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Abstract- Ultra high reliability and ultra low latency are the
key objectives of the internet of things (IoT) with massive
connectivity. To support these objectives, we investigate the
resource allocation for the user centric multi-cell multiple-
input multiple-output non-orthogonal multiple access (MIMO-
NOMA) based IoT networks. The macro base station (MBS)
equipped with multiple antennas transmits signals to access
points (APs) in the backhaul link, and each device can be
served by multiple APs in the access link, and the APs serving
the same device compose one AP group (APG). The NOMA is
applied in each APG to reduce the intra-APG interference. In
this paper, the resource allocation problem involving the
beam forming optimization and power allocation is formulated
as nonconvex optimization problem which is extremely
difficult to tackle. In order to reduce the computational
complexity, we decompose the resource allocation problem
into two subproblems in terms of the beam forming
optimization and power allocation. For the beam forming
optimization subproblem, the zero-forcing beam forming
(ZFBF) algorithm is applied to solve it. When the beam
forming strategy is fixed, the power allocation subproblem is
still a non convex optimization problem. We first transform it
as a difference of two convex functions (DC) problem, and
then the DC programming method is adopted to optimize it.
Extensive simulation results are presented to demonstrate the
effectiveness of the proposed resource allocation scheme for
the user-centric MIMO-NOMA IoT networks.

Keywords- Internet of Things (IoT), MIMO, NOMA, power
allocation, beam forming.

I. INTRODUCTION

Non-orthogonal multiple access (NOMA) has
become an important principle for the design of radio access
techniques for the fifth generation (5G) wireless networks.
Although several 5G multiple access techniques have been
proposed by academia and industry, including power domain
NOMA, sparse code multiple access (SCMA) pattern division
multiple access (PDMA) low density spreading (LDS) and
lattice partition multiple access (LPMA) these techniques are
based on the same key concept, where more than one user is
served in each orthogonal resource block, e.g., a time slot, a

frequency channel, a spreading code, or an orthogonal spatial
degree of freedom. Unlike NOMA, conventional orthogonal
multiple access (OMA) techniques, such as time division
multiple access (TDMA) and orthogonal frequency division
multiple access (OFDMA), serve a single user in each
orthogonal resource block.

Nevertheless, the principle of NOMA, i.e., removing
orthogonality, has not been used in the previous generations of
cellular networks. In this content, we note that the philosophy
behind 3 NOMA is rarther different from that behind code
division multiple access (CDMA). In fact, CDMA is primarily
built upon the idea that users are separated by exploiting the
differences among their spreading codes, whereas NOMA
encourages multiple users to employ exactly the same code.
As a consequence, for CDMA, the chip rate has to be much
higher than the supported information data rate, e.g.,
supporting a data rate of 10 Gbps may require a chip rate of a
few hundred Gbps, which is difficult to realize with practical
hardware. Conventionally, NOMA can be integrated in
existing and future wireless systems because of its
compatibility with other communication technologies.

The enormous increase in the demand for wireless-
related applications has resulted in the conceptualization of the
fifth generation (5G) communication systems, where the set of
main goals to meet are enhanced spectral efficiency with
minimum energy consumption, reduced delay and seamless
connectivity. Towards this end, the cognitive radio (CR)
technology, which is a way of realizing communication in an
opportunistic way, has been viewed as an integral component
in the 5G communication systems. A CR examines the activity
of a licensed user (also called the primary user) in its
dedicated bandwidth through the spectrum sensing (SS)
technique, whose outcome favors either of the signal present
or absent hypotheses. Depending on the knowledge of the
statistics of the noise process, the primary signal and fading,
several SS methods have been proposed in the literature and
their advantages and disadvantages have been discussed.
When the exact statistics of all the above mentioned variables
are known, the likelihood ratio test is known to be optimal.
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When the primary signal is known and the noise is
Gaussian, the matched filter (or the replica correlator) is
known to maximize the signal-to-noise ratio (SNR). Among
the computationally simpler techniques which are blind to the
primary signal statistics, energy detection (ED) is simple to
implement. When multiple antennas are available on the CR
node, several techniques have been reported for SS in the
literature. The blindly combined energy detector (BCED)
offers a performance similar to that of the conventional ED,
when the received samples are independent and identically
distributed. However, while the conventional ED is blind to
the primary statistics and requires the knowledge of the noise
variance, the BCED is blind to both quantities. Moreover, in
the practically significant case where the received primary
signal samples are correlated due to block fading, BCED
outperforms ED. Another technique called as the space-
frequency cross product sensing (SFCPS) is also proposed for
sensing with multiple CR antennas. However, the analysis of
SFCPS is restricted to two antennas, and the complexity of the
algorithm significantly increases with an increase in the
number of antennas.

