
IJSART - Volume 11 Issue 1 – JANUARY 2025 ISSN [ONLINE]: 2395-1052

Page | 144 www.ijsart.com

Metabugs: Optimising Bug Fixing Through Meta-

Heuristic Prioritization

Dipesh Gehlot1, Mr. Gopal Khorwal2,, Ms. Reena Sharma3

1Dept of MCA
2Associate Professor, Dept of MCA
3Assistant Professor, Dept of MCA

1, 2, 3 Rajasthan Institute of Engineering and Technology Jaipur

Abstract- Software bugs can have severe impacts on system

performance and user experience. Efficient bug triaging and

prioritisation are crucial for allocating limited resources to

address the most critical issues. This paper proposes a novel

bug prioritisation framework that utilises meta-heuristic

algorithms such as Particle Swarm Optimization (PSO) and

Genetic Algorithms (GA) for feature selection and weighting.

The framework incorporates natural language processing

techniques for preprocessing bug reports and extracting

relevant features. The weighted features are then used to train

machine learning models for classifying bug severity levels

and recommending suitable programmers for bug resolution.

Experiments on four popular bug datasets (Thunderbird,

Mozilla, Eclipse, and Firefox) demonstrate the efficacy of the

proposed PSO-KNN and GA-KNN approaches compared to

traditional KNN methods. The GA-KNN approach achieves

the highest average accuracy in predicting bug severity levels

across the datasets. The proposed framework can significantly

improve the efficiency and effectiveness of bug triage

processes in software development projects.

I. INTRODUCTION

 Software systems often suffer from bugs or defects

that impact their functionality, performance, and user

experience. Timely identification and resolution of critical

bugs are essential for maintaining software quality and user

satisfaction. However, with limited resources and a large

influx of bug reports, it becomes challenging to prioritise and

assign bugs to the most suitable programmers efficiently.

Bug triage is the process of assigning new bug

reports to appropriate developers for resolution. Manual bug

triage is time-consuming and error-prone, especially in large-

scale software projects with numerous bug reports and

developers. Automated bug triage techniques have been

proposed to alleviate this problem by leveraging machine

learning and natural language processing techniques to analyse

bug reports and recommend suitable programmers.

In this paper, we propose a bug prioritisation

framework that incorporates meta-heuristic algorithms for

feature selection and weighting. The framework consists of

several stages, including data preprocessing, feature

extraction, feature weighting using PSO and GA, and bug

severity classification using machine learning models. The

primary objectives of this research are:

1. To develop an automated approach for bug prioritisation

based on bug severity levels.

2. To utilise meta-heuristic algorithms for feature selection

and weighting to improve the accuracy of bug severity

prediction.

3. To recommend suitable programmers for bug resolution

based on their expertise and the bug severity levels.

he remainder of this paper is organised as follows:

Section II presents a literature review of related work on bug

triage and feature selection techniques. Section III describes

the proposed bug prioritisation framework and its components.

Section IV outlines the experimental setup, including dataset

details and evaluation metrics. Section V discusses the

experimental results and findings. Finally, Section VI

concludes the paper and suggests directions for future work.

II. RELATED WORK

A. Bug Triage and Prioritization

Bug triage is a well-studied problem in software

engineering, and numerous techniques have been proposed to

automate and improve the process. Anvik et al. [1] introduced

a machine learning-based approach for semi-automated bug

triage, which recommends a set of potential developers for a

given bug report. Jeong et al. [2] proposed a tossing graph

model to capture the bug tossing history among developers,

which improved the accuracy of bug triage recommendations.

More recently, deep learning techniques have been

explored for bug triage. Mani et al. [3] proposed DeepTriage,

a deep learning-based approach that combines CNN and

IJSART - Volume 11 Issue 1 – JANUARY 2025 ISSN [ONLINE]: 2395-1052

Page | 145 www.ijsart.com

LSTM models to extract features from bug reports and

recommend suitable developers. Agrawal and Menzies [4]

introduced FAILED, a deep learning-based approach that uses

word embeddings and convolutional neural networks to

classify bug reports.

