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Abstract- Software bugs can have severe impacts on system 

performance and user experience. Efficient bug triaging and 

prioritisation are crucial for allocating limited resources to 

address the most critical issues. This paper proposes a novel 

bug prioritisation framework that utilises meta-heuristic 

algorithms such as Particle Swarm Optimization (PSO) and 

Genetic Algorithms (GA) for feature selection and weighting. 

The framework incorporates natural language processing 

techniques for preprocessing bug reports and extracting 

relevant features. The weighted features are then used to train 

machine learning models for classifying bug severity levels 

and recommending suitable programmers for bug resolution. 

Experiments on four popular bug datasets (Thunderbird, 

Mozilla, Eclipse, and Firefox) demonstrate the efficacy of the 

proposed PSO-KNN and GA-KNN approaches compared to 

traditional KNN methods. The GA-KNN approach achieves 

the highest average accuracy in predicting bug severity levels 

across the datasets. The proposed framework can significantly 

improve the efficiency and effectiveness of bug triage 

processes in software development projects. 

 

I. INTRODUCTION 

 

 Software systems often suffer from bugs or defects 

that impact their functionality, performance, and user 

experience. Timely identification and resolution of critical 

bugs are essential for maintaining software quality and user 

satisfaction. However, with limited resources and a large 

influx of  bug reports, it becomes challenging to prioritise and 

assign bugs to the most suitable programmers efficiently. 

 

Bug triage is the process of assigning new bug 

reports to appropriate developers for resolution. Manual bug 

triage is time-consuming and error-prone, especially in large-

scale software projects with numerous bug reports and 

developers. Automated bug triage techniques have been 

proposed to alleviate this problem by leveraging machine 

learning and natural language processing techniques to analyse 

bug reports and recommend suitable programmers. 

 

In this paper, we propose a bug prioritisation 

framework that incorporates meta-heuristic algorithms for 

feature selection and weighting. The framework consists of 

several stages, including data preprocessing, feature 

extraction, feature weighting using PSO and GA, and bug 

severity classification using machine learning models. The 

primary objectives of this research are: 

 

1. To develop an automated approach for bug prioritisation 

based on bug severity levels. 

2. To utilise meta-heuristic algorithms for feature selection 

and weighting to improve the accuracy of bug severity 

prediction. 

3. To recommend suitable programmers for bug resolution 

based on their expertise and the bug severity levels. 

 

he remainder of this paper is organised as follows: 

Section II presents a literature review of related work on bug 

triage and feature selection techniques. Section III describes 

the proposed bug prioritisation framework and its components. 

Section IV outlines the experimental setup, including dataset 

details and evaluation metrics. Section V discusses the 

experimental results and findings. Finally, Section VI 

concludes the paper and suggests directions for future work. 

 

II. RELATED WORK 

 

A. Bug Triage and Prioritization 

 

Bug triage is a well-studied problem in software 

engineering, and numerous techniques have been proposed to 

automate and improve the process. Anvik et al. [1] introduced 

a machine learning-based approach for semi-automated bug 

triage, which recommends a set of potential developers for a 

given bug report. Jeong et al. [2] proposed a tossing graph 

model to capture the bug tossing history among developers, 

which improved the accuracy of bug triage recommendations. 

 

More recently, deep learning techniques have been 

explored for bug triage. Mani et al. [3] proposed DeepTriage, 

a deep learning-based approach that combines CNN and 
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LSTM models to extract features from bug reports and 

recommend suitable developers. Agrawal and Menzies [4] 

introduced FAILED, a deep learning-based approach that uses 

word embeddings and convolutional neural networks to 

classify bug reports. 

 

Bug prioritisation is another crucial aspect of software 

maintenance, as it helps allocate limited resources to address 

the most critical issues first. Pandey et al. [5] proposed a bug 

prioritisation approach based on fuzzy logic, which considers 

various factors such as bug severity, priority, and customer 

importance. Doko et al. [6] developed a bug prioritisation 

model based on machine learning techniques, which prioritises 

bugs based on their potential impact on users. 

 

B. Feature Selection Techniques 

 

Feature selection is a crucial step in many machine 

learning and data mining tasks, as it can significantly improve 

model performance, reduce overfitting, and enhance 

interpretability. Traditional feature selection techniques 

include filter methods (e.g., information gain, chi-square), 

wrapper methods (e.g., recursive feature elimination), and 

embedded methods (e.g., Lasso, Ridge regression). 

 

In recent years, meta-heuristic algorithms have 

gained popularity for feature selection due to their ability to 

explore large search spaces and find near-optimal solutions. 

