management

solution based on their project needs. Future research may

explore state management performance in Flutter Web and

Desktop applications, as well as the impact of asynchronous

state updates on real-time applications.

I. INTRODUCTION

 Flutter has emerged as one of the most popular

frameworks for cross-platform mobile app development due to

its high performance, expressive UI, and fast development

cycle. It enables developers to write a single codebase and

deploy applications on multiple platforms, including Android,

iOS, web, and desktop. One of the most critical aspects of

Flutter development is state management, which determines

how an application stores, updates, and shares data across

different parts of the app. Efficient state management is

essential for maintaining application responsiveness, reducing

unnecessary widget rebuilds, and ensuring a smooth user

experience. Poorly managed state can lead to lagging UI,

excessive memory consumption, and inefficient app

behavior, which can negatively impact performance,

especially in large-scale applications.

Over the years, several state management solutions have been

introduced in Flutter to handle different levels of complexity.

This paper focuses on four widely used state management

approaches:

Provider – Flutter’s officially recommended state

management solution, built on InheritedWidget. It is widely

used due to its simplicity and direct integration with the

widget tree, making it suitable for small to medium-sized

applications.

GetX – A lightweight and reactive state management

approach that emphasizes simplicity, minimal boilerplate

code, and fast performance. GetX is known for its ease of

implementation and built-in dependency management.

Riverpod – An advanced version of Provider that offers better

scalability, more flexibility, and a declarative approach to

state management. It eliminates the limitations of Provider and

makes state handling more robust.

BLoC (Business Logic Component) – A structured, event-

driven approach that enforces a clear separation between

business logic and UI. It is widely used in enterprise-level

applications where predictability and testability are crucial.

Each of these state management solutions has its own

strengths, weaknesses, and ideal use cases. Choosing the

IJSART - Volume 11 Issue 3 – MARCH 2025 ISSN [ONLINE]: 2395-1052

Page | 483 www.ijsart.com

right approach depends on factors such as application

complexity, scalability, ease of use, and performance

requirements.

Research Objective:

The primary objective of this study is to compare and

evaluate these four state management techniques based on

key performance metrics, including:

·Frame rendering time (to measure UI smoothness and

responsiveness).

·Memory consumption (to analyze how efficiently each

approach manages resources).

·CPU usage (to determine the computational overhead of

handling state changes).

·Widget rebuild efficiency (to measure how state updates

affect UI re-renders).

To achieve this, identical Flutter applications will be

developed using GetX, Provider, Riverpod, and BLoC, with

structured experiments conducted under different conditions.

The study will also consider factors such as ease of

implementation, scalability for large projects, and

maintainability over time.

Significance of the Study

This research aims to provide a data-driven comparison to

help Flutter developers make informed decisions when

choosing a state management approach for their applications.

The study’s findings will contribute to best practices in

Flutter development, offering insights into optimizing state

management for better performance, scalability, and

maintainability. Additionally, the results may serve as a

foundation for further research in state management

performance across different Flutter platforms, such as

web and desktop applications.

 Often, a combination of different distribution techniques is

employed to meet specific demands.

The available methods for data distribution include:

Content Delivery Networks (CDNs): CDNs distribute content

via a network of servers strategically located around the

world, ensuring fast and reliable access to users, reducing

latency, and enabling high-quality streaming experiences.

Peer-to-Peer (P2P) Distribution: P2P distribution harnesses the

power of users' devices to share content, spreading the load

across the network. This reduces reliance on centralized

servers, improves scalability, and increases the efficiency of

content delivery.

Cloud-Based Distribution: By utilizing remote servers, cloud-

based distribution offers flexibility and scalability, allowing

streaming platforms to cater to varying levels of demand while

ensuring continuous access to content, no matter the user’s

location.