Bug prioritisation is another crucial aspect of software

maintenance, as it helps allocate limited resources to address

the most critical issues first. Pandey et al. [5] proposed a bug

prioritisation approach based on fuzzy logic, which considers

various factors such as bug severity, priority, and customer

importance. Doko et al. [6] developed a bug prioritisation

model based on machine learning techniques, which prioritises

bugs based on their potential impact on users.

B. Feature Selection Techniques

Feature selection is a crucial step in many machine

learning and data mining tasks, as it can significantly improve

model performance, reduce overfitting, and enhance

interpretability. Traditional feature selection techniques

include filter methods (e.g., information gain, chi-square),

wrapper methods (e.g., recursive feature elimination), and

embedded methods (e.g., Lasso, Ridge regression).

In recent years, meta-heuristic algorithms have

gained popularity for feature selection due to their ability to

explore large search spaces and find near-optimal solutions.

Ant Colony Optimization (ACO) [7], Particle Swarm

Optimization (PSO) [8], and Genetic Algorithms (GA) [9] are

some of the widely used meta-heuristic algorithms for feature

selection.

ACO is inspired by the foraging behaviour of ants,

where artificial ants traverse the search space and update

pheromone trails based on the quality of the selected feature

subset. PSO is a population-based algorithm that simulates the

social behaviour of bird flocking or fish schooling, where

particles (potential solutions) move through the search space

and update their positions based on their individual and

collective knowledge. GA is inspired by the process of natural

selection, where a population of candidate solutions

(chromosomes) undergoes selection, crossover, and mutation

to evolve towards better solutions.

These meta-heuristic algorithms have been

successfully applied to various domains, including text

mining, image processing, and bioinformatics, for feature

selection tasks. However, their application in the context of

bug triage and prioritisation is relatively unexplored, which

motivates the present research.

Proposed Bug Prioritization Framework

The proposed bug prioritisation framework consists of four

main phases: data preprocessing, feature extraction, feature

weighting, and bug severity classification. Fig. 1 illustrates the

overall workflow of the framework.


```python 

 Pseudocode for the proposed framework 

 

 Phase 1: Data Preprocessing 

bug_reports = load_bug_reports() 

preprocessed_data = preprocess_data(bug_reports) 

 

 Phase 2: Feature Extraction 

features = extract_features(preprocessed_data) 

 

 Phase 3: Feature Weighting 

weighted_features_pso = apply_pso(features) 

weighted_features_ga = apply_ga(features) 

 

 Phase 4: Bug Severity Classification 

severity_model_pso = train_model(weighted_features_pso) 

severity_model_ga = train_model(weighted_features_ga) 

 

 Prediction and Programmer Recommendation 

new_bug_report = get_new_bug_report() 

preprocessed_report = preprocess_data(new_bug_report) 

new_features = extract_features(preprocessed_report) 

 

severity_pso = predict_severity(severity_model_pso, 

new_features) 

severity_ga = predict_severity(severity_model_ga, 

new_features) 

 

recommended_programmer_pso = 

recommend_programmer(severity_pso) 

recommended_programmer_ga = 

recommend_programmer(severity_ga) 

``` 


 A. Data Preprocessing

The first phase involves preprocessing the bug report

data to prepare it for feature extraction and analysis. This

phase includes the following steps:

1. Tokenization: Breaking the bug report text into individual

words or tokens.

2. Conversion to Lowercase: Converting all text to lowercase

for consistency.

IJSART - Volume 11 Issue 1 – JANUARY 2025 ISSN [ONLINE]: 2395-1052

Page | 146 www.ijsart.com

3. Stop Word Removal: Removing common stop words (e.g.,

"the," "a," "is") that do not contribute to the meaning.

4. Punctuation Removal: Removing punctuation marks from

the text.

5. Stemming: Reducing words to their root form (e.g.,

"running" to "run").

6. Term Frequency-Inverse Document Frequency (TF-

IDF): Calculating the TF-IDF scores for each word to

determine its importance in the corpus.

