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Abstract-Performing  Packet classification  effectively  in 
network infrastructure is becoming a major challenge because 
of demand in increasing throughput and speed of 
enhancement.  Many previous techniques which are used for 
packet classification focused on throughput only and they 
cannot reduce the searching speed.  So a dynamically 
updatable packet classification along with parity generator is 
proposed to enhance the speed of searching by reducing the 
number of comparison operations. A special hardware 
support is an attractive alternative to enhance the speed of 
operation. The time required for classifying a packet in 
network infrastructure is reduced greatly. This technique 
enhances the searching speed and also reduces the 
propagation delay. 
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I. INTRODUCTION 
 

SOFTWARE Defined Networking (SDN) has been 
proposed as a novel architecture for enterprise networks. SDN 
separates the software-based control plane from the hardware-
based data plane; as a flexible protocol, Open Flow[10] can be 
used to manage network traffic between the control plane and 
the data plane. One of the kernel function Open-Flow 
performs is the flow table lookup[11]. The flow table lookup 
requires multiple fields of the incoming packet to be examined 
against entries in a prioritized flow table. This is similar to the 
classic multi-field packet classification mechanism[12]. hence 
we use interchangeably the flow table lookup and the 
OpenFlow packet classification in this paper. The major 
challenges of packet classification include: (1) supporting 
large rule sets (up to 100K rules), (2) sustaining high 
performance (over millions of packets per second[2]), and (3) 
facilitating dynamic updates. Many existing solutions for 
multifield packet classification employ Ternary Content 
Addressable Memories (TCAMs[13,14]). TCAMs cannot 
support efficient dynamic updates; for example, a rule to be 
inserted can move across the entire rule set. This is an 
expensive operation. TCAMs are not scalable with respect to 
the rule set size. Besides they are also very power-hungry. 
Field Programmable Gate Array (FPGA) technology has been 
widely used to implement algorithmic solutions for real-time 

applications. FPGA-based packet classification engine can 
achieve very high throughput for rule sets of moderate size. 
However, as the number of packet header fields or the rule set 
size increases (e.g., OpenFlow packet classifi- cation), FPGA-
based approaches often suffer from clock rate degradation. 
Future Internet applications require the hardware to perform 
frequent incremental updates and adaptive processing. 
Because it is prohibitively expensive to reconstruct an optimal 
architecture repeatedly for timely updates, many sophisticated 
solutions have been proposed for packet classification 
supporting dynamic updates over the years. Due to the rapid 
growth of the network size and the bandwidth requirement of 
the Internet, it remains challenging to design a flexible and 
run-time reconfigurable hardware-based engine without 
compromising any performance. 

 
II. RELATED WORK 

 
Packet classification can be broadly categorized into 

Decision Tree based, Decomposition based. 
 
Decision-tree-based approaches involve cutting the 

search space recursively into smaller subspaces based on the 
information from one or more fields in the rule. In a decision 
tree is mapped onto a pipelined architecture on FPGA; for a 
rule set containing 10K rules, a throughput of 80Gbps is 
achieved for packets of minimum size (40 bytes). However, 
the performance of decision-tree-based approaches is rule-set-
dependent. A cut in one field can lead to duplicated rules in 
other fields (rule set expansion). As a result, a decision-tree 
can use up to O(Nd) memory. This approach can be 
impractical. 

 
Decomposition-based approaches first search each 

packet header field individually. The partial results are then 
merged to produce the final result. To merge the partial results 
from all the fields, hash-based merging techniques can be 
explored. however, these approaches either require expensive 
external memory accesses, or rely on a second hard ware 
module to solve hash collisions. 

 
BV-based approach: 
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Field-Split BV (FSBV) approach [9] and its variants 
split each field into multiple subfields of s-bits; a rule is 
mapped onto each subfield as a ternary string. Lookup 
operations can be performed in all the subfields in a pipelined 
fashion; the partial result in each PE1 is represented by a BV 
of N bits. Logical AND operations can be used to merge all 
the extracted BVs to generate the final match result on FPGA. 
We show the basic architecture [5],[9] of BV-based 
approaches; FSBV approach can be visualized as a special 
case of s = 1. To access an N-bit data, wires of length O (N) 
are often used for the memory; as N increases, the clock rate 
of the entire pipeline deteriorates. 