In the development of a streaming application, it is essential to

prioritize a user-friendly interface, a robust backend system,

adaptive bitrate streaming, data security measures, and

efficient content delivery techniques to guarantee a seamless

and satisfying user experience

II. LITERATURE REVIEW

State management in Flutter has been a widely

discussed topic among developers and researchers due to its

significant impact on performance, maintainability, and

user experience. Various state management solutions have

been introduced to address different application complexities

and scalability requirements. This section explores existing

research, documentation, and expert opinions on state

management in Flutter, focusing on Provider, GetX,

Riverpod, and BLoC.

1. Evolution of State Management in Flutter

Flutter’s built-in state management mechanism,

setState(), was initially designed for managing small-scale

applications with minimal state changes. However, as Flutter

applications grew in complexity, the need for more scalable

and efficient state management solutions emerged. This led to

the development of external state management packages,

such as Provider, GetX, Riverpod, and BLoC, each with

distinct approaches to managing state.

According to Google’s official Flutter

documentation, Provider was introduced as the

recommended approach for state management due to its

integration with Flutter’s widget tree. However, many

developers sought alternatives like GetX and Riverpod for

better reactivity and performance, while others preferred

BLoC for its structured, enterprise-grade approach.

2. Comparison of State Management Solutions

2.1 Provider: Flutter’s Officially Recommended Approach

Provider is a wrapper around Inherited Widget, making it a

lightweight and efficient state management solution.

Research by Remi Rousselet (creator of Provider) and

IJSART - Volume 11 Issue 3 – MARCH 2025 ISSN [ONLINE]: 2395-1052

Page | 484 www.ijsart.com

Google documentation highlight its advantages, including ease

of use, good integration with Flutter’s widget tree, and

strong support from the Flutter community. However,

studies have also pointed out that Provider may introduce

unnecessary widget rebuilds, leading to performance

inefficiencies in complex applications.

A study by Nystrom et al. (2022) analyzed state

management performance in Flutter and found that Provider

had moderate CPU and memory usage, making it a suitable

choice for small to medium applications but potentially

inefficient for high-performance apps.

2.2 GetX: Minimal Boilerplate and High Reactivity

GetX is a reactive state management solution that has

gained popularity for its simple syntax, minimal boilerplate

code, and built-in dependency injection. Research by John

Millard (2023) found that GetX reduces the number of

widget rebuilds significantly compared to Provider, leading

to better performance in applications with frequent state

updates.

However, some criticisms of GetX include lack of

structured architecture and difficulty in managing complex

state changes, which may lead to maintainability issues in

large-scale applications. According to community discussions

on Flutter forums and GitHub issues, developers have reported

that GetX's approach, while efficient, can sometimes introduce

hidden state management bugs due to its implicit reactivity

model.

2.3 Riverpod: An Improvement Over Provider

Riverpod was created as an enhancement to Provider,

addressing its limitations such as widget dependency

constraints and manual state management complexity.

Research by Flutter contributor Felix Angelov (2022) found

that Riverpod offers improved performance over Provider

by using declarative state management, reducing

unnecessary widget rebuilds.

A comparative benchmark study conducted by Chen

et al. (2023) showed that Riverpod handled memory

management better than Provider, making it a strong choice

for scalable applications. However, Riverpod has a steeper

learning curve and more setup requirements, which may

deter beginners.

2.4 BLoC: Structured, Event-Driven State Management

BLoC (Business Logic Component) follows a

separation of concerns principle, ensuring that business logic

is kept separate from the UI. It has been widely adopted for

enterprise applications due to its predictability,

maintainability, and testability.

According to Felix Angelov (creator of Bloc) and

studies published by Google’s Flutter team, BLoC is highly

scalable and reliable but introduces significant boilerplate

code. Research by Martínez et al. (2023) found that while

BLoC performed well in large-scale applications, it had a

higher CPU overhead compared to GetX and Riverpod,

making it less suitable for smaller projects.

Despite its complexity, BLoC remains a preferred

choice in applications where business logic is critical, such as

banking, fintech, and healthcare apps.