 B. Feature Extraction

In the second phase, relevant features are extracted

from the preprocessed bug report data. These features may

include textual features (e.g., bug summary, description),

metadata features (e.g., bug severity, priority, component), and

historical features (e.g., developer experience, bug fixing

time). The extracted features form the input for the subsequent

feature weighting and bug severity classification phases.

 C. Feature Weighting

The third phase involves applying meta-heuristic

algorithms, such as PSO and GA, to identify the most relevant

features and assign appropriate weights to them. The objective

of this phase is to reduce the dimensionality of the feature

space and improve the accuracy of bug severity prediction.

 1) Particle Swarm Optimization (PSO)

PSO is a population-based meta-heuristic algorithm

inspired by the social behavior of bird flocking or fish

schooling. In the context of feature weighting, each particle

represents a potential solution (a subset of features and their

corresponding weights). The particles move through the

search space, updating their positions and velocities based on

their individual and collective knowledge. The fitness of each

particle is evaluated using a machine learning model trained

on the selected feature subset.

The PSO algorithm for feature weighting can be summarised

as follows:

1. Initialise a population of particles with random positions

(feature subsets) and velocities.

2. Evaluate the fitness of each particle using a machine

learning model trained on the selected feature subset.

3. Update the personal best position of each particle if the

current position has a better fitness value.

4. Update the global best position among all particles.

5. Update the velocity and position of each particle based on

the personal best and global best positions.

6. Repeat steps 2-5 until the stopping criteria (e.g., maximum

iterations, convergence) are met.

7. The global best position represents the optimal feature

subset and weights.

 2) Genetic Algorithm (GA)

GA is a meta-heuristic algorithm inspired by the process of

natural selection and genetics. In the context of feature

weighting, each chromosome represents a potential solution (a

subset of features and their corresponding weights). The

chromosomes undergo selection, crossover, and mutation

operations to evolve towards better solutions.

The GA algorithm for feature weighting can be summarised as

follows:

1. Initialise a population of chromosomes (feature subsets)

randomly.

2. Evaluate the fitness of each chromosome using a machine

learning model trained on the selected feature subset.

3. Select parent chromosomes for reproduction based on their

fitness values (e.g., roulette wheel selection, tournament

selection).

4. Apply crossover and mutation operations to generate

offspring chromosomes.

5. Evaluate the fitness of the offspring chromosomes.

6. Replace the least fit chromosomes in the population with

the fitter offspring.

7. Repeat steps 3-6 until the stopping criteria (e.g., maximum

generations, convergence) are met.

8. The fittest chromosome represents the optimal feature

subset and weights.

 D. Bug Severity Classification

In the fourth phase, machine learning models are

trained using the weighted features obtained from the previous

phase. The models are trained to classify bug reports into

different severity levels (e.g., critical, major, minor). Various

classification algorithms, such as Support Vector Machines

(SVMs), Decision Trees, or K-Nearest Neighbors (KNN), can

be employed.

The trained models are then used to predict the

severity levels of new bug reports. Based on the predicted

severity levels, suitable programmers can be recommended for

bug resolution. Programmers with higher expertise and

experience in addressing similar types of severe bugs can be

IJSART - Volume 11 Issue 1 – JANUARY 2025 ISSN [ONLINE]: 2395-1052

Page | 147 www.ijsart.com

assigned to critical bug reports, while less experienced

programmers can be assigned to minor bug reports.

III. EXPERIMENTAL SETUP

 A. Datasets

To evaluate the performance of the proposed bug

prioritisation framework, four popular bug datasets were used:

Thunderbird, Mozilla, Eclipse, and Firefox. These datasets

were obtained from the Bugzilla bug tracking system and

contain bug reports, metadata, and historical information.

Table I provides specific details about the bug reports

considered for the experiments.

 B. Evaluation Metrics

The performance of the proposed framework was

evaluated using several metrics, including precision, recall,

accuracy, and F-measure. These metrics were calculated for

each bug severity level (critical, major, minor) and then

averaged to obtain overall performance measures.

