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Abstract- The successful development of amyloid- based 

biomarkers and tests for Alzheimer’s disease (AD) represents 

an important milestone in AD diagnosis. How- ever, two 

major limitations remain. Amyloid-based diagnos- tic 

biomarkers and tests provide limited information about the 

disease process and they are unable to identify individ- uals 

with the disease before significant amyloid-beta accu- 

mulation in the brain develops. The objective in this study is to 

develop a method to identify potential blood-based non-

amyloid biomarkers for early AD detection. The use of blood 

is attractive because it is accessible and relatively 

inexpensive. Our method is mainly based on machine learn- 

ing (ML) techniques (support vector machines in particular) 

because of their ability to create multivariable models by 

learning patterns from complex data. Using novel feature 

selection and evaluation modalities, we identified 5 novel 

panels of non-amyloid proteins with the potential to serve as 

biomarkers of early AD. In particular, we found that the 

combination of A2M, ApoE, BNP, Eot3, RAGE and SGOT may 

be a key biomarker profile of early disease. Disease detection 

models based on the identified panels achieved sensitivity (SN) 

> 80%, specificity (SP) > 70%, and area under receiver 

operating curve (AUC) of at least 0.80 at prodromal stage 

(with higher performance at later stages) of the disease. 

Existing ML models performed poorly in comparison at this 

stage of the disease, suggesting that the underlying protein 

panels may not be suitable for early disease detection. Our 

results demonstrate the feasibility of early detection of AD 

using non-amyloid based biomarkers. 
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I. INTRODUCTION 

 

 ALZHEIMER’s disease (AD) is the leading cause of 

demen- tia and poses a significant social and economic 

challenge. It is responsible for more than half of all cases of 

dementia [1]. Over 50 million individuals currently suffer 

from dementia worldwide with a projected increase to 152 

million by 2050 [2]. No cure for AD has been discovered, but 

there is intense effort to develop new clinical interventions 

that may slow or halt the disease. Such interventions are aimed 

at early (including preclinical and prodromal [3]) stages of the 

disease prior to extensive cell damage, when it is thought 

treatment is more likely to be effective. 

 

To facilitate early diagnosis [4]–[6], the use of 

established biomarkers such as those based on amyloid-beta in 

cerebral spinal fluid (CSF) and molecular imaging of brain 

amyloid deposition using positron emission tomography 

(PET) is recommended [4]–[6].  

 

However, despite progress with the development of 

amyloid- based biomarkers and tests for early AD diagnosis, 

they have two major constraints [7]–[9]. Amyloid-based 

biomarkers provide limited information about the disease 

pathological aetiology and pathways [10]–[12]. In addition, 

tests based on these biomarkers are unable to identify 

individuals at risk of AD prior to a significant amyloid-beta 

deposition in the brain. There is a need for biomarkers that 

have the potential to detect biological processes that precede 

brain amyloid-beta accumu- lation (amyloid pathology) during 

the disease development. Such biomarkers may advance 

understanding of the disease, aid identification of individuals 

at the early disease stages and the development of new 

interventions. 

 

Studies suggest that AD is characterised by metabolic 

al- terations [4] that may precede amyloid pathology [12]. Sig- 

natures of such metabolic abnormalities may therefore serve 

as biomarkers of earlier stages of the disease than amyloid 

biomarkers. Such biomarkers may be obtained from blood 

since blood has rich metabolic information content. The use of 

blood is also attractive because blood biomarker-based test is 

relatively non-invasive compared to CSF and may be more 

cost-effective than PET imaging. A number of studies have 

attempted to find non-amyloid biomarkers of disease by 

profiling a large array of non-amyloid proteins in blood and 

examining their association with the disease [13]–[15], but this 

approach is difficult to apply in practice. 
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A promising approach is the use of machine learning 