 

 
 
Fig 1: Basic architecture of BV-based approaches. 
 

III. TWO-DIMENSIONAL PIPELINED 
ARCHITECTURE WITH SELF CONFIGURED 

MODULAR PE 
 

Modular PE: 
 

A modular PE is used to match a single packet header 
against one rule (N = 1) in a 1-bit subfield (s = 1). In order to 
minimize the number of I/O pins utilized, a modular PE is also 
responsible for propagating input packet headers to other PEs. 
A modular PE should be able to handle both prefix match and 
exact match. 

 
Fig 2: Modular Processing Element 

 
Let us consider the internal organization of a modular 

PE as shown in above figure. The main difference between the 
modular PE in above, and the PEs used in the basic pipelined 
architecture, is that the modular PE in figure only produces the 
match result for exactly 1 rule at a time     (2x1-bit data 
memory). The modular PE in this work has other components: 
 
1) Rule decoder: the logic-based rule decoder is mainly 
responsible for dynamic updates. 
2) s-bit register for input packet header: it is used in the 
construction of vertical pipelines. 

 
We denote the register buffering the input packet 

header bits as the input register; we denote the register after 
the AND gate as the output register. Similar to FSBV, for a 1-
bit subfield, the prefix rule can be handled efficiently. In 
above figure, the packet header bit is used to address the 
memory directly; the extracted BV is then ANDed with the 
BV output from the previous PE in the pipeline. A rule 
requiring exact match can be treated as a special case of a 
prefix rule. Hence we do not introduce any other new 
components for exact match. 

 
2–Dimensional    pipelined architecture: 
 

In the basic pipelined architecture, the BVs in each 
PE for N rules are N- bit long. For distributed RAM 
(distRAM) or Block RAM (BRAM) modules of fixed size, the 
number of memory modules required for each PE grows 
linearly with respect to N. This means the length of the longest 
wire connecting different memory modules in a PE also 
increases at O (N) rate, which degrades the throughput of the 
pipeline for large N. To handle a larger number of rules and 
more input packet header bits, we use multiple modular PEs to 
construct a complete 2 dimensional pipelined architecture. We 
use PE [l,j] to denote the modular PE located in the l-th row 
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and j-th column, where l = 0,1,2,3 and j = 0,1,2. We use 
distRAM for the data memory in each PE, so that the overall 
architecture can be easily fit on FPGA and the memory access 
in each PE is localized. 

 
We are using incorporate range search method, in this 

method, two values are loaded at each pipeline stage, per rule 
the packet header value is checked against both lower and 
upper bound of rules. These values either can be stored locally 
in the pipeline stage or stored in stage memory. In the 
incorporate range search, stages do not require storage of 
entire bits. In the pipeline architecture each individual bit is 
independent on the other bits therefore partitioning is possible. 
Therefore there is no requirement to load all N bits at each 
pipeline stage, only N/P bits are required to load in pipeline 
stage, where P is number of partitions. Thus memory 
bandwidth requirement is decreased. XNOR gate is used for 
comparison of rules and header field. Rules and header field 
are the inputs of XNOR gate, due to use of XNOR gate we 
eliminate the generation of bit vectors by field splitting which 
improves the memory. Bits of header field are used as address 
to stage memory. The output bit vector of stage memory and 
the bit-vector generated from the previous stage are bitwise 
ANDed together and generate final bit vector of the current 
stage and the priority encoder find out the highest priority 
match from the resultant bit-vector. 

 
We define horizontal direction as the forward (right) 

or backward (left) direction along which the BVs are 
propagated. We use output registers of modular PEs to 
construct horizontal pipelines (e.g., PE [0,0], PE [0,1], and PE 
[0,2]). The data propagated in the horizontal pipelines mainly 
consist of BVs. 