On the other hand, the aforementioned requirements
for 5G systems, namely the spectral efficiency and massive
connectivity can be mitigated through the non-orthogonal
multiple access (NOMA) technique. In NOMA, each user is
allowed to occupy the entire bandwidth at the same time, and
are served by different power levels. The features of downlink
NOMA include the superposition coding at the transmitter,
and successive interference cancellation (SIC) at the receiver.
The power levels for each user are fixed based on their
channel strengths, which depends on the distance between
each user and the base station (BS). For the users which are far
away from the BS – that is, for those users with low channel
gains, higher power is allotted. The BS transmits a signal
superimposing the signals intended to all the users. At the user
end, the user with the highest power allotted decodes its own
signal by treating the interference from other users as noise,
while the other users carry out SIC. That is, the remaining
users first decode the signals which have been assigned higher
power, before decoding their own signal. Recently, the
performance of multiple-input multiple-output (MIMO)
NOMA systems have been studied and is shown to outperform
MIMO-based orthogonal multiple access (OMA) technique, in
terms of spectral efficiency. In a typical CR network, multiple
access techniques such as time division multiple access
(TDMA) and frequency division multiple access (FDMA) are
used to accommodate multiple CR users in the sensed-to-be
available spectrum.

II. LITERATURE SURVEY

In this paper, propose a novel and effective deep
learning (DL)-aided NOMA system, in which several NOMA
users with random deployment are served by one base station
(BS). Since DL is advantageous in that it allows training the
input signals and detecting sharply changing channel
conditions, we exploit it to address wireless NOMA channels
in an end-to-end manner. Specifically, it is employed in the
proposed NOMA system to learn a completely unknown
channel environment. A long short-term memory (LSTM)
network based on DL is incorporated into a typical NOMA
system, enabling the proposed scheme to detect the channel
characteristics automatically. In the proposed strategy, the
LSTM is first trained by simulated data under different
channel conditions via offline learning, and then the
corresponding output data can be obtained based on the
current input data used during the online learning process. In
general, we build, train and test the proposed cooperative
framework to realize automatic encoding, decoding and
channel detection in an additive white Gaussian noise
(AWGN) channel.

This work advocates the use of deep learning to
perform max-min and max-prod power allocation in the
downlink of Massive MIMO networks. More precisely, a deep
neural network is trained to learn the map between the
positions of user equipments (UEs) and the optimal power
allocation policies, and then used to predict the power
allocation profiles for a new set of UEs’ positions. The use of
deep learning significantly improves the complexity-
performance trade-off of power allocation, compared to
traditional optimization-oriented methods. Particularly, the
proposed approach does not require the computation of any
statistical average, which would be instead necessary by using
standard methods, and is able to guarantee near-optimal
performance.