(ML) techniques to find appropriate combinations of non-

amyloid proteins to detect AD as no single non-amyloid 

protein has been shown to reliably detect the disease. ML 

makes it possible to fit multivariable data to a model by 

learning complex patterns from data. Several studies [16]–[24] 

have applied ML to develop classifiers to differentiate 

between AD subjects and healthy controls. For example, 

O’Bryant et al. [19] developed a model with a panel of 30 

serum proteins that classified Alzheimer’s disease dementia 

(ADD) subjects and HCs with sensitivity (SN), specificity 

(SP), and area under receiver operating curve (AUC) of 88%, 

82%, and 0.91, respectively. Similarly, with 14 plasma 

proteins, a classifier model constructed by Llano et al. [22] 

classified ADD and HC subjects with 86.5% SN, 84.2% SP 

and AUC of 0.85. More recently, a panel of inflammatory 

markers in plasma was identified that classified ADD and HC 

with 84% SN, 70% SP, and AUC of 0.79 using a logistic 

regression model [25]. In another study, a 12-marker panel 

classified ADD and HC with 90% SN and 66.7% specificity, 

and higher performance in post-mortem confirmed AD cases 

[26]. Furthermore, a study [27] that explored the use of deep 

learning, random forest, and XGBoost algorithms for 

classification of ADD and HC achieved AUC of 0.88 with 

XGBoost algorithm and 0.85 with deep learning and random 

forest. Despite the promising results from these studies, most 

of the models were developed and evaluated using data from 

cognitively healthy controls and subjects at the later stages of 

the disease. The models were not evaluated in individuals at 

the early stages of the disease. Therefore, the panels 

underlying such models may not be suitable as biomarker 

signatures of early AD.  

 

In this study, the main objective is to develop a ML-

based method (support vector machines (SVM) in particular – 

see later) to identify blood biomarkers of early AD based on 

non-amyloid proteins with the potential to identify the disease 

prior to accu- mulation of amyloid-beta in the brains. We also 

assess the potential of existing ML-based methods to achieve 

early disease detection.  

 

The rest of this paper is structured as follows. The 

materials and methods are described in Sections II and III. The 

results are presented in Section IV, and the discussion and 

conclusions are provided in Sections V and VI. 

 

 
II. MATERIALS 

 

A. Blood Proteomic Data 

 

Blood proteomic data used in this study were 

obtained from the Alzheimer’s disease neuroimaging initiative 

(ADNI) portal (http://adni.loni.ucla.edu). The quality-

controlled data consist of 146 plasma proteins derived from 58 

and 54 healthy con- trols (HCs) at baseline and 12 months 

later respectively, 136 individuals with mild cognitive 

impairment due to AD (MCI) at 12 months from baseline, and 

108 Alzheimer’s dementia (ADD) patients at baseline. The 

MCI subjects were later diagnosed with AD dementia within 

about 10-year follow-up. A list of the 146 proteins are shown 

in the supplementary material. Mild demen- tia was diagnosed 

according to NINCDS-ADRDA criteria for probable ADD. A 

detailed description of the protocol may be found on the 

ADNI database. The demographic information of the subjects 

is shown in Table I. The subjects were age matched, over 70 

years old and had about 16 years of education on average. 

 

III. METHODS 

 

A. Data Pre-processing 

 

All study data were standardized as indicated in (1) to 

ensure that proteins with high numeric values relative to others 

would not cause bias in subsequent ML operations. Given a 

feature instancex, the standardised value z is given as, 

 
 

Where μ and σ are the sample mean and standard   

deviation of the feature distribution, respectively. 

 

To make optimal use of available data while 

minimizing susceptibility of our approach to overfitting 

problems, the pre-processed data were partitioned into two 

non-overlapping datasets; Datasets 1 and 2. Dataset 1 consists 

of baseline data from the ADDs and HCs. All existing 

methods evaluated in this study except [20] were originally 

developed based on Dataset 1. In our approach, Dataset 1 was 
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used to conduct a robust feature preselection (a key aspect in 

ML) and model development. 

 

The resulting models were further evaluated with 

Dataset 2. Dataset 2 consists of month-12 data from MCIs and 

HCs. It was used to assess the performance of the developed 

models (trained on the entirety of Dataset 1) for MCI vs. HC 

classifi- cation. Models were trained with only Dataset 1 

during model development using the entirety of it or its 

subsamples. 

 

 
Fig. 1.   Overall framework for identification of novel putative 

biomarker panels and model development for early AD 

detection. K: Different kernels of SVM including linear, 2 and 

3 -degree polynomials, and radial basis function (RBF), 

respectively. MSK: Most stable kernel. A stable kernel is one 

that showed most moderate to high performance for most 

panels. CV: Cross-validation (CV). CP: Candidate panel. A 

candidate panel is one that meets our performance criteria (SN 

and SP of at least 70%) in the model training and CV step. 