Ant Colony Optimization (ACO) [7], Particle Swarm 

Optimization (PSO) [8], and Genetic Algorithms (GA) [9] are 

some of the widely used meta-heuristic algorithms for feature 

selection. 

 

ACO is inspired by the foraging behaviour of ants, 

where artificial ants traverse the search space and update 

pheromone trails based on the quality of the selected feature 

subset. PSO is a population-based algorithm that simulates the 

social behaviour of bird flocking or fish schooling, where 

particles (potential solutions) move through the search space 

and update their positions based on their individual and 

collective knowledge. GA is inspired by the process of natural 

selection, where a population of candidate solutions 

(chromosomes) undergoes selection, crossover, and mutation 

to evolve towards better solutions. 

 

These meta-heuristic algorithms have been 

successfully applied to various domains, including text 

mining, image processing, and bioinformatics, for feature 

selection tasks. However, their application in the context of 

bug triage and prioritisation is relatively unexplored, which 

motivates the present research. 

 

Proposed Bug Prioritization Framework 

 

The proposed bug prioritisation framework consists of four 

main phases: data preprocessing, feature extraction, feature 

weighting, and bug severity classification. Fig. 1 illustrates the 

overall workflow of the framework. 

 

```python 

 Pseudocode for the proposed framework 

 

 Phase 1: Data Preprocessing 

bug_reports = load_bug_reports() 

preprocessed_data = preprocess_data(bug_reports) 

 

 Phase 2: Feature Extraction 

features = extract_features(preprocessed_data) 

 

 Phase 3: Feature Weighting 

weighted_features_pso = apply_pso(features) 

weighted_features_ga = apply_ga(features) 

 

 Phase 4: Bug Severity Classification 

severity_model_pso = train_model(weighted_features_pso) 

severity_model_ga = train_model(weighted_features_ga) 

 

 Prediction and Programmer Recommendation 

new_bug_report = get_new_bug_report() 

preprocessed_report = preprocess_data(new_bug_report) 

new_features = extract_features(preprocessed_report) 

 

severity_pso = predict_severity(severity_model_pso, 

new_features) 

severity_ga = predict_severity(severity_model_ga, 

new_features) 

 

recommended_programmer_pso = 

recommend_programmer(severity_pso) 

recommended_programmer_ga = 

recommend_programmer(severity_ga) 

``` 

 

 A. Data Preprocessing 

 

The first phase involves preprocessing the bug report 

data to prepare it for feature extraction and analysis. This 

phase includes the following steps: 

 

1. Tokenization: Breaking the bug report text into individual 

words or tokens. 

2. Conversion to Lowercase: Converting all text to lowercase 

for consistency. 
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3. Stop Word Removal: Removing common stop words (e.g., 

"the," "a," "is") that do not contribute to the meaning. 

4. Punctuation Removal: Removing punctuation marks from 

the text. 

5. Stemming: Reducing words to their root form (e.g., 

"running" to "run"). 

6. Term Frequency-Inverse Document Frequency (TF-

IDF): Calculating the TF-IDF scores for each word to 

determine its importance in the corpus. 

 

 B. Feature Extraction 

 

In the second phase, relevant features are extracted 

from the preprocessed bug report data. These features may 

include textual features (e.g., bug summary, description), 

metadata features (e.g., bug severity, priority, component), and 

historical features (e.g., developer experience, bug fixing 

time). The extracted features form the input for the subsequent 

feature weighting and bug severity classification phases. 

 

 C. Feature Weighting 

 

The third phase involves applying meta-heuristic 

algorithms, such as PSO and GA, to identify the most relevant 

features and assign appropriate weights to them. The objective 

of this phase is to reduce the dimensionality of the feature 

space and improve the accuracy of bug severity prediction. 

 

 

 1) Particle Swarm Optimization (PSO) 

 

PSO is a population-based meta-heuristic algorithm 

inspired by the social behavior of bird flocking or fish 

schooling. In the context of feature weighting, each particle 

represents a potential solution (a subset of features and their 

corresponding weights). The particles move through the 

search space, updating their positions and velocities based on 

their individual and collective knowledge. The fitness of each 

particle is evaluated using a machine learning model trained 

on the selected feature subset. 

 

The PSO algorithm for feature weighting can be summarised 

as follows: 

 

1. Initialise a population of particles with random positions 

(feature subsets) and velocities. 

2. Evaluate the fitness of each particle using a machine 

learning model trained on the selected feature subset. 

3. Update the personal best position of each particle if the 

current position has a better fitness value. 

4. Update the global best position among all particles. 

5. Update the velocity and position of each particle based on 

the personal best and global best positions. 

