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Abstract- Node localization is a fundamental challenge in 

Wireless Sensor Networks (WSNs) as precise location 

estimation is essential for various applications. Traditional 

localization techniques, including bio-inspired and 

mathematical models, often struggle with high computational 

complexity and lim- ited adaptability to diverse environments. 

Recent advance- ments in Machine Learning (ML) offer 

promising solutions by leveraging data-driven approaches to 

optimize localiza- tion accuracy. This survey explores existing 

localization methods in WSNs, categorizing them into range-

based and range-free techniques. Furthermore, it examines 

the applica- tion of ML models such as Support Vector 

Regression (SVR), Random Forest Regression (RFR), and 

CatBoost Regression (CAT) in reducing Average Localization 

Error (ALE). Addi- tionally, optimization strategies, including 

the Giant Trevally Optimizer (GTO), are evaluated for their 

role in enhanc- ing prediction accuracy and reducing 

computational time. A comparative analysis of conventional 

and ML-driven lo- calization methods is conducted to 

highlight their strengths, limitations, and potential 

improvements. Finally, this paper discusses emerging trends, 

challenges, and future research directions in ML-based 

localization for WSNs. 

 

I. INTRODUCTION 

 

 Wireless Sensor Networks (WSNs) are composed of 

nu- merous small, low-cost sensor nodes that monitor environ- 

mental conditions and communicate data wirelessly. These 

networks are widely used in applications such as environ- 

mental monitoring, healthcare, smart cities, and precision 

agriculture. One of the critical challenges in WSNs is node 

localization, which involves determining the positions of un- 

known nodes using anchor nodes with known coordinates. 

Accurate localization is essential for improving network ef- 

ficiency, reducing energy consumption, and ensuring re- liable 

data collection. Traditional localization techniques are broadly 

categorized into range-based and range-free approaches. 

Range-based methods estimate distances or an- gles using 

techniques like Received Signal Strength Indica- tion (RSSI), 

Time of Arrival (ToA), and Angle of Arrival (AoA). In 

contrast, range-free methods rely on connectiv- ity 

information and do not require direct distance measure- ments. 

Despite their effectiveness, these methods often suf- fer from 

high localization errors due to environmental inter- ference, 

high computational complexity, and limited adapt- ability to 

dynamic network conditions. Recent advancements in 

Machine Learning (ML) have introduced new possibilities for 

enhancing localization accuracy. ML models, including 

Support Vector Regression (SVR), Random Forest Regres- 

sion (RFR), and CatBoost Regression (CAT), have been em- 

ployed to predict localization errors and optimize network 

parameters. Additionally, optimization algorithms such as the 

Giant Trevally Optimizer (GTO) have been integrated with 

ML models to enhance performance, reducing com- putational 

costs while maintaining high accuracy. This pa- per provides a 

comprehensive survey of existing localization techniques in 

WSNs, with a particular focus on ML-based approaches. We 

analyze the strengths and limitations of vari- ous methods, 

compare their performance in terms of Average Localization 

Error (ALE), and discuss emerging trends in the field. The 

goal of this survey is to offer insights into the ef- fectiveness 

of ML-driven localization methods and highlight future 

research directions in this evolving domain. 

 

II. ADOPTION OF MACHINE LEARNING IN 

CONTEXT TO WSNS 

 

The integration of Machine Learning (ML) in Wire- 

less Sensor Networks (WSNs) has significantly enhanced node 

localization accuracy, network efficiency, and decision- 

making capabilities. Traditional localization techniques of- ten 

suffer from high computational complexity and environ- 

mental interference, making them less effective in real-time 

applications. 

 

ML-based methods provide an alternative by learning 

patterns from sensor data, making localization more adap- 

tive, robust, and accurate. ML approaches in WSN local- 

ization can be broadly categorized into supervised learning, 

unsupervised learning, and hybrid optimization techniques. 

 

III. SUPERVISED LEARNING 

 

Supervised learning algorithms in WSNs require 

labeled training data, where models learn to predict node 
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locations based on input features such as RSSI values, node 

density, and transmission range. 

 

3.1 Support Vector Machines (SVMs) 

 

Support Vector Regression (SVR) has emerged as a 

powerful machine learning technique for node localization in 

Wireless Sensor Networks (WSNs), offering robust perfor- 

mance in predicting **Average Localization Error (ALE)**. 

Unlike traditional regression models, **SVR is based on the 

Structural Risk Minimization (SRM) principle**, which en- 

hances generalization and minimizes overfitting. 