Non-Orthogonal Multiple Access (NOMA) has
recently been considered as a key enabling technique for 5G
cellular systems. In NOMA, by exploiting the channel gain
differences, multiple users are multiplexed into transmission
power domain and then non-orthogonally scheduled for
transmission on the same spectrum resources. Successive
interference cancellation (SIC) is then applied at the
receiver(s) to decode the message signals. In this paper, first
briefly describe the differences in the working principles of
uplink and downlink NOMA transmissions in a cellular
wireless system. Then, for both uplink and downlink NOMA,
formulate a sum-throughput maximization problem in a cell
such that the user clustering (i.e., grouping users into a single
cluster or multiple clusters) and power allocations in NOMA
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cluster(s) can be optimized under transmission power
constraints, minimum rate requirements of the users, and SIC
constraints. Due to the combinatorial nature of the formulated
mixed integer non-linear programming (MINLP) problem, we
solve the problem in two steps, i.e., by first grouping users
into clusters and then optimizing their respective power
allocations. In particular, propose a low-complexity sub-
optimal user grouping scheme. The proposed scheme exploits
the channel gain differences among users in a NOMA cluster
and groups them into a single cluster or multiple clusters in
order to enhance the sumthroughput of the system. For a given
set of NOMA clusters, we then derive the optimal power
allocation policy that maximizes the sum-throughput per
NOMA cluster and in turn maximizes the overall system
throughput. Using KKT optimality conditions, closed-form
solutions for optimal power allocations are derived for any
cluster size, considering both uplink and downlink NOMA
systems. Numerical results compare the performances of
NOMA and orthogonal multiple access (OMA) and illustrate
the significance of NOMA in various network scenarios.
Millimeter wave (mmWave) MIMO will likely use hybrid
analog and digital precoding, which uses a small number of
RF chains to reduce the energy consumption associated with
mixed signal components like analog-to-digital components
not to mention baseband processing complexity. However,
most hybrid precoding techniques consider a fully-connected
architecture requiring a large number of phase shifters, which
is also energyintensive. In this paper, focus on the more
energy-efficient hybrid precoding with sub-connected
architecture, and propose a successive interference cancelation
(SIC)-based hybrid precoding with near-optimal performance
and low complexity. Inspired by the idea of SIC for multi-user
signal detection, we first propose to decompose the total
achievable rate optimization problem with non-convex
constraints into a series of simple sub-rate optimization
problems, each of which only considers one subantenna array.
Then, we prove that maximizing the achievable sub-rate of
each sub-antenna array is equivalent to simply seeking a
precoding vector sufficiently close (in terms of Euclidean
distance) to the unconstrained optimal solution.  Finally,
propose a low-complexity algorithm to realize SIC-based
hybrid precoding, which can avoid the need for the singular
value decomposition (SVD) and matrix inversion. Complexity
evaluation shows that the complexity of SIC-based hybrid
precoding is only about 10% as complex as that of the recently
proposed spatially sparse precoding in typical mmWave
MIMO systems. Simulation results verify that SIC-based
hybrid precoding is near-optimal and enjoys higher energy
efficiency than the spatially sparse precoding and the fully
digital precoding.

III. PROPOSED SYSTEM

In this project investigate the joint resource allocation
problem involving the beamforming optimization and power
allocation for the user-centric MIMO-NOMA IoT networks in
order to maximize the system throughput. Consider both the
backhaul downlink (from the MBS to APs) and access
downlink (from APs to devices) since the transmission rate of
the access downlink is limited by the backhaul downlink. In
the backhaul downlink, the MBS equipped with multiple
antennas transmits signals to the single-antenna APs. The APs
are grouped to serve devices, and the APs in the same AP
group (APG) will share the same beamforming vector.

Fig 1.1 Block Diagram

That is, the MBS and each APG form a virtual
MIMO system. In the access downlink, each terminal is served
by multiple APs simultaneously to enhance the reliability and
decrease the latency. In order to decrease the interference, the
NOMA is applied both at the AP side and device side for the
backhaul downlink and access downlink, respectively. The co-
channel interference will be reduced by the SIC. The joint
resource allocation involving the beamforming optimization
and power allocation is formulated as a nonconvex
optimization problem which is extremely difficult to tackle.
For the beamforming optimization subproblem, a novel zero-
forcing beamforming (ZFBF) algorithm is applied to solve it.

Downlink Signals Model

In this subsection, we provide the signal model of the
backhaul downlink model and access downlink respectively
for the user-centric MIMO-NOMA IoT.

Backhaul Downlink Signal Model

As a forementioned, the MBS equipped with Nt
antennas,and there are M single-antenna APs which are
divided into N APGs. It is assumed that the number of APs in
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the nth APG is Mn, n=1,...,N. Obviously, N P n=1 Mn = M.
Then, for the backhaul downlink, Mn APs in the nth APG
shares the same beamformer, n=1,...,N, and N independent
data streams can be given as

X=[x1,x2,...,xN]T (1)

In each APG, the NOMA is applied to reduce the interference
caused by the beamformer sharing. In accordance with the
principle of NOMA, the AP with better channel condition can
decode the signals of the APs with weaker channel condition
and then proceeds to subtract it from the received signal and
decode its own data.