6. Repeat steps 2-5 until the stopping criteria (e.g., maximum 

iterations, convergence) are met. 

7. The global best position represents the optimal feature 

subset and weights. 

 

 2) Genetic Algorithm (GA) 

 

GA is a meta-heuristic algorithm inspired by the process of 

natural selection and genetics. In the context of feature 

weighting, each chromosome represents a potential solution (a 

subset of features and their corresponding weights). The 

chromosomes undergo selection, crossover, and mutation 

operations to evolve towards better solutions. 

 

The GA algorithm for feature weighting can be summarised as 

follows: 

 

1. Initialise a population of chromosomes (feature subsets) 

randomly. 

2. Evaluate the fitness of each chromosome using a machine 

learning model trained on the selected feature subset. 

3. Select parent chromosomes for reproduction based on their 

fitness values (e.g., roulette wheel selection, tournament 

selection). 

4. Apply crossover and mutation operations to generate 

offspring chromosomes. 

5. Evaluate the fitness of the offspring chromosomes. 

6. Replace the least fit chromosomes in the population with 

the fitter offspring. 

7. Repeat steps 3-6 until the stopping criteria (e.g., maximum 

generations, convergence) are met. 

8. The fittest chromosome represents the optimal feature 

subset and weights. 

 

 D. Bug Severity Classification 

 

In the fourth phase, machine learning models are 

trained using the weighted features obtained from the previous 

phase. The models are trained to classify bug reports into 

different severity levels (e.g., critical, major, minor). Various 

classification algorithms, such as Support Vector Machines 

(SVMs), Decision Trees, or K-Nearest Neighbors (KNN), can 

be employed. 

 

The trained models are then used to predict the 

severity levels of new bug reports. Based on the predicted 

severity levels, suitable programmers can be recommended for 

bug resolution. Programmers with higher expertise and 

experience in addressing similar types of severe bugs can be 
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assigned to critical bug reports, while less experienced 

programmers can be assigned to minor bug reports. 

 

III. EXPERIMENTAL SETUP 

 

 A. Datasets 

 

To evaluate the performance of the proposed bug 

prioritisation framework, four popular bug datasets were used: 

Thunderbird, Mozilla, Eclipse, and Firefox. These datasets 

were obtained from the Bugzilla bug tracking system and 

contain bug reports, metadata, and historical information. 

 

Table I provides specific details about the bug reports 

considered for the experiments. 

 

 B. Evaluation Metrics 

 

The performance of the proposed framework was 

evaluated using several metrics, including precision, recall, 

accuracy, and F-measure. These metrics were calculated for 

each bug severity level (critical, major, minor) and then 

averaged to obtain overall performance measures. 

 

Precision measures the proportion of correctly 

classified bug reports among all reports classified as belonging 

to a particular severity level. Recall measures the proportion 

of correctly classified bug reports among all actual reports of a 

particular severity level. Accuracy measures the overall 

proportion of correctly classified bug reports. The F-measure 

is the harmonic mean of precision and recall, providing a 

balanced evaluation of the classification performance. 

 

IV. RESULTS AND DISCUSSION 

 

 

 

 

 
 

The experiments compared the performance of three 

different approaches: traditional KNN, PSO-KNN, and GA-

KNN. The KNN approach serves as a baseline, while PSO-

KNN and GA-KNN incorporate feature weighting using PSO 

and GA, respectively. 

 

Table II presents the average accuracy values 

achieved by the three approaches on the four bug datasets. The 

results indicate that the GA-KNN approach outperforms both 

PSO-KNN and KNN in terms of average accuracy across all 

datasets. 

 

Furthermore, Fig. 2 depicts the precision, recall, and 

F-measure values for each bug severity level, averaged across 

all datasets. The GA-KNN approach consistently exhibits 

higher performance compared to PSO-KNN and KNN for all 

severity levels. 

 

These findings highlight the effectiveness of meta-

heuristic algorithms, particularly GA, in identifying relevant 

features and assigning appropriate weights for bug severity 

classification. The weighted features obtained through GA-

based feature selection contribute to improved accuracy and 

classification performance. 

 

While the proposed framework demonstrates 

promising results, there are some limitations and opportunities 

for future work. The computational complexity of meta-

heuristic algorithms can be a bottleneck for large-scale bug 

datasets, necessitating the exploration of more efficient 

algorithms or parallel computing techniques. 