Sensitivity and specificity have been described elsewhere [28]. 

 

B. Replication and Evaluation of Existing Methods 

 

We replicated the ML models reported in previous 

studies for classification of ADD and HC subjects (Dataset 1) 

using 10-fold cross-validation with the average performance 

of the models taken after 10 repetitions. In 10-fold cross-

validation, the dataset D is randomly split into 10 mutually 

exclusive subsets (the folds) D1, D2, …, D10 of 

approximately equal size. The classifier is trained and tested 

10 times; each time t ∈ {1, 2, …, 10}, it is trained on D\Dt and 

tested on Dt [29]. The cross-validation estimate of the 

classifier performance is the overall performance over all the 

folds. Repeated cross-validation was implemented to ensure a 

robust estimation of performance [29]. The ability of the 

models to classify MCI and HC was then tested with Dataset 2 

to assess their potential and hence the underlying protein 

panels to detect early AD. 

 

C. Novel Panel Identification and Model Development 

 

Fig. 1 shows the methodological framework that we 

used to identify novel blood protein panels and to develop the 

new ML models for early detection of AD. The framework is 

described in detail in the following subsections. Briefly, the 

framework consists of three major procedures which include 

feature subset preselection, protein panel formation, and ML-

based model development and evaluation. A feature subset 

preselection process was performed to identify protein subsets 

that may have strong discriminatory power between disease 

subjects (ADD) and HCs. A brute force search was applied to 

the preselected feature subset to form several protein panels. 

Each of the panels was then used to develop and cross-validate 

SVM classifiers of different kernels (K) using Dataset 1. Data 

from ADD subjects were used in these initial procedures on 

the basis that dementia subjects are more likely to exhibit the 

metabolic alterations that are associated with the disease. The 

most stable kernel and candidate panels (promising models) 

trained on Dataset 1 were further evaluated for classification 

of individuals with MCI and HCs using Dataset 2. The 

promising models with best performance at this stage were 

selected as final. The protein panels that underlie the selected 

models are reported as potential blood-based non-amyloid 

biomarker signature of early disease. 

 

Feature (Protein) Subset Preselection: 1) A feature subset 

preselection procedure was implemented with Dataset 1 using 

correlation-based feature subset selection (CFS) method [30]. 

The goal of this task was to make an initial selection of the 

most relevant and non-redundant features for classification of 

ADD and HC subjects and consequently reduce the dimension 

of the study data prior to model development. Reduction of the 

dimension of the study data was necessary because it would 

otherwise be computationally expensive to implement an 

exhaustive search to evaluate the classification performance of 

all possible feature subsets with ML algorithms. For N-

dimensional data (where N is 146 in this case) there are 2N 

possible feature subsets. Based on feature subset evaluation 

methods that attempt to remove irrelevant and redundant 

features from data by using correlation- based heuristic to 

determine the worth (merit) of a feature subset. This technique 

has been shown to compare favourably with wrapper-based 

approaches in selecting the best feature subsets that achieve 
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high classification accuracy while incurring far less 

computational cost [31]. It is based on a heuristic that 

evaluates the merit of feature subsets following the hypothesis 

that a good feature subset consists of features highly correlated 

with the class, yet uncorrelated with each other. Correlation in 

this sense refers to the predictability of one variable by 

another. Equation (2) shows the mathematical formulation of 

the CFS heuristics, a concept borrowed from test theory [32] 

Merit is the heuristic merit of a feature subset 

consisting of k features, rf c is the mean feature-class 

correlation and rf f is the mean feature-feature inter-

correlation. The parameters, rf c and rf f are measures of 

feature relevance and redundancy, respectively, based on the 

proposition that a feature is relevant if it is correlated with the 

class, otherwise it is irrelevant. Redundant features are 

correlated with one or more other features. To determine the 

correlations, continuous features were firstly discretized using 

the discretization method proposed in [33] to ensure that all 

features were uniformly handled. The correlations were 

calculated in terms of modified information gain known as 

symmetrical uncertainty (SU) [34] to cater for the bias of 

information gain in favour of features with more values. 

Values were normalised to the range [0, 1] to ensure that they 

were comparable and had similar effect. 