 

It operates by mapping input features—such as 

**node density, transmission range, and anchor ratio**—into 

a high- dimensional space where a **linear regression 

model** is applied. The model utilizes an **-insensitive loss 

func- tion**, ensuring that only significant deviations from the 

true values are penalized, thereby improving accuracy. 

 

In the given paper, **SVR is compared with other 

ML models** such as **Random Forest Regression (RFR) 

and CatBoost Regression (CAT)**, showing **competitive 

per- formance** in localization tasks. However, while SVR 

ef- fectively **reduces localization errors**, its performance 

is highly dependent on **parameter tuning**, such as: 

 

Kernel function Regularization parameter (C) Epsilon () 

 

To further enhance **SVR’s accuracy and 

efficiency**, the study integrates **Giant Trevally Optimizer 

(GTO)**, which fine-tunes the model’s hyperparameters, 

leading to **reduced Root Mean Square Error (RMSE)** and 

**im- proved correlation coefficient (R)**. 

 

Despite its **computational complexity**, **SVR 

re- mains a valuable approach for WSN localization** due to 

its ability to **handle nonlinear relationships** and 

**improve localization precision** in dynamic environments. 

 

3.2 Random Forest Regression (RFR) 

 

Random Forest Regression (RFR) is an ensemble 

learn- ing technique widely used for node localization in 

Wireless Sensor Networks (WSNs) due to its ability to handle 

nonlin- ear relationships and high-dimensional data. RFR 

operates by constructing multiple decision trees during 

training and averaging their predictions to enhance accuracy 

and robust- ness. This method effectively mitigates overfitting 

by lever- aging random feature selection and bootstrapped 

datasets, making it more resilient to noise and missing data 

compared 

to single decision-tree models. In the given paper, RFR is ap- 

plied to predict Average Localization Error (ALE), utilizing 

key network parameters such as node density, transmission 

range, and anchor ratio. The results show that RFR achieves 

high localization accuracy, but its performance is further im- 

proved when combined with the Giant Trevally Optimizer 

(GTO), leading to better parameter tuning and reduced Root 

Mean Square Error (RMSE). Compared to Support Vector 

Regression (SVR) and CatBoost Regression (CAT), RFR 

demonstrates strong generalization ability, making it partic- 

ularly useful for dynamic WSN environments. However, its 

computational complexity increases with the number of trees, 

which may impact real-time applications. Despite this, RFR 

remains a highly effective approach for improving lo- 

calization precision and optimizing WSN configurations. 

 

3.3 CatBoost Regression (CAT) 

 

CatBoost Regression (CAT) is an advanced gradient 

boosting algorithm that has gained popularity for node local- 

ization in Wireless Sensor Networks (WSNs) due to its abil- 

ity to handle categorical features efficiently while maintain- 

ing high accuracy and computational efficiency. Unlike tra- 

ditional boosting methods, CatBoost employs ordered boost- 

ing and random permutations, which help prevent overfitting 

and prediction bias. In the given paper, CatBoost is uti- lized 

to predict Average Localization Error (ALE) by learn- ing 

from key network parameters such as node density, trans- 

mission range, and anchor ratio. Compared to Support Vec- 

tor Regression (SVR) and Random Forest Regression (RFR), 

CatBoost demonstrates faster convergence and better accu- 

racy, especially when dealing with complex datasets. Addi- 

tionally, the integration of Giant Trevally Optimizer (GTO) 

with CatBoost (CAGT model) significantly improves local- 

ization precision by fine-tuning hyperparameters, reducing 

Root Mean Square Error (RMSE), and enhancing the corre- 

lation coefficient (R). The results indicate that CAGT out- 

performs all other models, making it an ideal choice for real-

time localization in WSNs. Despite its advantages, Cat- 

Boost’s performance can be sensitive to parameter selection 

and dataset size, but its ability to handle imbalanced data, re- 

duce computational time, and optimize localization accuracy 

makes it a valuable tool for WSN applications. 
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IV. UNSUPERVISED LEARNING 

Unsupervised learning methods are used when labeled data is 

not available. These techniques cluster sensor nodes based on 

observed data patterns and provide approximate lo- calization 

estimates. 

 

4.1 K-means Clustering 

 

K-Means Clustering is a widely used unsupervised 

learning algorithm for node localization in Wireless Sen- sor 

Networks (WSNs), particularly in range-free localiza- tion 

techniques. It operates by grouping sensor nodes into K 

distinct clusters based on their signal strength, proxim- ity, or 

other network parameters, minimizing the distance between 

each node and its assigned cluster centroid. In the given paper, 

K-Means is explored as a potential method for estimating 

unknown node positions by leveraging simi- larities in 

network topology. The algorithm iteratively up- dates cluster 

centers until convergence is achieved, ensuring that nodes 

with similar connectivity patterns are grouped to- gether. 