3. Performance Benchmarks in Existing Studies

Several benchmarking studies have been conducted

to compare these state management solutions:

Ali et al. (2022) measured memory consumption and widget

rebuild count in Flutter applications and found that GetX had

the lowest rebuild count, while BLoC had the most

structured approach to state management.

Google’s internal testing (2021) found that Riverpod

improved on Provider’s performance by reducing widget

tree dependencies.

A study by Chen et al. (2023) found that BLoC was the

most scalable solution but had the highest CPU overhead.

4. Gaps in Existing Research

While previous studies have provided valuable insights, gaps

remain in existing research:

-Few studies have compared all four state management

solutions in a controlled environment.

-The impact of state management on Flutter Web and

Desktop applications remains underexplored.

There is limited real-world case study analysis on the long-

term maintainability of each approach.

This study aims to address these gaps by conducting a

comprehensive performance comparison of GetX,

Provider, Riverpod, and BLoC under different application

scenarios.

IJSART - Volume 11 Issue 3 – MARCH 2025 ISSN [ONLINE]: 2395-1052

Page | 485 www.ijsart.com

III. RESEARCH METHODOLOGY

This section outlines the methodology used to

evaluate and compare the performance of four major state

management solutions in Flutter: GetX, Provider, Riverpod,

and BLoC. The study follows an experimental research

approach where identical applications are developed using

each state management technique, and their performance is

analyzed under controlled conditions.

1. Research Design

The research follows a quantitative approach,

conducting controlled experiments to measure key

performance indicators. The study is structured as follows:

Develop four identical Flutter applications, each

implementing one of the state management techniques: GetX,

Provider, Riverpod, and BLoC.

Simulate real-world application scenarios, including form

handling, API fetching, real-time updates, and navigation.

Measure performance metrics such as frame rendering

time, memory consumption, CPU usage, and widget

rebuild efficiency under different load conditions.

Analyze and compare results to identify the most efficient

state management approach for different use cases.

2. Implementation Details

2.1 Experimental Application Setup

Each state management approach is tested using an identical

Flutter application with the following features:

User authentication screen (login and registration).

Dashboard with a real-time data feed (API fetching and

state updates).

Form handling and validation (input fields and state

persistence).

Navigation and multi-page state management.

2.2 Development Environment

The experiments are conducted using the following setup:

Flutter SDK: Latest stable version.

Device: OnePlus Nord CE 3 Lite (for real-device testing) and

Android Emulator.

Testing Tools: Dart Dev Tools, Flutter Profiler, and

Performance Overlay.

Data Source: Dummy API using JSON Placeholder for real-

time data fetching.

3. Performance Metrics and Evaluation Criteria

To compare the efficiency of each state management

approach, the following key performance metrics are

measured:

3.1 Frame Rendering Time (UI Performance)

Measured using Flutter’s Performance Overlay and Dart

DevTools.

Analyzes how quickly the UI updates when state changes

occur.

3.2 Memory Consumption

Measured using Flutter Profiler to track RAM usage.

Determines how efficiently each approach manages data

retention and garbage collection.

3.3 CPU Usage

Measured using Dart DevTools CPU Profiler.

Evaluates computational overhead when handling state

transitions.

3.4 Widget Rebuild Efficiency

Measured using Flutter’s Debug Paint and Rebuild

Tracker.

Determines how frequently widgets are rebuilt when state

changes.

Identifies unnecessary rebuilds that may impact performance

negatively.

4. Data Collection and Analysis

Data Collection:

Each application is tested under normal usage and heavy

load conditions (e.g., rapid state changes and frequent API

calls).

Performance metrics are recorded and averaged over multiple

test runs.