 

Where gain is the information gain [35] for nominal 

features X and Y , H(X) and H(Y ) are the entropy [36] of X 

and Y , respectively. The gain is formulated as 

 

Novel Panel Formation and SVM-based Evaluation: 

Firstly, feature panels were formed from the CFS-preselected 

proteins based on a brute force approach. Each panel was then 

evaluated using a wrapper-based method to identify the ML 

algorithm and panels with best performance for classification 

of ADD and HC subjects. Using each panel, several SVM [37] 

classification models were constructed with different kernels 

including linear, 2nd and 3rd degree polynomials, and radial 

basis function (RBF) using Dataset 1. Average performance of 

each model to classify ADD and HC subjects was obtained 

using a 10-fold cross-validation [29] scheme repeated 10 

times. Secondly, the performance of most stable models (SVM 

algorithm and feature panels) that met the performance criteria 

of average SN and SP ≥ 70% for classification of ADD and 

HC subjects was tested with Dataset 2 for discrimination of 

MCI and HC groups. Finally, the models and underlying 

protein panels with best performance in classifying MCI and 

HC groups were selected as putative models and non-amyloid 

biomarker panels for early detection of AD. 

 

Classification WithKernelized SVM: The choice of SVM for 

the model development task was informed by the fact that it is 

robust even with limited training data, and not prone to local 

extremum [38], as well as our previous experience [24]. It is a 

very powerful tool widely applied in similar biomedical 

applications [39]. SVM classifies training instances belonging 

to either of two classes by fitting a separation boundary 

(hyperplane) between the classes such that the margin between 

the boundary and either class is maximized. The class of a 

new instance is decided depending on which side of the 

hyperplane it lies. Fig. 2 illustrates a 2-class SVM classifier. 

Given a 2-class problem with training data consisting of N 

examples (x1, y1),(x2, y2),...,(xN−1, yN−1),(xN , yN ), with 

input features xi ∈ Rd and class yi∈ {−1, 1}, the goal of SVM 

is to define a hyperplane h(x) that is given by subject to yi(xi 

T w + b) ≥ 1, where b is a constant, d is the dimension of the 

data, w is a vector of unknown length with d dimension 

pointing from the origin and normal to the margin, and m is 

shown to be equal. The resulting w from the optimization in 

(9) is of the form shown in (10), with αi being nonzero for 

instances i (known as support vectors) where the constraint 

yi(wT xi + b) ≥ 1 is met. 

 

With (10), b may be determined from (7), and following from 

(8), the decision rule for a new sample u of unknown class 

may be stated as, 

 

Where αi are Lagrangian multipliers resulting from the 

optimization of (9). 

 

When the training data are not linearly separable by a 

hyperplane, SVM may transform the data to new space where 

they become linearly separable by using kernel functions. The 

kernel function simply computes dot products of features in 

the transformed space. One of such kernels is the polynomial 

kernel [40]. For example, given feature vectors v and z, a 

polynomial kernel K is formulated as, 

 

Where r is the degree of the polynomial. Thus, for a 

SVM classifier with a polynomial kernel, the solution for the 

hyperplane (formally determined by substituting (10) in (7)) 

and decision rule for a new sample of unknown class are 

modified as shown in (13) and (14). 

 

However, because a standard SVM seeks to fit a 

margin separating all positive and negative training instances 

without any error which is not often practicable, a concept 

known as soft margin [37] which permits minimum 

misclassification error is implemented in practical SVM 

algorithms with a slight modification of (9). 

 

D. Implementation and Performance Evaluation Feature 

selection using CFS as discussed earlier was conducted with 

attribute selection toolbox in Weka software package [41]. All 

classification tasks were conducted with MATLAB and Weka 
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software packages. MATLAB codes are available on 

https://github.com/chimastan/earlydetectionofAD. In 

evaluating the models from previous studies, we used Weka 

where previous studies had used it for model development. 

Training of ML models and validation of performance for 

ADD vs. HC discrimination was based on 10-fold cross-

validation scheme repeated 10 times. The data (Dataset 1) 

were randomly repartitioned after each run to ensure that data 

subsets used for training and validation varied from the ones 

used in the preceding run. This way, a more robust average 

performance is obtained. Classification performance metrics 

of primary consideration were measures of SN and SP in 

accordance with international recommendations for clinically 

usable AD biomarkers [42]. A performance threshold of 70% 

for SN and SP was adopted in the model development task. 