 
The below diagram shows the 2 dimensional 

pipelined architecture for multi field packet classification. The 
processing elements are arranged in a 2 dimensional pipelined 
passion. 

 
Fig 3: A 2 dimensional pipelined architecture (N=4, L=3) and 

priority encoders 

Dynamic updates; 
 
Open Flow packet classification requires the 

hardware to adapt to frequent incremental updates for the rule 
set during run-time. In this section, we propose a dynamic 
update scheme which supports fast incremental updates of the 
rule set without sacrificing the pipeline performance. 
 
Modification 
 

After the RID check, suppose RID R already exists in 
the rule set; Rule modification can be performed as: Given a 
rule with RID R, along with all of its field values and priority, 
compute the up-to-date BVs, and replace the outdated BVs in 
the BV arrays with the up-to-date BVs. In any subfield, a rule 
is represented by a ternary string {0,1,*}s. In reality, a rule is 
represented by two binary strings, the first string specifying 
the non-wildcard ternary digits while the second string 
specifying the wildcards. 
 

 
Fig 4: modifying R2 

 
Modifying Prefix Rule: 

 

 
 
The BVs are arranged in an orthogonal direction to 

the rules in the data memory. To modify a single rule, 2s 
memory write accesses are required in the worst case. As can 
be seen later, even in the worst case, no more than 2s bits are 
modified in our approach. We show an example for rule 
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modification in above figure. In this example, we modify the 
subfield j = 0 of the rule R2 in Figure 4. In this subfield, based 
on Algorithm 1 [9], R2 is to be updated from “0*” to“1*”. A 
naive solution is to update the entire BV array. However, since 
we exploit distRAM for data memory, each bit of a BV is 
stored in one distRAM Entry; this means every bit 
corresponding to a rule can be modified independently. Hence 
in above figure, to update the subfield j = 0 of R2, only 4 bits 
have to be modified (in 4 memory accesses). To avoid data 
conflicts, memory write accesses are configured as single-
ported. Hence in any subfield, we always allocate 2s clock 
cycles for 2s memory write accesses (worst case) for 
simplicity. 

 
If the update process requires the priority of the old 

rule to be changed, i.e., the new rule and the old rule have 
different priorities; we update the priority encoders based on a 
dynamic tree structure. The time complexity to update the 
dynamic tree is O (log N). In general, if a prioritized rule set 
requires prefix match to be performed, the parallel time 
complexity for modifying a rule is O(max[2s,log N]). 

 
Deletion: 

After the RID check, suppose RID R already exists in 
the rule set; Rule deletion can be performed as: Given a RID 
R, delete the rule with RID Ri from the rule set. i.e., Ri should 
no longer produce any matching result. To handle rule 
deletion, let us first consider all the n rules handled by a 
particular horizontal pipeline consisting of [L/S] PEs. We 
propose to use n valid bits to keep track of all the n rules. A 
valid bit is a binary digit indicating the validity of a specific 
rule. A rule is valid only if its corresponding valid bit is set to 
“1”. 

 
For a rule to be deleted, we reset its corresponding 

valid bit to “0”. An invalid rule is not available for producing 
any match result. We show an example for rule deletion in 
below figure. In this example, initially R0 and R1 are valid; 
R2 is invalid. R1 is to be deleted from the rule set. During the 
deletion, the valid bit corresponding to R1 is reset to “0”. The 
n valid bits are directly ANDed with the bit vector of length n 
propagated through the horizontal pipeline. As a result, if a 
rule is invalid, the corresponding position for this rule in the 
final AND result can only be “0”, indicating the input does no 
match this rule. 

 
 Fig 5: Deleting an old rule 

 
Insertion: 
 

After the RID check, suppose RID R does not exist in 
the rule set; Rule insertion can be performed as: Given a rule 
with RID R, along with all of its field values and priority, add 
the new rule with RID R into the rule set. i.e., checks the valid 
bits, and modifies one of the invalid rules and validates the 
new rule. 