 
Table 1 :Results 

 

GRAPHICAL REPRESENTATION OF GA AND PSO 

ECLIPSE PLATFORM 

 

 

Figure  1.(a) : Genetic algorithm  Figure 1.(b): PSO 

algorithm 
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FIREFOX PLATFORM  

 

 
Figure 2.(a) : Genetic algorithm    Figure 2.(b) : PSO 

algorithm 

 

MOZILLA PLATFORM  

 

 

Figure 3.(a) : Genetic algorithm  Figure 3.(b) : PSO 

algorithm 

THUNDERBIRD PLATFORM 

 
Figure 4.(a) : Genetic algorithm    Figure 4.(b) : PSO 

algorithm 

 

Additionally, the current framework focuses solely 

on textual features extracted from bug reports. Incorporating 

other types of features, such as code metrics or developer 

activity patterns, could potentially enhance the accuracy of 

bug severity prediction and programmer recommendations. 

 

V. CONCLUSION 

 

This paper proposed a novel bug prioritisation 

framework that leverages meta-heuristic algorithms for feature 

selection and weighting. The framework incorporates data 

preprocessing, feature extraction, and bug severity 

classification using machine learning models. The results 

demonstrate the effectiveness of the proposed PSO-KNN and 

GA-KNN approaches in accurately predicting bug severity 

levels compared to traditional KNN methods. 

 

The GA-KNN approach, which combines Genetic 

Algorithms for feature weighting and KNN for classification, 

achieved the highest average accuracy across four popular bug 

datasets. The framework's ability to prioritise bugs based on 

their severity levels and recommend suitable programmers for 

bug resolution can significantly improve the efficiency and 

effectiveness of bug triage processes in software development 

projects. 

 

Future work can explore more advanced feature 

extraction techniques, alternative meta-heuristic algorithms, 

and the integration of additional data sources to further 

enhance the framework's performance and applicability. 

 

Overall, the proposed bug prioritisation framework 

demonstrates the potential of leveraging meta-heuristic 

algorithms and machine learning techniques to address the 

challenging task of bug triage and prioritisation in software 

engineering. 

 

VI. FUTURE WORK 

 

While the proposed bug prioritisation framework 

shows promising results, there are several avenues for further 

research and improvement: 

 

Exploring Alternative Meta-heuristic Algorithms: In 

addition to PSO and GA, other meta-heuristic algorithms such 

as Ant Colony Optimization (ACO), Artificial Bee Colony 

(ABC), and Cuckoo Search (CS) can be investigated for 

feature weighting and selection. A comparative study of these 

algorithms could provide insights into their relative strengths 

and weaknesses in the context of bug prioritisation. 

 

Incorporating Additional Data Sources: The current 

framework relies solely on textual features extracted from bug 

reports. Integrating additional data sources, such as code 

metrics, developer activity patterns, and user feedback, could 

potentially enhance the accuracy of bug severity prediction 

and programmer recommendations. 

 

Ensemble Learning Techniques: Combining multiple 

machine learning models through ensemble learning 

techniques (e.g., bagging, boosting, stacking) could improve 

the robustness and generalisation capabilities of the bug 

severity classification component. 

 

Incremental Learning and Model Adaptation: As new bug 

reports and developer activities are recorded, the framework 

should be capable of incrementally updating its models and 

adapting to changing patterns and distributions in the data. 

Online learning techniques and concept drift detection 

mechanisms could be explored to enable continuous model 

refinement. 
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Explainable AI for Bug Triage: While the proposed 

framework provides accurate predictions, it lacks 

interpretability and explainability. Incorporating techniques 

from the field of Explainable Artificial Intelligence (XAI) 

could improve the transparency and trustworthiness of the bug 

prioritisation process, particularly when recommending 

programmers for bug resolution. 

 

Integration with Development Workflows: To maximise the 

impact of the proposed framework, seamless integration with 

existing software development workflows and bug tracking 

systems is essential. This could involve developing plugins or 

APIs for popular tools such as Jira, Bugzilla, or GitHub, 

enabling real-time bug prioritisation and programmer 

recommendations. 

 

Scalability and Performance Optimization: As the volume 

of bug reports and the size of software projects continue to 

grow, ensuring the scalability and performance of the 

proposed framework becomes crucial. Techniques such as 

parallel computing, distributed processing, and efficient data 

structures and algorithms should be explored to handle large-

scale datasets and maintain real-time responsiveness. 

 

User Studies and Feedback Integration: Conducting user 

studies with software developers and project managers could 

provide valuable insights into the usability, interpretability, 

and real-world applicability of the proposed framework. 

Incorporating user feedback and preferences into the 

framework's design and decision-making processes could 

further enhance its practical utility. 

 

By addressing these future research directions, the 

proposed bug prioritisation framework can be further 

improved and adapted to meet the evolving needs of software 

development teams, ultimately contributing to more efficient 

and effective bug triage processes and better software quality. 
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