Compared to supervised learning models like Sup- port Vector 

Regression (SVR) and Random Forest Regres- sion (RFR), K-

Means does not require labeled training data, making it 

suitable for dynamic and large-scale WSN envi- ronments. 

However, its effectiveness depends on proper se- lection of K, 

initial centroid placement, and handling of out- liers, which 

can affect localization accuracy. To enhance per- formance, 

hybrid approaches integrating K-Means with ma- chine 

learning models or optimization techniques (e.g., Giant 

Trevally Optimizer - GTO) have been proposed, allowing for 

improved precision and adaptability in real-time WSN local- 

ization. Despite its limitations, K-Means remains a fast and 

scalable approach for clustering sensor nodes, reducing com- 

putational complexity in WSN deployment scenarios. 

 

4.2 Gaussian Mixture Models (GMM) 

Gaussian Mixture Models (GMM) is an unsupervised 

probabilistic clustering algorithm that is highly effective for 

node localization in Wireless Sensor Networks (WSNs). Un- 

like K-Means Clustering, which assumes hard cluster as- 

signments, GMM models data as a combination of multi- ple 

Gaussian distributions, allowing for soft clustering where each 

node has a probability of belonging to multiple clus- ters. In 

the given paper, GMM is explored for WSN local- ization, 

leveraging sensor data such as signal strength, trans- mission 

range, and node density to estimate unknown node positions 

more flexibly than traditional clustering methods. GMM uses 

the Expectation-Maximization (EM) algorithm to iteratively 

refine cluster assignments, making it particu- larly useful in 

dynamic and noisy environments where sen- sor readings may 

fluctuate. Compared to K-Means, GMM provides better 

adaptability to non-linear distributions, im- proving 

localization accuracy. However, it requires careful 

initialization and computationally intensive parameter esti- 

mation, which may limit its scalability in real-time WSN 

applications. To enhance performance, hybrid approaches 

integrating GMM with optimization algorithms like the Gi- 

ant Trevally Optimizer (GTO) can be employed to fine-tune 

cluster parameters, leading to more precise and efficient lo- 

calization. Despite its computational complexity, GMM re- 

mains a powerful tool for probabilistic node localization, of- 

fering greater flexibility in modeling sensor networks with 

overlapping or uncertain boundaries. 

 

V. HYBRID OPTIMIZATION APPROACHES 

 

Hybrid approaches combine multiple ML models or in- tegrate 

optimization techniques to enhance accuracy. 

 

5.1 Giant Trevally Optimization (GTO) 

 

Giant Trevally Optimization (GTO) is a nature-

inspired metaheuristic algorithm designed for global 

optimization problems, including node localization in Wireless 

Sensor Networks (WSNs). Inspired by the hunting behavior of 

Gi- ant Trevally fish, GTO mimics their search, selection, and 

at- tack strategies to find optimal solutions in high-

dimensional spaces. In the given paper, GTO is applied to 

optimize the parameters of machine learning models such as 

Support Vec- tor Regression (SVR), Random Forest 

Regression (RFR), and CatBoost Regression (CAT) for 

improved Average Lo- calization Error (ALE) prediction. By 

adjusting key fac- tors like node density, transmission range, 

and anchor ratio, GTO enhances localization accuracy while 

reducing Root Mean Square Error (RMSE) and improving 

correlation co- efficient (R). Unlike traditional bio-inspired 

algorithms such as Particle Swarm Optimization (PSO) and 

Cuckoo Search (CS), GTO offers faster convergence and 
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better exploration- exploitation balance, making it more 

effective in dynamic WSN environments. However, GTO’s 

performance depends on proper tuning of search parameters 

and computational ef- ficiency, especially for large-scale 

networks. The integra- tion of GTO with machine learning 

models (e.g., CAGT - CatBoost + GTO) in the paper 

demonstrates its ability to enhance localization precision, 

making it a promising opti- mization technique for real-time 

WSN applications. 

 

5.1.1 Particle Swarm Optimization (PSO) 

 

Particle Swarm Optimization (PSO) is a swarm 

intelligence-based algorithm that optimizes node positions in 

Wireless Sensor Networks (WSNs) by simulating the collec- 

tive movement of particles in a search space. Each particle 

represents a potential solution and adjusts its position based on 

personal experience and the best-known global position, 

enabling efficient convergence toward optimal localization. 

PSO’s ability to balance exploration and exploitation helps 

minimize localization errors while adapting to dynamic en- 

vironments. Its simplicity, fast convergence, and low compu- 

tational cost make it a widely used technique for improving 

positioning accuracy in WSNs. 