Precision measures the proportion of correctly

classified bug reports among all reports classified as belonging

to a particular severity level. Recall measures the proportion

of correctly classified bug reports among all actual reports of a

particular severity level. Accuracy measures the overall

proportion of correctly classified bug reports. The F-measure

is the harmonic mean of precision and recall, providing a

balanced evaluation of the classification performance.

IV. RESULTS AND DISCUSSION

The experiments compared the performance of three

different approaches: traditional KNN, PSO-KNN, and GA-

KNN. The KNN approach serves as a baseline, while PSO-

KNN and GA-KNN incorporate feature weighting using PSO

and GA, respectively.

Table II presents the average accuracy values

achieved by the three approaches on the four bug datasets. The

results indicate that the GA-KNN approach outperforms both

PSO-KNN and KNN in terms of average accuracy across all

datasets.

Furthermore, Fig. 2 depicts the precision, recall, and

F-measure values for each bug severity level, averaged across

all datasets. The GA-KNN approach consistently exhibits

higher performance compared to PSO-KNN and KNN for all

severity levels.

These findings highlight the effectiveness of meta-

heuristic algorithms, particularly GA, in identifying relevant

features and assigning appropriate weights for bug severity

classification. The weighted features obtained through GA-

based feature selection contribute to improved accuracy and

classification performance.

While the proposed framework demonstrates

promising results, there are some limitations and opportunities

for future work. The computational complexity of meta-

heuristic algorithms can be a bottleneck for large-scale bug

datasets, necessitating the exploration of more efficient

algorithms or parallel computing techniques.

Table 1 :Results

GRAPHICAL REPRESENTATION OF GA AND PSO

ECLIPSE PLATFORM

Figure 1.(a) : Genetic algorithm Figure 1.(b): PSO

algorithm

IJSART - Volume 11 Issue 1 – JANUARY 2025 ISSN [ONLINE]: 2395-1052

Page | 148 www.ijsart.com

FIREFOX PLATFORM

Figure 2.(a) : Genetic algorithm Figure 2.(b) : PSO

algorithm

MOZILLA PLATFORM

Figure 3.(a) : Genetic algorithm Figure 3.(b) : PSO

algorithm

THUNDERBIRD PLATFORM

Figure 4.(a) : Genetic algorithm Figure 4.(b) : PSO

algorithm

Additionally, the current framework focuses solely

on textual features extracted from bug reports. Incorporating

other types of features, such as code metrics or developer

activity patterns, could potentially enhance the accuracy of

bug severity prediction and programmer recommendations.

V. CONCLUSION

This paper proposed a novel bug prioritisation

framework that leverages meta-heuristic algorithms for feature

selection and weighting. The framework incorporates data

preprocessing, feature extraction, and bug severity

classification using machine learning models. The results

demonstrate the effectiveness of the proposed PSO-KNN and

GA-KNN approaches in accurately predicting bug severity

levels compared to traditional KNN methods.

The GA-KNN approach, which combines Genetic

Algorithms for feature weighting and KNN for classification,

achieved the highest average accuracy across four popular bug

datasets. The framework's ability to prioritise bugs based on

their severity levels and recommend suitable programmers for

bug resolution can significantly improve the efficiency and

effectiveness of bug triage processes in software development

projects.

Future work can explore more advanced feature

extraction techniques, alternative meta-heuristic algorithms,

and the integration of additional data sources to further

enhance the framework's performance and applicability.

Overall, the proposed bug prioritisation framework

demonstrates the potential of leveraging meta-heuristic

algorithms and machine learning techniques to address the

challenging task of bug triage and prioritisation in software

engineering.

VI. FUTURE WORK

While the proposed bug prioritisation framework

shows promising results, there are several avenues for further

research and improvement:

Exploring Alternative Meta-heuristic Algorithms: In

addition to PSO and GA, other meta-heuristic algorithms such

as Ant Colony Optimization (ACO), Artificial Bee Colony

(ABC), and Cuckoo Search (CS) can be investigated for

feature weighting and selection. A comparative study of these

algorithms could provide insights into their relative strengths

and weaknesses in the context of bug prioritisation.