This is on the grounds that the diagnostic accuracy of human 

experts reaches 77% [43] with sensitivity and specificity 

reaching 81% and 70% [5], respectively. Moreover, sensitivity 

and specificity greater than 80% is the target performance for 

ideal AD biomarkers [42]. No class imbalance handling 

procedure was applied to the training dataset (Dataset 1) in 

model development as minority to majority class distribution 

was 35:65% which is acceptable in ML-based classification 

problems [44], [45]. 

 

IV. RESULTS 

 

A. Replication and Evaluation of Existing Models  

 

We successfully replicated 7 models for classification 

of ADD subjects and HCs. The model proposed by [20] could 

not be replicated because it was originally trained on a dataset 

not available to us. Nevertheless, we constructed a model with 

Dataset 1 based on the ML algorithm and blood protein panel 

proposed by the ([20]) study. Only existing models 

constructed with blood proteins available in our study dataset 

were investigated in this study. Table IIshows the average 

cross-validated performance of the models repeated over 10 

runs for classification of ADD and HC subjects. Nearly all the 

models achieved SN, SP, and AUC greater than 80%, 60%, 

and 0.70, respectively. However, when evaluated for possible 

detection of early AD by classifying MCI and HC with 

Dataset 2, the SN values of the models remained moderately 

high while their SP values drastically dropped (with only one 

model achieving up to 50%). This implies that the models may 

have undesirably high levels of false positives when applied 

for early disease detection. Consequently, the underlying 

protein panels may not serve as good biomarker signatures of 

early disease. 

 

B. Feature Subset Preselection 

 

Using our new methodological approach, sixteen 

proteins with a merit (Merit) of 0.36 were preselected with the 

CFS technique from the 146 proteins in the original study 

data. The 16 proteins are shown in Table III together with 

their statistical significance P as calculated with z-test. The z-

test was used to estimate the statistical significance of the 

difference between the pair of clinical groups being 

considered together (AD vs. HC) and (MCI vs. HC) for the 

pre-selected features. All except a few features were 

statistically significant (p-value < 0.05) in the ADD vs. HC 

pair (Dataset 1). Most of the features were not statistically 

significant in the MCI vs. HC pair (Dataset 2). This may be 

due to the high imbalance between the samples sizes of  

MCI and the HC in the dataset. 

 

C. Novel Panel Formation and SVM-based Evaluation 

 

From the 16 CFS-preselected protein subset, 216 

different protein panels were formed. Results from wrapper-

based evaluation of all the panels for classification of ADD 

and HC groups using Dataset 1 showed that models 

constructed with 2-degree polynomial kernel had a better and 

more stable performance. Consequently, SVM with 2-degree 

polynomial kernel was selected as the algorithm of choice. 

Only (10,699) 2-degree polynomial kernelized SVM models 

that met our performance benchmark (SN and SP ≥ 70%) for 

ADD and HC classification were further evaluated for their 

potential to detect early disease with Dataset 2. Two models 

constructed with six and eight protein panels (A1M, A2M, 

ApoA2, CD5L, IL3, SGOT and A1M, A2M, ApoA2, BNP, 

BTC, CD5L, IL3, SGOT, respectively) achieved a remarkable 

cross-validated performance (SN of 92% and 93%, SP of 81% 

and 83%, AUC of 0.90 and 0.94 respectively) in classifying 

ADD and HC subjects. This perhaps highlights a possible 

performance benefit of the CFS-based feature preselection 

technique. Nevertheless, the two models performed poorly 

when evaluated for classification of MCI and HC subjects. 

The implication is that an excellent model at later stages of the 

disease does not necessary imply a good disease detection 

model at the early disease stages. This may be attributed to 

subtle differences in the underlying patterns as well as noise in 

the data among other factors, thus highlighting the need for 

further evaluations. Five models constructed with panels 

shown in Table IV realized best performance for classification 

of MCI and HC groups. All but one of the models detected 

AD subjects with SN and SP above 80% and 70% respectively 

at dementia as well as MCI stage. A larger panel formed by 

combining all five panels in Table IV achieved a cross-

validated SN, SP, and AUC of 85%, 70%, and 0.88, 

respectively in classifying ADD vs. HC. However, its 

specificity dropped drastically to 52% with 82% SN and 0.73 

AUC when tested for MCI vs. HC classification. The 
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introduction of well-known risk factors of AD [46] such as 

age and level of education as covariates to the models did not 

improve performance significantly. APOE4 genotype was not 

used as a covariate to avoid bias since less than 9% of HC 

group have positive status. 