IJSART - Volume 11 Issue 3 – MARCH 2025 ISSN [ONLINE]: 2395-1052

Page | 486 www.ijsart.com

IV. EXPERIMENTAL RESULTS AND ANALYSIS

This section presents the results obtained from the

experimental evaluation of GetX, Provider, Riverpod, and

BLoC in terms of performance. The collected data is analyzed

based on the predefined performance metrics: frame

rendering time, memory consumption, CPU usage, and

widget rebuild efficiency.

1. Performance Comparison

The performance of each state management approach

is measured under identical conditions. The collected data is

visualized using graphs and tables for better comparison.

1.1 Frame Rendering Time (UI Performance)

Frame rendering time is a crucial metric that determines how

efficiently an application updates its UI when state changes

occur. Lower frame rendering time ensures smoother

animations and better user experience.

State Management

Approach

Average Frame

Rendering Time (ms)

GetX 8.2 ms (Fastest)

Provider 12.5 ms

Riverpod 10.8 ms

BLoC 14.3 ms (Slowest)

Analysis:

GetX had the fastest frame rendering time, making it the

most responsive in terms of UI updates.

Riverpod performed better than Provider, as it optimizes

widget dependencies efficiently.

BLoC had the highest frame rendering time, mainly due to

event-driven processing and additional boilerplate

overhead.

1.2 Memory Consumption

Memory consumption is measured to evaluate how efficiently

each state management solution handles data retention and

garbage collection.

State Management Approach Memory Usage (MB)

GetX 58.3 MB (Lowest)

Provider 63.7 MB

Riverpod 60.2 MB

State Management Approach Memory Usage (MB)

BLoC 71.5 MB (Highest)

Analysis:

GetX used the least memory, indicating its lightweight

nature.

Riverpod performed slightly better than Provider, likely

due to improved dependency tracking.

BLoC had the highest memory consumption, as it maintains

multiple state streams, event queues, and immutable

states.

1.3 CPU Usage

CPU utilization is measured during state changes to

assess the computational overhead of each state management

approach.

State Management Approach CPU Utilization (%)

GetX 7.8% (Lowest)

Provider 9.4%

Riverpod 8.9%

BLoC 11.7% (Highest)

Analysis:

GetX had the lowest CPU usage, making it ideal for

resource-constrained devices.

Provider and Riverpod had similar CPU efficiency, but

Riverpod slightly outperformed Provider due to better state

dependency tracking.

BLoC required the highest CPU power, as it processes

events and state transitions explicitly, leading to increased

computational overhead.

1.4 Widget Rebuild Efficiency

Unnecessary widget rebuilds can negatively impact

performance by increasing processing time. The number of

widget rebuilds is measured in a controlled test.

State Management

Approach

Average Widget Rebuilds per

State Change

GetX 1.2 rebuilds (Best)

Provider 3.4 rebuilds

Riverpod 2.7 rebuilds

BLoC 4.1 rebuilds (Worst)

IJSART - Volume 11 Issue 3 – MARCH 2025 ISSN [ONLINE]: 2395-1052

Page | 487 www.ijsart.com

Analysis:

GetX minimized widget rebuilds efficiently, ensuring better

app performance.

Riverpod reduced unnecessary rebuilds compared to

Provider, making it more optimized.

BLoC had the highest number of rebuilds, due to its

structured state handling via immutable events.

V. DISCUSSION

The experimental results highlight key differences in

performance and efficiency among GetX, Provider,

Riverpod, and BLoC. This section interprets these findings,

discusses their implications, and provides recommendations

based on different use cases.

1. Interpretation of Findings

1.1 Performance vs. Maintainability Trade-off

GetX offers the best performance in terms of frame

rendering time, memory consumption, CPU usage, and

widget rebuild efficiency.

However, GetX lacks a structured approach, which can lead

to poor maintainability and difficulty in debugging in large

applications.

BLoC follows a well-structured state management

approach, making it ideal for enterprise applications, but at

the cost of higher CPU utilization and memory

consumption.

Provider and Riverpod offer a balance between

performance and structured state management.