 

VI. OVERVIEW OF KEY ISSUES IN WSN 

LOCALIZATION SEVERAL CHALLENGES AFFECT 

THE ACCURACY AND EFFICIENCY OF ML- BASED 

LOCALIZATION IN WSNS 

 

6.1 Computational Complexity 

 

Computational complexity is a critical factor in Wire- 

less Sensor Network (WSN) localization, as resource- 

constrained sensor nodes require efficient algorithms to en- 

sure real-time operation. Traditional localization techniques, 

such as range-based and range-free methods, often involve 

high-dimensional computations, making them less practi- cal 

for large-scale deployments. In the given paper, ma- chine 

learning (ML) models like Support Vector Regression (SVR), 

Random Forest Regression (RFR), and CatBoost Re- gression 

(CAT) are employed to predict Average Localiza- tion Error 

(ALE). However, these models come with vary- ing degrees of 

computational overhead. SVR, for instance, suffers from high 

training complexity (O(n)), making it in- efficient for large 

datasets. In contrast, RFR reduces over- fitting but requires 

multiple decision trees, increasing infer- ence time. CatBoost, 

though computationally optimized, can still be resource-

intensive when handling large-scale datasets. To mitigate 

these challenges, the paper integrates Giant Trevally 

Optimization (GTO), which improves param- eter tuning 

while reducing computational costs. Compared to traditional 

bio-inspired methods like Particle Swarm Op- timization 

(PSO) and Cuckoo Search (CS), GTO achieves faster 

convergence and enhances localization precision with lower 

computational overhead. Despite these improvements, 

computational complexity remains a challenge, particularly in 

real-time WSN applications, where further research on 

lightweight ML models and optimization techniques is nec- 

essary for enhanced efficiency. 

 

6.2 Generalization in Diverse Environments 

 

Generalization in diverse environments is a crucial 

chal- lenge in Wireless Sensor Network (WSN) localization, 

as sensor deployments vary across indoor, outdoor, urban, and 

rural settings. Traditional localization methods often strug- gle 

to adapt to changing environmental conditions, leading to 

higher localization errors due to factors such as signal in- 

terference, node mobility, and dynamic topology changes. In 

the given paper, machine learning (ML) models, includ- ing 

Support Vector Regression (SVR), Random Forest Re- 

gression (RFR), and CatBoost Regression (CAT), are utilized 

to predict Average Localization Error (ALE) while improv- 

ing adaptability across different network conditions. How- 

ever, the generalization capability of these models depends on 

training data diversity and feature selection. To enhance 

robustness, the study integrates Giant Trevally Optimization 

(GTO), which fine-tunes ML model parameters dynamically, 

improving localization accuracy across multiple WSN con- 

figurations. Despite these advancements, certain ML mod- els, 

such as SVR, may suffer from overfitting to specific net- work 

conditions, limiting their applicability in real-time and 

heterogeneous environments. Future research should focus on 

transfer learning, adaptive ML models, and hybrid op- 

timization techniques to further enhance model generaliza- 

tion and ensure consistent localization accuracy in diverse and 

unpredictable WSN deployments. 

 

6.3 Outlier Sensitivity 

 

Outlier sensitivity is a significant concern in Wireless 

Sensor Network (WSN) localization, as sensor data is often 

affected by environmental noise, hardware malfunctions, and 

communication interference. Traditional localization meth- 

ods, particularly range-based techniques, are highly suscep- 

tible to errors introduced by outliers in distance or signal 

strength measurements. In the given paper, machine learn- ing 

(ML) models such as Support Vector Regression (SVR), 

Random Forest Regression (RFR), and CatBoost Regression 

(CAT) are employed to predict Average Localization Error 

(ALE), but their performance can be impacted by outliers in 

training data. SVR, for instance, uses an -insensitive loss 

function, making it relatively robust to small variations but 
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still vulnerable to extreme outliers. RFR, while less sensitive 

due to its ensemble nature, may still produce unstable pre- 

dictions if outliers dominate certain tree splits. CatBoost, on 

the other hand, incorporates ordered boosting, which helps 

reduce the impact of outliers. The study also integrates Giant 

Trevally Optimization (GTO) to fine-tune ML model 

parameters, further improving resilience against noisy data. 

However, outlier detection and handling remain critical, and 

future research should explore robust pre-processing tech- 

niques, such as isolation forests and adaptive thresholding, to 

enhance WSN localization accuracy in real-world condi- tions. 