Access Downlink Signals Model

In this subsection, we give the signal model of the
access downlink model of the user-centric MIMO-NOMA IoT
networks. For the access downlink, there exists intra-APG
interference as a result that multiple APs in the same APG
transmit signals to the corresponding device simultaneously.
For simplification, it is assumed that the inter-APG
interference can be avoided due to the proper APs grouping
and resource allocation.

where denotes the channel coefficient from the

th AP in the nth APG to the nth device; pmnn represents

the transmit power of the th AP in the nth APG to the nth
device; zmnn means the AWGN with zero mean and variance
δ 2 for the nth device from the mnth AP in the nth APG.
Without loss of generality, it is assumed that the channel
coefficients can be ordered as:

According to the principle of NOMA, device n with
SIC can successfully decode the signals of the APs with
weaker channel condition. That is, the signal of the AP with
best channel condition can be first decoded, however, it should
experience interference from the other APs in the APG since
the device cannot remove the signals from the other APs.

Non-Orthogonal Multiple Access (Noma) Technology

Non-orthogonal multiple access (NOMA) technology
has aroused a great concern in terms of enhancing spectrum

efficiency.  It allows multiple users allocated the same
frequency block simultaneously. Users in the same resource
block implement multiple access in the power domain through
different power levels.  At the transmitter  NOMA actively
introduces interference information. At the receiver, a user
with a higher channel gain will be decoded first by using
successive interference cancellation (SIC) technology, and the
interference from co-subchannel users with lower channel gain
can be eliminated directly. NOMA can significantly improve
spectral efficiency compared with orthogonal multiple access
technology.

We consider a cellular downlink NOMA
transmission sys- tem in which the BS transmits the signals to

a set of users denoted by . Both the BS and
all users are equipped with the single antenna. The channel
gain from the BS to the m-th user is. Without loss of
generality, the users are assumed to be sorted such

that . NOMA enables BS transmit
signals on the same channel and serves multiple users
simultaneously by using superposition coding techniques.

The global optimal solution due to the non-convexity
and NP-hard of the optimization problem. So we divide it into
two processes so as to solve the problem more effectively.
First, assuming that each subchannel is allocated equal power,
we do a user-subchannel matching scheme by introducing
equivalent channel gain. Then, based on the subchannels
scheme that have been effectively matched, we focus our
attention on power allocation and use the backward induction
method to find the Stackleberg equilibrium point.

NOMA system, we should use the corresponding
reward function in the utility function to represent the cache
revenue earned by the system. Based on the above model, it is
easy to observe that the SRRH utility function contains three
parts: its own energy efficiency income, the interference
payment to the reward revenue caused by the caching strategy.
Hence, the utility of the MIMO-NOMA can be written as

In the NOMA system, SIC technology is applied at
the receivers to eliminate interference which is from other
users on the same subchannel. For single cell network, with
the channel response normalized by noise (CRNN) H k;i;n, jh,
the decoding order of users decreases gradually. This means
that users with higher subchannel gains can be decoupled
preferentially from the subchannel and eliminate interference
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from other users with lower subchannel gains. Therefore, we
presume that N users are assigned to kth subchannel. The
CRNNs are ranked as

However, in the two-tier NOMA, the total
interference also includes the cross-tier interference except the
interference which is generated by other users on the same
subchannel. The interference is the main limiting factor for
SINR. Therefore, we can get the following theorem to decide
the user’s decoding order. If the SINR received by user i from
user j is not less than the user receiving SINR from himself,
the user i can be successfully decoded by SIC.

ZERO OPTIMIZATION ALGORITHM

This algorithm includes two parts of the initialization
process and matching process. In the initialization part, the
user and subchannel preference lists are initialized according
to the ECG, and the subchannel matching list SCmatch and
unmatched user list UEunmatch are initialized to record the
user information matched and unmatched by the subchannel
SCn, respectively. In the matching part, when the matching
process is not completed, each user selects a subchannel under
its own preference list PL UE(m) sorted in descending order
of equivalent channel gain and makes an access request. After
receiving the request, the corresponding subchannel analyzes
its own matching status.

If the number of users allocated on this subchannel is
under the maximum value, the user is accessed and the
subchannel matching list SCmatch is updated, and the user is
deleted from the unmatched user list UEunmatch to represent
that the user has matched. If the number of subchannel
matching users reaches saturation, then the subchannel will
compare the existing users with the requesting user, and
according to the subchannel preference list, the optimal
combination is selected. The results are updated on the
subchannel matching list and unmatched user list. At the same
time, removing this subchannel from the preference list of
rejected users. When all users are matched, the loop ends.
When all users are allocated, if there are still some remaining
subchannels at the end, then select the best two users to match
according to the subchannel preference list. It is easy to
conclude that the complexity of the USMECG algorithm is

in the worst case, where M represents the total
number of users, and N is the number of subchannels.

