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I. INTRODUCTION 

 
 As an outgrowth of introduction of Fuzzy Sets by L. 
A. Zadeh in 1965, Silvano Di Zenzo[1] introduced the concept 
of Multiple Boolean algebra. A Multiple Boolean Algebra 
(MBA) is an attempt to generalize Boolean algebra. This 
paper deals with the notion of MBA as introduced by him and 
is an attempt to give proofs of existence theorems in more 
detail. Isomorphism of multiple Boolean algebras is defined 
which is followed by some structure determining theorems.  
 

II. PRELIMINARIES 
 

Zenzo showed that the set of all fuzzy subsets of a set 
becomes a Multiple Boolean Algebra if the binary operations 
on it are defined in a suitable manner as follows: 

 
Let p be any integer greater than 1. Multiple Boolean algebra 
of order p is a set E with p binary operations 0, 1, 2, 3, . . . .,p-
1; p distinguished elements e0, e1, e2, . . en  and a bijection U : 
E →E such that the following axioms are satisfied : 
 
For every x, y, z Є E and for every m=0, 1, 2, . . . , p-1, 
 
MBA 1  x m x = x 
MBA 2  x m y = y m x   
MBA 3  (x m y) m z = x m (y m z) 
MBA 4  x m em = x 
MBA 5  for each m, there exists am Є E such that   x 
m am = am 
MBA 6  x m  ( y m+1 z ) = (x m y)  m+1 (x m z ) 
MBA 7  U(x m y) = U(x) m+1 U(y) 
MBA 8  Up (x) = x  i.e. U(U(U( .  .   .  U(U(x)…)  = 
x 
MBA 9   x m U(x)  m U2(x) m . . . . . Up-1(x)= am 
 
Note 1.  Clearly, the am is the generalization of zero element, 
and em is generalization of identity element. Axioms 1, 2, 3 

show that each operation is idempotent, commutative and 
associative respectively. MBA4 shows that the element em in 
E is the identity element for the operation m. The element am 
characterized by MBA5 absorbs every other element in E 
under the operation m. It is called as an ‘absorbing element’. 
Axiom 6 requires that each operation be distributive with 
respect to immediately following one. Axioms MBA7 and 
MBA8 state that U is an isomorphism carrying (E, m) over 
onto ( E, m+1 ) for every m=0,1,2, . . ., p-2 and (E, p-1) over 
onto (E, 0). Zenzo calls this U as ‘fundamental isomorphism 
of the algebra’. Clearly, U is the generalization of 
complementation operation from Boolean algebra theory and 
MBA7 is the generalization of ‘involution’. Axiom MBA9 
generalizes the fact that in ordinary Boolean algebra, the meet 
and join of an element with its complement are equal to the 
zero and the identity elements respectively.  
 
Note 2. I think it necessary to add the following axiom 
 
MBA 10 ai ≠aj   if  i ≠ j            
 
which is not the part of Zenzo’s definition, but is required for 
the infinite case and assumes the uniqueness of ‘absorbing’ or 
‘zero’ elements for each operation in the infinite case. This 
point will be illustrated in the papers following this.  
 
Note 3. If E if finite, the existence of absorbing element am 
can be proved using axioms as follows :- 
Let E = { x1, x2, x3, … . xn}       being finite. 
Then  am = x1 m x2 m x3 . . . . . .m xn 
for, xi m am = xi m ( x1 m x2 . . . . . .m xn) 
                       = x1 m x2 m x3 . . . . . m xn       ( by MBA 1, 2, 3) 
           = am  for any  xi  Є A 
Thus, MBA5 can be omitted when E is finite. 
 
Theorem 2.1 : The identity element em and the absorbing 
element am are unique for the operation m. 
 
Proof : (a) Suppose for an operation m there are two identities 

 . Then,       m  em     ( as em is 
identity for m ) 

  em     ( as   is identity for m ) 
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(b) Suppose for an operation m there are two absorbing 

elements . 

Then,   m    ( taking   as absorbing element 
) 

                   =   ( taking   as absorbing element ) 
 
Theorem 2.2 : U(em) = em+1   and    U(am) = am+1     

 
 
Proof : To prove U(em) = em+1 , we have to prove that  x  m+1 

U(em) = x   
Consider,      x   m+1   U(em) = U(U-1(x) m em)  by MBA7 
      = U(U-1(x))              ( as 
em is identity element ) 
 
      = x           ( hence proof ) 
Similarly,     x   m+1   U(am)   =  U(U-1(x)   m   am) 

    = U(am)     
Hence,  U(am)    = am+1  
 
Remark: It is understood that p = 0 
Remark: For p=2, the MBA reduces to ordinary Boolean 
algebra where U(x) is interpreted as complement of x. 
Theorem 2.1 generalizes the fact that 0 and 1 are unique in 
ordinary Boolean algebra. 
 