 

6.4 Power Constraints 

 

Power constraints are a critical challenge in Wireless 

Sensor Networks (WSNs), as sensor nodes typically oper- ate 

on limited battery resources and must optimize energy 

consumption to ensure long-term network functionality. Tra- 

ditional localization methods often require frequent commu- 

nication and complex computations, leading to high energy 

consumption. In the given paper, machine learning (ML) 

models, such as Support Vector Regression (SVR), Random 

Forest Regression (RFR), and CatBoost Regression (CAT), 

are used to predict Average Localization Error (ALE), but 

their computational complexity directly impacts power effi- 

ciency. SVR, for example, has a high training complexity 

(O(n)), making it less suitable for energy-constrained nodes. 

RFR, while robust, requires multiple decision trees, increas- 

ing inference costs. CatBoost, optimized for efficiency, still 

demands continuous processing, which may strain battery- 

operated sensors. To address these issues, the study inte- 

grates Giant Trevally Optimization (GTO) to enhance lo- 

calization accuracy while reducing redundant computations, 

thereby improving energy efficiency. However, power con- 

straints remain a limiting factor in real-time WSN deploy- 

ments, necessitating future research into lightweight ML 

models, energy-aware optimization algorithms, and adaptive 

duty-cycling techniques to extend sensor node lifespan with- 

out compromising localization accuracy. 

 

VII. PARAMETERS FOR LOCALIZATION 

 

WSNs require precise node positioning while maintain- ing 

minimal resource consumption. 

 

7.1 Anchor Ratio 

 

The anchor ratio refers to the proportion of anchor 

nodes (nodes with known locations) to the total number of 

sensor nodes in a Wireless Sensor Network (WSN). A higher 

an- chor ratio generally enhances localization accuracy by pro- 

viding more reference points for estimating the positions of 

unknown nodes. However, deploying a large number of an- 

chor nodes can increase costs and energy consumption. To 

optimize performance, ML-based localization techniques of- 

ten balance the anchor ratio with efficient algorithms, such as 

hybrid localization methods and optimization approaches, 

ensuring accurate positioning while minimizing resource us- 

age. 

 

7.2 Transmission Range 

 

The communication range is the maximum distance 

over which a node can exchange data with other nodes in a 

Wire- less Sensor Network (WSN). It directly impacts 

network connectivity and localization efficiency. A larger 

commu- nication range improves connectivity, enabling better 

coop- eration among nodes for accurate positioning. However, 

it also increases energy consumption and the risk of signal in- 

terference. Conversely, a smaller range may lead to network 

fragmentation, reducing localization accuracy. Optimizing 

communication range based on network density and environ- 

mental conditions helps maintain a balance between accu- 

racy, energy efficiency, and reliability in WSN localization. 

 

7.3 Node Density 

 

The node density refers to the number of sensor 

nodes per unit area in a Wireless Sensor Network (WSN). A 

higher node density generally improves localization accuracy 

by providing more reference points for position estimation. It 

enhances connectivity, reduces localization errors, and in- 

creases network resilience. However, excessive node density 

can lead to higher communication overhead, interference, and 

increased energy consumption. Optimizing node density 

ensures a balance between accuracy, energy efficiency, and 

network performance, making ML-based localization more 

effective in both small-scale and large-scale deployments. 

 

7.4 Iterations 

 

Iterations play a crucial role in Wireless Sensor 

Network (WSN) localization, particularly in machine learning 

(ML) and optimization-based approaches that require multiple 

cy- cles of computation to refine predictions. In the given 

paper, Support Vector Regression (SVR), Random Forest 

Regres- sion (RFR), and CatBoost Regression (CAT) are 

employed to predict Average Localization Error (ALE), with 

their perfor- mance being influenced by the number of training 

iterations. SVR, for instance, iteratively adjusts its support 

vectors to minimize error, while RFR builds multiple decision 

trees over several iterations to enhance accuracy. CatBoost, 

lever- aging ordered boosting, refines weak learners through 

se- quential iterations to improve performance. Additionally, 
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the study integrates Giant Trevally Optimization (GTO), 

which undergoes iterative optimization cycles to fine-tune 

model parameters, reducing Root Mean Square Error (RMSE) 

and improving correlation coefficient (R). However, excessive 

it- erations can lead to increased computational costs and en- 

ergy consumption, making it essential to balance iteration 

count with convergence speed. Future research should fo- cus 

on adaptive iteration strategies that dynamically adjust based 

on error reduction trends, ensuring efficient and real- time 

WSN localization while minimizing resource overhead. 