IV. SCREEN SHOTS

Fig 1.2 Node Creation

Fig 1.3 Model of AP and Device

Fig 1.4 Beam forming in the first cluster
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Fig 1.5 Beam forming in the second cluster

Fig 1.6 Beam forming in the third cluster

Fig 1.7 Beam forming in the fourth cluster

System Throughput Using MIMO System with Single-
Antenna System

Fig 1.8 System Throughput vs number of Device

Fig 1.9 System Throughput Vs Number of AP
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Fig 1.10 Throughput

V. CONCLUSION

In this work have investigated the user-centric access
framework for the IoT to enhance the system performance, in
which each device are served by multiple APs simultaneously.
In order to further improve the spectrum efficiency, the
MIMO and NOMA are integrated due to the complementarity
of these two issues. Then, the resource allocation involving the
beamforming strategy optimization and the power allocation
for the user-centric MIMO-NOMA IoT has been investigated,
and we have formulated the resource allocation problem as a
nonconvex optimization problem which is extremely difficult
to tackle. To reduce the computational complexity, decompose
the original optimization problem into two optimization
subproblems in terms of the beamforming stragegy
optimization and power allocation. For the beamforming
strategy optimization subproblem, a novel ZFBF algorithm is
applied to solve it.

REFERENCES

[1] E. Mostafa, Y. Zhou and V. W. S. Wong, ‘Connection
Density Maximization of Narrowband IoT Systems With
NOMA’, IEEE Transactions on Wireless
Communications, Vol. 18, No. 10, pp. 4708-4722, 2019.

[2] Rauniyar, P. E. Engelstad and O. N. ØsterbØ,
‘Performance Analysis of RF Energy Harvesting and
Information Transmission Based on NOMA With
Interfering Signal for IoT Relay Systems’, IEEE Sensors
Journal, Vol. 19, No. 17, pp. 7668-7682, 2019.

[3] Shahini, and N. Ansari, ‘NOMA Aided Narrowband IoT
for Machine Type Communications With User
Clustering’, IEEE Internet of Things Journal, Vol. 6, No.
4, pp. 7183-7191, 2019.

[4] M. Lee, ‘Improved Energy Efficiency of Massive MIMO-
OFDM in Battery-Limited IoT Networks’, IEEE Access,
Vol. 6 pp. 38147-38160, 2018.

[5] H. Li, X. Xu, D. Hu, X. Tao, P. Zhang, S. Ci, and H.
Tang, ‘Clustering strategy based on graph method and
power control for frequency resource management in
femtocell and macrocell overlaid system’, Journal of
Communications and Networks, Vol. 13, No. 6, pp. 664-
677, 2011.

[6] J. Yuan, Q. He, M. Matthaiou, T. Q. S. Quek and S. Jin,
‘Toward Massive Connectivity for IoT in Mixed-ADC
Distributed Massive MIMO’, IEEE Internet of Things
Journal, Vol. 7, No. 3, pp. 1841-1856, 2020.

[7] Jiefei Ding, and Jun Cai, ‘Two-side Coalitional Matching
Approach for Joint MIMO-NOMA Clustering and BS
Selection in Multi-cell MIMONOMA Systems’, IEEE
Transactions on Wireless Communications, Vol. 19, No.
3, pp. 2006-2021, 2019.

[8] Junfei, Qiu, Youming, Sun, Ducheng, Wu, Qihui, Wu,
Yuhua, and Xu, ‘Demand-aware resource allocation for
ultra-dense small cell networks: an interference-
separation clustering-based solution’, European
Transactions on Telecommunications, Vol. 27, No. 8, pp.
1071-1086, 2016.

[9] P. Huang, H. Kao, and W. Liao, ‘Cross-tier cooperation
for optimal resource utilization in ultra-dense
heterogeneous networks’, IEEE Transactions on
Vehicular Technology, Vol. 66, No. 12, pp. 11193-11207,
2017.

[10] S. J. Kim, I. Cho, B. Lee, S. H. Bae, and C. H. Cho,
‘Multi-cluster based dynamic channel assignment for
dense femtocell networks’, Ksii Transactions on Internet
& Information Systems, Vol. 10, No. 4, pp. 1535- 1554,
2016.