Theorem 2.3: (Existence theorem) For every integer p  
there exists a MBA of order p and cardinality p. 
 
Proof : Let I(p) denote the set of first p non-negative integers   
i.e.    I(p) = {0, 1, 2, 3, . . . p-1} 
Define function u : I(p) →I(p) as follows 
U(p-1) = 0  and u(j) = j+1 for j = 0,1,2,. . . . ., p-2. 
Let the p operations on I(p) be defined by 

h 0 k = min(h, k)   and    h m+1 k = u(u-1h m u-1 k)  h, k Є 
I(p) and m =0  to p-1 
Then, clearly, u is a bijection. The first operation, 0 is the 
‘minimum’ operation and hence is clearly associative, 
commutative and idempotent; and due to the same reason, the 
biggest integer p-1 in I(p) is identity of 0 and the least 0 (zero) 
is the absorbing element of it. 
 Also, by the definition of the binary operations viz.   
h m+1 k = u(u-1h m u-1 k), 
We get, u(h 0 k) = u(u-1(uh) 0 u-1 (uk)) 
                             = uh 1 uk 
which shows  ( I(p), 0 ) is isomorphic with ( I(p), 1  ). 
Thus, each operation is isomorphic with 0 and hence is 
associative, commutative and idempotent and equipped with 

an identity em = u (em-1) and an absorbing element am = u (am-

1). 
 We shall prove the distributivity by induction. First, 
let us prove that p-1 distributes over 0.  

We want,  x p-1 ( y 0 z ) = ( x p-1 y ) 0 ( x p-1 z )     x, y, z Є 
I(p) 
i.e.  u-1 ( ux 0 u(y0z) ) = u-1 { ( ux 0 uy ) 1 ( ux 0 uz ) } .  .  .  .  
.  .  .  .  .  .  . (I) 
For clarity, consider, for h, k Є I(p), 
h p-1 k = u-1 ( uh) p-1 u-1 (uk) 
= u-1(uh 0 uk ) by def. 
Hence,  x p-1 (y 0 z) = u-1 ( ux 0 u(y 0 z))  and, u-1(h 1 k) = u-

1h 0 u-1k by def. 
Therefore, u-1{(ux 0 uy) 1 (ux 0 uz)} = u-1(ux 0 uy) 0 u-1(ux 0 
uz) 
         = (x p-1 y) 0 ( 
x p-1 z) by def. 
Now, after applying u on both sides of eq.(I) we get, 
ux 0 u(y0z) = (ux 0 uy) 1 ( ux 0 uz ) .  .  .  .  . (II) 
The different cases in which eq(II) can be proved valid are as 
follows : 
Case 1 : If any one of the x, y and z is equal to p-1 we have, 

(i) X = p-1 then (II) becomes, 
0 0 u(y 0 z) = (0 0 uy) 1 (0 0 uz) 
As 0 is absorbing element of 0,  0 = 0 1 0 = 0 which is true. 

(ii) y = p-1 then (II) becomes , 
ux 0 u(p-1 0 z ) = [ ux 0 u(p-1)] 1 [ (ux 0 uz)] 
And as p-1 is identity of 0,   ux 0 uz  = (ux 0 0) 1 ( ux 0 uz ) 
      = 0 1 ( ux 0 uz) 
      = ux 0 uz 
( as u(p-1)=0 is identity of 1) 
  The same happens in the third case of z=p-1. 

Case 2 : Let x, y, z ≠ p-1  and x  y. Then, either x  z or  x 

 z. 

(i) Let x  z. Again there are sub-cases :- 

(a) z  y. Then x  z   y, so that  u(x)  
u(y), as, no one of them is p-1 and definition 
of u on I(p), eq(II) gives, 

ux 0 u(y 0 z) = ( ux 0 uy) 1 (ux 0 uz) 
i.e. ux 0 u(z) = uz 1 ux 
i.e. ux = ux which is true. 

       (b)  z  y. Then x  y   z. Hence we want by 
(II), ux 0 uy  = ux 1 ux 
i.e. ux = ux , which is true. 

     (ii)        Let x  z. Then, y  x   z, and  eq(II) gives,  
ux 0 uy = ux  1  ux 
  i.e. ux = ux  which is true. 