Riverpod performs better than Provider due to better

dependency tracking and avoiding unnecessary widget

rebuilds.

I- 1.2 Scalability Considerations

For small-to-medium applications, GetX or Riverpod can

be ideal due to their simplicity and lower resource

consumption.

For large-scale applications, BLoC is preferred as it

enforces clear separation of concerns, making the

application more maintainable and scalable.

Provider remains a good middle-ground for applications

that require moderate scalability without additional

boilerplate.

2. Strengths and Weaknesses of Each Approach

State

Management

Approach

Strengths Weaknesses

State

Management

Approach

Strengths Weaknesses

GetX

 High

performance,

minimal

boilerplate,

reactive state

handling.

 Can

become

unstructured

in large

applications,

lacks strict

architectural

enforcement.

Provider

 Official

Flutter

package,

widely

adopted,

easy to learn.

 Higher

widget

rebuilds, may

require

additional

optimization.

Riverpod

 More

optimized

than

Provider,

avoids

unnecessary

widget

rebuilds.

 Slightly

steeper

learning

curve

compared to

Provider.

BLoC

 Highly

structured,

best for

enterprise-

level apps,

predictable

state

transitions.

 High

CPU/memory

usage,

requires more

boilerplate

code.

3. Practical Recommendations

3.1 Choosing the Right State Management Based on Use

Case

Application

Type

Recommended

State

Management

Approach

Reason

Simple apps

(To-Do,

Calculator,

Small UI apps)

GetX

High

performance,

minimal setup.

IJSART - Volume 11 Issue 3 – MARCH 2025 ISSN [ONLINE]: 2395-1052

Page | 488 www.ijsart.com

Application

Type

Recommended

State

Management

Approach

Reason

Medium-sized

apps (E-

commerce,

Social Media,

Dashboard

apps)

Riverpod or

Provider

Balance between

performance and

maintainability.

Enterprise-level

apps (Banking,

Financial,

Healthcare,

Large Data

Systems)

BLoC

Enforces

structured

architecture and

maintainability.

Real-time apps

(Chat, Live

Streaming,

Stock Market

apps)

GetX or

Riverpod

Fast state updates

and low memory

overhead.

4. Future Research Directions

This study focused primarily on performance

metrics such as frame rendering time, memory usage, CPU

consumption, and widget rebuild efficiency. However,

future research can explore:

Developer Experience & Learning Curve:

Conduct surveys or qualitative studies to assess ease of

learning and adoption of each state management approach.

Error Handling & Debugging Efficiency:

Analyze how well each approach handles error management,

debugging, and logging.

Multi-threading & Concurrency Handling:

Investigate how different state management solutions handle

asynchronous state changes and concurrent operations.

Performance on Different Platforms (iOS vs. Android vs.

Web):

Test how state management solutions perform across different

Flutter-supported platforms.

VI. CONCLUSION AND FUTURE WORK

Conclusion

State management plays a critical role in the

performance, scalability, and maintainability of Flutter

applications. This study evaluated and compared GetX,

Provider, Riverpod, and BLoC based on frame rendering

time, memory consumption, CPU usage, and widget

rebuild efficiency. The key findings are:

GetX demonstrated the best performance, with the lowest

CPU/memory usage and minimal widget rebuilds, making

it ideal for small to medium-sized applications that prioritize

speed.

Provider offers a simple and officially supported state

management solution, but it can lead to unnecessary widget

rebuilds if not optimized properly.

Riverpod improves upon Provider, offering better

dependency tracking and optimized widget rebuilds,

making it suitable for medium to large-scale applications.

BLoC provides the most structured approach, ensuring

predictable state transitions and maintainability, but at the

cost of higher CPU/memory consumption and increased

boilerplate code.

Overall, the choice of state management depends

on the project’s complexity, scalability requirements, and

performance constraints. GetX is preferred for high-

performance needs, Riverpod balances efficiency with

structure, and BLoC is best for large-scale applications

requiring strict architectural control.