 

VIII. FLOW CHART 

 

 
 

IX. NETWORK SERVICES 

 

9.1 Packet Transmission Delay Analysis 

 

Network topology defines how sensor nodes are ar- 

ranged and how data packets travel between them in a Wire- 

less Sensor Network (WSN). It directly influences ML-based 

localization accuracy by affecting communication efficiency, 

data propagation delays, and connectivity. Topologies such as 

star, mesh, and cluster-based networks impact how local- 

ization algorithms process and refine position estimates. A 

well-structured topology minimizes packet loss, reduces en- 

ergy consumption, and enhances the reliability of ML mod- 

els in determining accurate node positions. Optimizing net- 

work topology ensures efficient data flow, improving both 

localization accuracy and overall network performance. Mo- 

bility Models: Mobility models simulate node movement 

patterns in Wireless Sensor Networks (WSNs) to evaluate the 

performance of dynamic localization algorithms. These 

models help in understanding how sensor nodes reposition 

over time, affecting connectivity, data exchange, and local- 

ization accuracy. Common mobility models include Random 

Walk, Gauss-Markov, and Reference Point Group Mobility 

(RPGM), each representing different real-world movement 

scenarios. By incorporating mobility models, ML-based lo- 

calization techniques can be optimized to adapt to changing 

node positions, ensuring accurate and efficient tracking in 

dynamic WSN environments. 

 

9.2 Energy Consumption Analysis 

 

Energy consumption analysis measures power usage 

in Wireless Sensor Networks (WSNs) to optimize ML-based 

localization techniques for energy efficiency. Since sensor 

nodes operate on limited battery power, excessive computa- 

tions and frequent communication can drain energy quickly, 

reducing network lifespan. By analyzing power consump- tion 

patterns, energy-efficient ML models can be designed using 

techniques like duty cycling, data aggregation, and lightweight 

algorithms. Optimizing energy consumption en- sures 

prolonged network operation while maintaining accu- rate and 

reliable localization in resource-constrained WSN 

environments. 

 

9.3 Routing MAC Layer Protocols 

 

Communication protocol analysis evaluates the 

impact of different communication protocols on localization 

effi- ciency in Wireless Sensor Networks (WSNs). Protocols 

such as Time of Arrival (ToA), Received Signal Strength 

Indica- tor (RSSI), and Angle of Arrival (AoA) influence how 

nodes exchange data and determine positions. Efficient 

protocols enhance localization accuracy by reducing latency, 

minimiz- ing packet loss, and optimizing energy consumption. 

By se- lecting the most suitable communication protocol based 

on network conditions, ML-based localization techniques can 

achieve improved performance, reliability, and scalability in 

dynamic WSN environments. 

 

9.4 Noise Interference Simulation 

 

Environmental modeling introduces realistic 

conditions such as signal interference, obstacles, weather 

variations, and terrain effects to test the robustness of ML-

based local- ization in Wireless Sensor Networks (WSNs). 

Real-world factors like multipath propagation, node failures, 

and energy constraints can impact localization accuracy. By 

simulating these conditions, ML models can be trained and 

optimized to handle uncertainties, improve adaptability, and 

enhance localization performance in diverse deployment 

scenarios. This ensures that the localization system remains 

reliable and efficient even in challenging environments. 

 

X. NETWORK SERVICES 

 

10.1 Routing Optimization 
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Routing optimization in Wireless Sensor Networks 

(WSNs) is essential for enhancing localization accuracy, 

energy efficiency, and data transmission reliability. Effi- cient 

routing protocols minimize packet loss, delay, and en- ergy 

consumption, ensuring seamless communication be- tween 

sensor nodes and anchor nodes. In the given pa- per, ML-

based localization techniques are analyzed in con- junction 

with optimized routing strategies to improve Av- erage 

Localization Error (ALE). Protocols such as Energy- Efficient 

Routing (EER), Geographic Routing (GR), and Adaptive 

Multi-Hop Routing (AMR) are considered for op- timizing 

data flow while maintaining low overhead and net- work 

scalability. Additionally, the integration of metaheuris- tic 

optimization techniques like Giant Trevally Optimization 

(GTO) fine-tunes routing paths by dynamically adjusting node 

transmission parameters, leading to faster convergence and 

reduced computational complexity. By optimizing rout- ing 

mechanisms, ML-based localization models can operate with 

improved accuracy, reduced delay, and extended net- work 

lifespan, making them highly suitable for real-time and large-

scale WSN deployments. Future research should ex- plore 

hybrid routing protocols and AI-driven path selection 

mechanisms to further enhance efficiency and robustness in 

dynamic WSN environments. 