Case 3 : Let x  y where x, y, z ≠ p-1. Here again we get 2 
sub-cases 
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(i) x  z. Then  z  x   y 

(ii) x  z Then either z  y i.e x   z  y  or  z  y i.e 

x   y  z. 
We see that these are symmetric cases with those we have 
proved above. Hence we drop the proofs. 
Thus, first step of induction is proved. 
In the second step, let us assume that m distributes over m+1. 
Since the set of operations is cyclic and finite, we show that 
m-1 distributes over m. 
x m-1 ( y m k ) = u-1 ( ux m u(y m k)) by def. 
    = u-1 ( ux m ( uy m+1 uk)  ( proved in the 
following remark) 
    = u-1 ( ( ux m uy) m+1 ( ux m uk ))  by 
induction 
    = u-1 ( u(x m y) m+1 u( x m-1 k)) 
    = u-1( u [(x m y ) m ( x m-1 k)]) 
    = ( x m-1 y ) m ( x m-1 k ) 
Thus, we proved MBA1 to MBA6. 
Remark : As  x m+1 y = u( u-1 x m u-1y),  x m y = u-1( ux m+1 
uy)  
Which proves u(x m y) = ux m+1 uy 
This proves MBA7. 
 
For MBA8, we observe that up(x) shifts the integer x through 
p places; and u(p-1) being 0, we get ( as I(p) contains p 
integers), up(x) = x.  
 
Now, by definition of u, for any x  Є I(p), the elements x, u(x), 
u(u(x)), .  .  .  ., up-1(x) are all the elements of I(p). Hence in 
view of Note 2 above, 
 x m u(x) m u(u(x)) m .  .  .  .  . m up-1(x) = am 
This proves MBA9. 
 
 The theorem assures existence of MBA having as 
many binary operations as it has elements. Note that for p=2, 
I(2) coincides with B2. Zenzo calls these by the name ‘Basic 
MBA’. Really, these are ‘basic’ as we shall see in the next 
theorem, that they can be used to generate multiple Boolean 
algebras of cardinality pn. Before that I give here I(4), that is 
basic MBA of order 4 and cardinality 4.  
 
Example 1 : The base set is I(4) = { 0, 1, 2, 3}. The operations 
0, 1, 2, 3 are given by the following tables.  
 

  
 
In this, the identity elements are e0 = 3,  e1= 0,  e2 = 1,  e3 = 2 
The absorbing elements are a0 = 0,  a1= 1,  a2 = 2,  a3 = 3. 

The fundamental isomorphism is  
u(0) =1, u(1) =2, u(2) = 3, u(3) = 0 

That is,  u  (1, 2, 3, 0). 
 

III. POWER SET OF MULTIPLE BOOLEAN 
ALGEBRAS 

 
Theorem  3.1 :Let I(p) be the basic MBA of order p. Let A be 
any set and E be the set of all functions  f: A→I(p) 

Define p binary operations   on E as 
follows : 
For m=0, 1, 2, 3. . , p-1  and f, g, h Є E such that 

f  g = h   iff    h(x) = f(x) m g(x)  x Є A 
Let   v : E → E be defined by 

 v(f) = k   iff   k(x)= u(f(x))     x Є A;   f, k  Є E. 
Then, with these p operations and unary operation v on E, E is 
a multiple Boolean algebra of order p in which the identities 
and absorbing elements are precisely defined. 
Proof : (A) Due to the corresponding properties of the 

operations in I(p)  and by definition of  on E, each binary 

operation  on E is associative, commutative and idempotent. 
 The constant function, 

  fm : A →I(p)  defined by  fm(x) = em   x Є A 
is an element of E and acts as identity element for the 

operation . Indeed, for every  x Є A  and g Є E 
     

 (g  fm)(x)   =  g(x) m fm(x)  by def. 
             = g(x) m em 
             = g(x) 

Thus, g  fm  =  g       g Є E                         
 
B)  Distributivity: Consider, for x Є A  and  f, g, h Є E 

[ f  ( g  h )] (x)                  

= f(x) m [ ( g  h) (x)] 

= f(x) m [ g(x)   h(x)] 
= [f(x) m g(x)] m+1 [ f(x) m h(x)] 

= [ (f  g) x ] m+1 [ (f  h) x] 
= [ ( f m g ) m+1 (f m h ) (x) 

∴ [ f  ( g  h ) ] ≡ [ ( f  g )  (f  h ) ]  
 
C) Since u is well defined, v is well defined function. 
Claim : v is one-one i.e. injective 
Proof : Let f, g Є E such that f ≢ g.  
Then, f(x) ≠ g(x) for some x Є A 
⟹ (vf) x  =  u(f(x)) ≠ u(g(x) = (vg) x         for that  x, since u 
is one-one. 
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⟹ vf ≢ vg 
Thus, v is injective. 
 