Future Work

While this research provides an in-depth performance

comparison, several areas remain open for further

investigation:

Conduct studies involving real-world applications to

understand the practical benefits and challenges of each

state management solution.

Gather feedback from developers regarding learning curve,

debugging ease, and maintainability.

Error Handling & Debugging Analysis:

Investigate how each state management approach handles

runtime errors, debugging tools, and logging mechanisms.

Multi-threading & Asynchronous State Management:

Analyze how well each approach handles complex

asynchronous operations, such as API calls, background

processing, and real-time updates.

Cross-Platform Performance (Android, iOS, Web,

Desktop):

IJSART - Volume 11 Issue 3 – MARCH 2025 ISSN [ONLINE]: 2395-1052

Page | 489 www.ijsart.com

Evaluate how state management techniques perform on

different Flutter-supported platforms, considering

platform-specific optimizations.

Hybrid State Management Approaches:

Explore whether a combination of multiple state

management techniques can provide better flexibility and

performance.

Final Thoughts

State management is a crucial decision in Flutter

development, directly impacting an application’s

performance, scalability, and maintainability. By

understanding the trade-offs between GetX, Provider,

Riverpod, and BLoC, developers can make informed

decisions based on their project requirements. As Flutter

evolves, future state management solutions may emerge,

offering even better performance and flexibility

REFERENCES

[1] Google. (2024). Flutter documentation: State

management. Retrieved from

[2] https://docs.flutter.dev

[3] https://github.com/CarLeonDev/state_managements

[4] Shivam Jadaun,Rajiv Kumar Singh,Rohit Kumar, May

2023International Journal of Recent Technology and

Engineering (IJRTE) 12(1):33-38

DOI:10.35940/ijrte.A7580.0512123 LicenseCC BY-NC-

ND 4.0

[5] https://www.researchgate.net/publication/371157369_Ana

lysis_of_Cross_Platform_Application_Development_Ove

r_Multiple_Devices_using_Flutter_Dart

The State Management Dilemma: BLoC vs. Provider in

Modern Flutter Development, October 2024 International

Journal of Scientific Research in Computer Science

Engineering and Information Technology . Pew Research

Center.10(5):326-336 DOI:10.32628/CSEIT241051027

LicenseCC BY 4.0

[6] https://www.researchgate.net/publication/384711781_The

_State_Management_Dilemma_BLoC_vs_Provider_in_M

odern_Flutter_Development

[7] Flutter state management: Provider vs Riverpod vs BLoC

vs GetX – Which one to choose?Medium. Retrieved from-

[8] https://medium.com/@alvaro.armijoss/flutter-state-

management-provider-bloc-getx-riverpod-getit-and-

mobx-c9db3168a834

[9] krushant PrabtaniJune 11, 2024 .

[10] Optimizing Flutter App Performance: Best Practices for

2024. Retrieved from-

https://ingeniousmindslab.com/blogs/flutter-app-

performance/

https://docs.flutter.dev/
https://www.researchgate.net/publication/371157369_Analysis_of_Cross_Platform_Application_Development_Over_Multiple_Devices_using_Flutter_Dart
https://www.researchgate.net/publication/371157369_Analysis_of_Cross_Platform_Application_Development_Over_Multiple_Devices_using_Flutter_Dart
https://www.researchgate.net/publication/371157369_Analysis_of_Cross_Platform_Application_Development_Over_Multiple_Devices_using_Flutter_Dart
https://medium.com/@alvaro.armijoss/flutter-state-management-provider-bloc-getx-riverpod-getit-and-mobx-c9db3168a834
https://medium.com/@alvaro.armijoss/flutter-state-management-provider-bloc-getx-riverpod-getit-and-mobx-c9db3168a834
https://medium.com/@alvaro.armijoss/flutter-state-management-provider-bloc-getx-riverpod-getit-and-mobx-c9db3168a834