 

 

 

V. DISCUSSION 

 

In this study, we developed models and identified 

novel nonamyloid biomarker panels for early detection of AD 

following a new approach, and demonstrated that existing ML 

methods may not be suitable for early detection. The models 

and panels were selected based on their performance at both 

the prodromal and dementia stages of the disease, thus 

improving the chance that signals about the disease were 

captured rather than noise resulting from individual variations 

between study participants. 

 

Ideally, the smaller the size of a panel, the better in 

terms of interpretability and cost of implementation in 

practical applications such as point of care technology. 

However, because our study was exploratory, it was important 

to flag all the panels that achieved reasonably good 

performance since it is unclear which panel or proteins are the 

most important. Gaining such clarification may require further 

investigation such as analysis of protein-protein interaction for 

the proposed panels (see later). We have also shown the 

performance of the larger panel derived by combining all five 

panels we identified, although it has a lower performance 

relative to the individual panels perhaps due to curse of 

dimensionality. Comparing our results (Table IV) with those 

of existing models we investigated (Table II); the best existing 

model identified AD subjects at MCI stage with high 

sensitivity and fairly good specificity (79% SN and 50% SP) 

while our model with the least panel size achieved a better 

performance with 80% SN and 70% SP. At dementia stage, 

our proposed models achieved a performance that is 

comparable to the best model from the investigated studies. 

Comparing our results with the three recent relevant studies 

(see Table V), we note that the panels identified in [25] and 

[26] classified ADD and HC with high performance, but the 

markers were reported by the authors to be poor at 

distinguishing between MCI and HC. Furthermore, while 

study [27] achieved high AUC of 0.88 with XGBoost model 

for classification of ADD and HC, the model’s performance 

has not been evaluated for disease detection at MCI stage. Due 

to unavailability of biomarkers used in the study in our study 

data, the performance of the models for MCI and HC 

classification was not investigated in this study. In contrast to 

the recent studies, our models achieved high performance for 

disease detection at ADD stage (with one of the models shown 

in the table realising best AUC, with high sensitivity and 

specificity) as well as the MCI stage. Our proposed panels 

differ significantly from those of existing methods. This may 

be due to significant differences in the approaches including 

feature preselection and evaluation modalities which were 

deliberately applied in this study. We are not aware of the use 

of CFS for feature preselection in previous studies. We have 

provided details of the ML algorithm used including the kernel 

type and order as well as their selection process to ensure 

transparency of approach reproducibility 
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In future, the study will be validated in independent 

cohorts and extended to preclinical stages of the disease. It is 

noteworthy that no existing AD model based on non-amyloid 

proteins has hitherto been evaluated for early disease detection 

using ADNI data. Regarding the proteins evaluated in this 

study, besides PAPPA, which is rather highly associated with 

depressive symptoms in older adults [47] other proteins 

preselected by CFS have been previously identified in several 

studies [16]–[24] to have classification value in discriminating 

between ADD and HC groups. From the five selected panels 

shown in Table IV, six proteins (i.e., A2M, ApoE, BNP, Eot3, 

RAGE, and SGOT) appear as most prominent, featuring in 

nearly all the panels. A combination of the six proteins 

therefore seem to play a significant role in the discrimination 

of disease (prodromal and dementia) subjects and healthy 

controls. The panel classified both groups with sensitivity and 

specificity > 80% and 65%, respectively and AUC of at least 

0.80. Several of these proteins are found in nearly all the 

previously reported models investigated in this study. Studies 

show that blood plasma levels of A2M are linked to 

mechanisms related to blood-brain barrier damage and 

neuronal injury as well as hippocampus metabolism in early 

AD [15], [48]. ApoE in blood is speculated as a dementia risk 

marker in preclinical AD [49]. BNP levels in plasma is 

associated with decline in cognitive function [50]. Plasma 

levels of RAGE are altered in AD [51]. RAGE has been 

reported to play a critical role in AD and considered as a 

potential therapeutic target [52]. SGOT is a biomarker of 

peripheral inflammation and an essential metabolic enzyme. It 

is often used as a clinical measure of liver function [53]. 