Claim : v is surjective. 
 
Proof : Let gЄ E. Define f: A → I(p)  by  f(x) = u-1(g(x)),  
Then, (vf) (x) = u(f(x)) = g(x)  c Є A. 
Hence v (f) = g. 
Thus for every g Є E,  f Є E such that v(f) = g  i.e. v is 
surjective. 
 

Claim :   v( f  g))  = v(f)   v(g) 

Proof :  For x Є A,    v( f  g)) (x) = u[ (f  g)(x)] = u ( f(x)  
m g(x) ) 
                                                                                                = 
u( f(x))  m+1  u(g(x))  
                                                                                                =  
vf(x)  m+1  vg(x) 
                                                                                                =  

(vf    vg) (x) 

∴v( f  g))  = v(f)   v(g) 
Thus MBA7 is satisfied 
 
D) Claim :  vp(f) = f   f Є E 
Proof : (vp(f)) x = v(vp-1f)x 
    = u(vp-1f(x)) 
    = u(u(vp-2f(x))) 

    =    
    = up(v0f(x)) 
    = f(x)   x Є A  Hence proof. 
 
Next, the absorbing element for the operation m on E is the 
function Lm : A → I(p) defined by    Lm(x) = am   x Є A . 
Indeed if f is any other element of E, 

 
That is, 

  
Thus, existence of absorbing element is proved. Moreover, 
since absorbing elements in I(p) are distinct, those in E are 
distinct. 

i.e. Li ≠ Lj  if  i ≠ j    0  p-1 
This proves MBA 6 and MBA10. 
 
Now, for MBA9, consider, 
{[f 

   

=  [ f m  
g(x) 
= 

[ m  
g(x) 
= am m g(x) 
= am 

Hence by definition of absorbing element Lm in E, 

[ f   g =  Lm 
 g Є E 
Hence by uniqueness of Lm , 

 f  =  Lm for any f 
Є E 
 
This completes the proof. 
 
Remark 1: The above theorem gives us Infinite MBA. For 
that we have to just take the set A to be infinite. It generalizes 
the fact that in ordinary Boolean algebra theory, the power set 
of any set x is also a Boolean algebra. Indeed, if we take E to 
be set of all functions  
f: X→ I(2)   i.e   f : X→ { 0, 1 } 
and define operations  and  on E by 
f  g = h   iff   h(x) = f(x) 0 g(x)  x Є E 
f  g = k   iff   k(x) = f(x) 1 g(x)  x Є E 
then E becomes set of all characteristic functions of X, i.e. the 
set of all subsets of X. 
 
Remark 2: If we take the set A to be finite of cardinality n, 
then E becomes a MBA of order p and cardinality pn. Thus, 

for a given pair of integers  p  2 and n  1, there exists a 
MBA of order p and cardinality pn. We shall call this ‘Power 
set of multiple Boolean algebra’ in the absence of better 
words. 
 
 We illustrate the above theorem by an example. 
 
Example 2: Let E be the set of all functions f from A = {x, y} 
to I(3). Let us denote the     32 = 9 functions by integers 
ranging from 0 to 8 as follows : 
Ordered pair (a, b), a, b Є I(3) denotes the function which 
maps x to a and y to b. For example, we denote 7≡(2,1), which 
means the function which maps x to 2 and y to 1 is denoted by 
integer 7. Thus, the functions are denoted by : 
0 ≡( 0, 0 ), 1 ≡( 0, 1 ), 2 ≡( 0, 2 ), 3 ≡( 1, 0 ), 4 ≡( 1, 1 ), 5 ≡( 1, 
2 ), 6 ≡( 2, 0 ), 7 ≡ ( 2, 1 ),          8 ≡( 2, 2 ). 

Then, the operations  defined according to above 
theorem can be given by the following tables. 
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In this example, the identities are 

 
And the absorbing elements are 

. 
 
The fundamental isomorphism V : E → E is defined by  
V(0) = 4, V(1)=5, V(2) = 3, V(3)=7, V(4) = 8, V(5)=6, V(6) = 
1, V(7)=2 
And V(8) = 0. 
In short, V ≡ ( 4, 5, 3, 7, 8, 6, 1, 2, 0). 
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