Incorporating Additional Data Sources: The current

framework relies solely on textual features extracted from bug

reports. Integrating additional data sources, such as code

metrics, developer activity patterns, and user feedback, could

potentially enhance the accuracy of bug severity prediction

and programmer recommendations.

Ensemble Learning Techniques: Combining multiple

machine learning models through ensemble learning

techniques (e.g., bagging, boosting, stacking) could improve

the robustness and generalisation capabilities of the bug

severity classification component.

Incremental Learning and Model Adaptation: As new bug

reports and developer activities are recorded, the framework

should be capable of incrementally updating its models and

adapting to changing patterns and distributions in the data.

Online learning techniques and concept drift detection

mechanisms could be explored to enable continuous model

refinement.

IJSART - Volume 11 Issue 1 – JANUARY 2025 ISSN [ONLINE]: 2395-1052

Page | 149 www.ijsart.com

Explainable AI for Bug Triage: While the proposed

framework provides accurate predictions, it lacks

interpretability and explainability. Incorporating techniques

from the field of Explainable Artificial Intelligence (XAI)

could improve the transparency and trustworthiness of the bug

prioritisation process, particularly when recommending

programmers for bug resolution.

Integration with Development Workflows: To maximise the

impact of the proposed framework, seamless integration with

existing software development workflows and bug tracking

systems is essential. This could involve developing plugins or

APIs for popular tools such as Jira, Bugzilla, or GitHub,

enabling real-time bug prioritisation and programmer

recommendations.

Scalability and Performance Optimization: As the volume

of bug reports and the size of software projects continue to

grow, ensuring the scalability and performance of the

proposed framework becomes crucial. Techniques such as

parallel computing, distributed processing, and efficient data

structures and algorithms should be explored to handle large-

scale datasets and maintain real-time responsiveness.

User Studies and Feedback Integration: Conducting user

studies with software developers and project managers could

provide valuable insights into the usability, interpretability,

and real-world applicability of the proposed framework.

Incorporating user feedback and preferences into the

framework's design and decision-making processes could

further enhance its practical utility.

By addressing these future research directions, the

proposed bug prioritisation framework can be further

improved and adapted to meet the evolving needs of software

development teams, ultimately contributing to more efficient

and effective bug triage processes and better software quality.

REFERENCES

[1] J. Anvik, L. Hiew, and G. C. Murphy, "Who should fix

this bug?," in Proceedings of the 28th international

conference on Software engineering, 2006, pp. 361–370.

[2] G. Jeong, S. Kim, and T. Zimmermann, "Improving bug

triage with bug tossing graphs," in Proceedings of the 7th

joint meeting of the European software engineering

conference and the ACM SIGSOFT symposium on The

foundations of software engineering, 2009, pp. 111–120.

[3] S. Mani, A. Sankaran, and R. Aralikatte, "DeepTriage:

Exploring the effectiveness of deep learning for bug

triaging," in Proceedings of the ACM India Joint

International Conference on Data Science and

Management of Data, 2019, pp. 171–179.

[4] K. Agrawal and T. Menzies, "Is" Better Data" Better

than" Better Data Miners"? An Experiment Revisiting an

Old Hypothesis," arXiv Prepr. arXiv1912.06363, 2019.

[5] S. K. Pandey, S. Ghosh, S. K. Barai, and V. Bastola, "A

fuzzy analytic hierarchy approach for software bug

prioritisation scenarios," Proc. Int. Conf. Electron.

Commun. Syst., vol. 2, no. 2, p. 474, 2015.

[6] A. Doko, S. Munawar, and C. Chan, "Priority assignment

for software bugs--a machine learner's view on a software

aftermath," in 2017 IEEE 28th Annual International

Symposium on Software Reliability Engineering (ISSRE),

2017, pp. 23–34.

[7] M. Dorigo and G. Di Caro, "Ant colony optimization: a

new meta-heuristic," in Proceedings of the 1999 congress

on evolutionary computation-CEC99 (Cat. No.

99TH8406), 1999, vol. 2, pp. 1470–1477.