 

10.2 Event Detection 

 

Event detection in Wireless Sensor Networks 

(WSNs) is crucial for identifying and responding to 

environmental changes, anomalies, and critical incidents in 

real-time. Ac- curate event detection enables efficient resource 

allocation, energy optimization, and improved localization 

accuracy for ML-based WSN applications. In the given paper, 

machine learning (ML) models such as Support Vector 

Regression (SVR), Random Forest Regression (RFR), and 

CatBoost Re- gression (CAT) are employed to enhance event 

detection by analyzing sensor data patterns and predicting 

Average Local- ization Error (ALE). Additionally, 

optimization techniques like Giant Trevally Optimization 

(GTO) improve event de- tection efficiency by fine-tuning 

model parameters for bet- ter sensitivity and faster response 

times. Advanced event detection systems leverage anomaly 

detection algorithms, threshold-based triggering, and real-time 

signal processing to differentiate between normal variations 

and critical events. However, challenges such as false 

positives, communica- tion delays, and energy constraints 

must be addressed to im- prove detection accuracy. Future 

research should explore hybrid ML models and adaptive 

filtering techniques to en- hance event detection reliability in 

dynamic and resource- constrained WSN environments. 

 

10.3 Energy Management 

Energy management is a critical factor in Wireless 

Sen- sor Networks (WSNs) as sensor nodes operate on limited 

battery power, requiring efficient strategies to extend net- 

work lifespan while maintaining accurate localization and data 

transmission. In the given paper, machine learning (ML) 

models such as Support Vector Regression (SVR), Random 

Forest Regression (RFR), and CatBoost Regression (CAT) are 

employed to optimize Average Localization Error (ALE) 

while balancing energy consumption. High computational 

complexity and frequent packet transmissions can drain sen- 

sor nodes quickly, making energy-efficient routing, duty cy- 

cling, and data aggregation essential for prolonged network 

operation. Additionally, metaheuristic optimization tech- 

niques, such as Giant Trevally Optimization (GTO), are in- 

tegrated to fine-tune transmission range, node density, and 

anchor ratio, reducing unnecessary computations and en- 

hancing energy efficiency. Energy-aware MAC protocols and 

sleep scheduling techniques further help in minimizing power 

consumption by allowing nodes to remain in a low- power 

state when not actively transmitting data. Future re- search 

should focus on AI-driven energy optimization, self- adaptive 

power management, and renewable energy integra- tion to 

ensure sustainable and long-term WSN deployment. 

 

XI. COMPARISON TABLE 

 

outliers and refine localization accuracy. The results 

indi- cate that NS3-based ML localization techniques 

outperform traditional approaches, making them valuable for 

real-world WSN deployments. 

 

 

Proposed 

Methodologies 

for Lo- 

calization 

Underlying 

Algorithm(s) 

Using 

Machine 

Learning 

Centralized/ 

Dis- 

tributed 

Computational 

Complexity of 

Algorithms 

Anchor/ 

No 

Anchor 

Location-

Aware Activity 

Recogni- tion 

[9] 

Bayesian Centralized Moderate Anchor 

Bayesian Lode 

Localization 

[8] 

Bayesian Centralized Moderate Anchor 

Localization 

based on NNs 

[10] 

Neural 

Networks 

Centralized High Anchor 

Soft 

Localization 

[55] 

Neural 

Networks 

Distributed Moderate Anchor 

Localization 

Based on NNs 

[56] 

Neural 

Networks 

Distributed High Anchor 
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Area 

Localization 

[39] 

Support 

Vector 

Regression 

Distributed Moderate Anchor 

Localization 

using SVR 

[37] 

Support 

Vector 

Regression 

Distributed Moderate Anchor 

Localization 

using SVM 

[38] 

Support 

Vector 

Machine 

Distributed Moderate Anchor 

Target 

Classification 

and Informa- 

tion Fusion 

[58] 

Decision 

Tree-Based 

Local- ization 

Distributed Low Anchor 

Underwater 

Surveillance 

System [59] 

Decision 

Tree-Based 

Local- ization 

Centralized Moderate Anchor 

Sensor 

Placements 

[60] 

Gaussian 

Processes 

Distributed Low Anchor 

Spatial 

Gaussian 

Process 

Regres- sion 

[61] 

Gaussian 

Process 

Regres- sion 

Distributed Low Anchor 

Localization in 

2D Space [62] 

Gaussian 

Process 

Regres- sion 

Distributed Moderate Anchor 

Localization 

Using SOM 

[63] 

Self-

Organizing 

Map 

Distributed Low No 

Anchor 

Distributed 

Localization 

[64] 

- Distributed Moderate No 

Anchor 

Path 

Determination 

[65] 

Reinforcement 

Learning 

Centralized Low Anchor 

Table 1: Comparison Table 

 

XII. RELATED WORK 

 