To insert a rule, (1) we first check whether there is 
any invalid rule in the rule set; we denote this process as 
validity check. (2) Then we reuse the location of any invalid 
rule to insert the new rule: we modify one of the invalid rules 
into the new rule by following the same algorithm presented. 
Finally, we validate this new rule by updating its 
corresponding valid bit. 

The below figure shows how to insert a new rule. A 
new rule can be inserted by changing the rule value. Before 
that the RID check is performed whether the new rule inserted 
is present in the rules which are used before. 

 

 
Fig 6: Inserting a new rule R as R2 

 
Above figure shows an example of rule insertion in a 

subfield. In this figure, initially rule R2 is invalid as indicated 
by the valid bit. During insertion, the locality in the BV array 
corresponding to R2 is reused by the new rule R. We validate 
the new rule R by setting its valid bit to “1”. 
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IV. TWO DIMENSIONAL PIPELINED 
ARCHITECTURE USING MODULAR PE WITH 

PARITY GENERATOR  
 

Modular PE with parity generator 
 

The below diagram explains the concept of 
classifying the packets while providing dynamic updates along 
with parity-generator.      

 
Fig 7: Modular PE with parity generator 

 
The parity generator generates the parity value for the 

input bit vectors which are to be matched. For this purpose the 
XOR operation for the bit vector bit by bit individually. The 
corresponding parity value is set for the input bit vectors. The 
header fields are checked for packet matching with the given 
rules by performing XNOR operation. The result of XNOR 
operation gives individual bit vectors. All the bit vectors are 
merged to get the final output by performing and operation for 
the partial results. The final output is considered as matched 
output. The party values are also generated for the contents in 
the data memory. 

 
 If the parity of input bit vector matched with any of 

the contents in the data memory then that corresponding bit 
vector is the final bit vector of the output and the final output 
is said to be matched. The searching speed is also increased 
due to reduction in complexity and reduction in parameter 
comparison operations. By using parity bits, delay for each 
search operation is reduced. Hence, it boosts the search speed 
of parallel CAM. We employ dual-port (read) data memory on 
FPGA. Two concurrent packets can be processed in each 
modular PE. the input BVs for the two concurrently processed 
packets as bv1in and bv2in, respectively; we denote the output 
BVs for the two concurrent packets as bv1out and bv2out, 
respectively. The throughput is twice the maximum clock rate 
achieved on FPGA. Assuming the same clock rate can be 
sustained, this technique doubles the throughput achieved by 
the modular PE. For each of the two concurrent packets, the 
modular PE compares an s-bit subfield of the packet header 
against a set of n rules. 

 

V. EXPERIMENTAL RESULTS 
 

We conducted experiments using Xilinx ise design 
suite 14.5, targeting on FPGA.   

 
Fig8: Output waveforms for Multi field packet classification 

with parity 
 
In our approach, the construction of BVs does not 

explore any rule set features, the performance of our 
architecture is rule set independent. 

 
the shape or morphology in an image. According to 

the Comparision of Existed and Proposed Approach (S=2, 
L=4, N=8): 
 
S:Stride, L:Packet header length, N:Size of the rule set 
 

Table 1: Comparision of Existed and Proposed Approach 
(S=2, L=4, N=8) 

Parameters Decompositi
on based 
self-
reconfigurab
le PEs on 
FPGA 

Decompositi
on based 
self-
reconfigurab
le PEs with 
Parity 
generator on 
FPGA 

Latency(ns) 4.114 4.040 

Time(ns)  15.339 12.338 

Clockrate 
(MHz) 

65.2 81.05 

 
VI. CONCLUSION 

 
Due to increase in demand of data, it is a great 

challenge to develop rule set independent solutions for next 
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generation packet classification that supports larger rule set 
and more packet header fields. In this project dynamically 
updatable packet classification using parity generator is 
implemented which rule is set independent and reduces the 
look up operations and enhances the search speed. With the 
addition of extra parity block the delay is also reduced. 
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