Interestingly, a recent finding has implicated liver function as 

a potential significant confounding factor in the onset of AD 

(https://www.alz.org/aaic/releases_2018/AAIC18-Tuesgut-

liver-brain-axis.asp). However, this study has several 

limitations including the following: 

 

Sample size and ML method: In this work, the 

sample size of study data was small. This is because of the 

limited availability of relevant data due in part to the high cost 

of collection of such specialized data. As a result of the 

limited dataset, latest ML methods such as deep learning (DL) 

were not explored in this study owing to their requirement for 

large datasets. As more data become available, we shall 

explore DL methods such as convolutional and recurrent 

neural networks [54], [55]. Nevertheless, conventional 

machine learning methods are still attractive in this domain 

given their relative simplicity, cheaper cost, and usefulness for 

data modeling [56]. However, despite the high classification 

performance achieved by the traditional ML approach we 

applied, there are other methods such as ensemble learning 

[57] that have the potential to improve performance and 

therefore may be applied in future study. Demographics: 

Another limitation is that the study data only consist of older 

and educated subjects. Thus, our findings may not generalise 

well to other cohorts such as less educated individuals given 

that level of education is a well-known risk factor for AD. 

Feature selection method: Notwithstanding the usefulness of 

CFS feature preselection technique applied for dimensionality 

reduction and mitigation of model overfitting, some important 

markers with strong biological links to AD may have been 

eliminated as the process was blind to prior knowledge. 

 

Protein-protein interaction analysis: In this study, 

aspects such as protein-protein interaction were not 

investigated as these were beyond the scope of the study. 

Potentially, analysis of the interactions between proteins in the 

identified panels may facilitate understanding of their joint 

role in AD process and clarify which panel(s) are more 

clinically relevant. In view of the limitations above, there is a 

need to conduct additional follow-up studies and validation of 

our findings in large and independent cohorts considering that 

validation of findings is an important step for clinical 

acceptance and translation into clinical practice. Besides 

proteomics-based biomarkers, there are also other 

nonamyloid-based blood biomarkers such as mRNA [58], [59] 

and autoantibodies [60] where progress is being made in AD 

detection and improving understanding of disease. For 

instance in [58], three mRNA biomarkers that suggest 

important dysregulated pathways in AD pathogenesis have 

been identified. Therefore, future studies should consider the 

exploitation of a range of blood-based biomarkers including 

proteomics and mRNA. This may lead to a more accurate 

panel of blood biomarkers to detect AD and improve the 

understanding of its aetiology. Overall, the results from this 

study suggest that it may be feasible to detect early AD using 

a profile of non-amyloid proteins in blood associated with the 

metabolic processes that accompany or precede the disease. 

Because the proteins are non-amyloid based, they have the 

potential to detect the disease even before amyloid pathology 

develops. It may be possible to develop new understanding of 
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the disease through further studies of these proteins and their 

protein-protein interactions in the disease pathogenesis. Such 

understanding may aid the development of new interventions 

in response to current failure of clinical trials targeting 

amyloid clearance. The main contributions of this study 

include the potential biomarker signatures identified and the 

methodological approach adopted in the search for these 

signatures in an effort to bridge an important study gap of 

early detection of AD with proteomic-based non-amyloid 

blood biomarkers. 

 

VI. CONCLUSION 

 

We have developed potential models and identified 

five novel candidate non-amyloid biomarker panels for early 

detection of AD utilizing a new approach. The developed 

models based on these panels classified prodromal AD as well 

as AD dementia and normal controls with sensitivity above 

80%, specificity higher than 70%, and AUC of at least 0.80. A 

combination of A2M, ApoE, BNP, Eot3, RAGE and SGOT 

were identified as key protein profiles with significant 

contribution to the classifications performance. The results 

suggest that it may be feasible to detect early AD using a 

profile of non-amyloid proteins that identify the metabolic 

processes that accompany or precede the disease. It may be 

therefore possible to detect the disease with the proteins before 

amyloid pathology (the earliest signature current diagnostic 

biomarkers can detect) develops since they are not amyloid-

based. This may aid identification of individuals at the earliest 

stages of AD who may benefit from early interventions. 

Furthermore, new insights about the disease may be gained 

from understanding the interactions between the proteins in 

disease subjects. Such enhanced understanding may contribute 

to the improvement of interventions in clinical trials.  
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