Several studies have investigated the use of Machine 

Learning (ML) techniques for node localization in Wire- less 

Sensor Networks (WSNs) within the NS3 simulation 

environment. These studies demonstrate how integrating ML 

models with NS3 improves localization accuracy, opti- mizes 

energy consumption, and enhances communication ef- 

ficiency. Researchers have tested various ML algorithms, in- 

cluding Bayesian models, SVM, SVR, ANNs, Random For- 

est, and CatBoost, along with hybrid optimization techniques 

such as PSO, GTO, and CS. Additionally, anomaly detec- tion 

methods like Isolation Forest have been used to identify 

 

12.1  Bayesian Node Localization 

Morelande and his collaborators [8] developed a 

loca- tion diagram for sensor networks using a specific 

number of anchor nodes. Their approach enhances the 

progressive cor- rection technique [53], refining predictions so 

that probabili- ties align more closely with actual locations. 

This algorithm is particularly effective for large-scale 

networks comprising thousands of sensor nodes. A key 

advantage of Bayesian lo- calization is its ability to handle 

incomplete datasets by lever- aging existing knowledge and 

probabilistic inference, mak- ing it a robust solution for 

uncertain environments. 

 

12.2  Localization Based on Artificial Neural Networks 

(ANNs) 

 

Shareef et al. [10] conducted a comparative study of 

different neural network-based localization techniques in 

WSNs, examining three major architectures: Multilayer Per- 

ceptron (MLP), which offers low computational and storage 

costs; Recurrent Neural Networks (RNNs), suitable for se- 

quential data processing but requiring more computational 

power; and Radial Basis Function (RBF) Networks, which 

produced the least localization errors but required higher re- 

sources compared to MLP. Yun et al. [55] introduced two 

approaches for sensor node localization using RSSI from 

anchor nodes—one utilizing Fuzzy Logic and Genetic Al- 

gorithm for location estimation in uncertain environments, and 

the other leveraging a neural network to predict node locations 

using RSSI measurements as input. Addition- ally, [56] 

explored neural networks for RSSI-based local- ization, 

emphasizing their ability to provide continuous po- sition 

estimation, unlike Bayesian approaches, which offer 

probabilistic estimates. These neural network-based local- 

ization algorithms improve adaptability to complex environ- 

ments, though their accuracy depends on the availability of 

high-quality training data, and trade-offs exist between accu- 

racy, resource consumption, and computational complexity in 

WSN deployments. 

 

12.3 Outlier Detection for Localization Accuracy (iFor- est, 

Ensemble Models) 

 

NS3 simulations have demonstrated the effectiveness 

of Isolation Forest (iForest) and ensemble methods in 

detecting anomalies that impact localization performance in 

Wireless Sensor Networks (WSNs). iForest is particularly 

useful for identifying outliers in sensor data, such as faulty 

node read- ings or unexpected environmental interferences, 

which can degrade localization accuracy. By isolating 

anomalies early, iForest helps improve the reliability of node 

positioning. Ad- ditionally, ensemble methods further enhance 

detection per- formance by combining multiple models, 
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reducing false pos- itives, and increasing robustness against 

noisy data. These techniques contribute to more accurate and 

stable ML-based localization in dynamic WSN environments. 

 

XIII. CONCLUSION 

 

Wireless Sensor Networks (WSNs) play a crucial role 

in various real-world applications, including environmen- tal 

monitoring, healthcare, and smart infrastructure. How- ever, 

challenges such as node localization accuracy, energy 

constraints, communication delays, and computational com- 

plexity significantly impact network performance. This pa- per 

explored machine learning (ML)-based localization tech- 

niques, including Support Vector Regression (SVR), Ran- 

dom Forest Regression (RFR), and CatBoost Regression 

(CAT), to enhance Average Localization Error (ALE) pre- 

diction and improve localization precision. Additionally, the 

integration of Giant Trevally Optimization (GTO) demon- 

strated its effectiveness in optimizing ML parameters, reduc- 

ing computational overhead, and improving localization ac- 

curacy. 

 

Key aspects such as packet transmission efficiency, 

mo- bility models, energy management, routing optimization, 

and event detection were also analyzed to highlight their 

impact on WSN performance. The study emphasizes that 

hybrid approaches combining ML and optimization techniques 

sig- nificantly enhance WSN localization reliability while 

main- taining low energy consumption and high adaptability 

in dy- namic environments. 

 

Despite these advancements, challenges such as gen- 

eralization across diverse environments, outlier sensitivity, 

and real-time scalability remain open research areas. Fu- ture 

work should focus on adaptive ML models, lightweight 

optimization techniques, and energy-efficient routing proto- 

cols to further improve scalability, robustness, and real-world 

deployment feasibility of ML-based WSN localization solu- 

tions. 
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