
IJSART - Volume 2 Issue 12–DECEMBER2016 ISSN [ONLINE]: 2395-1052

Page | 105 www.ijsart.com

High Speed Packet Classification Using FPGA

M.Monika1, M.Adiseshaiah2

1, 2Department of ECE
1DVR & Dr. HS MIC College of Technology, Kanchikacherla, A.P

2Assistant Professor, DVR & Dr. HS MIC College of Technology, Kanchikacherla, A.P

Abstract-Performing Packet classification effectively in
network infrastructure is becoming a major challenge because
of demand in increasing throughput and speed of
enhancement. Many previous techniques which are used for
packet classification focused on throughput only and they
cannot reduce the searching speed. So a dynamically
updatable packet classification along with parity generator is
proposed to enhance the speed of searching by reducing the
number of comparison operations. A special hardware
support is an attractive alternative to enhance the speed of
operation. The time required for classifying a packet in
network infrastructure is reduced greatly. This technique
enhances the searching speed and also reduces the
propagation delay.

Keywords-Packet classification, pipelined architecture, FPGA,
Dynamic updates

I. INTRODUCTION

SOFTWARE Defined Networking (SDN) has been
proposed as a novel architecture for enterprise networks. SDN
separates the software-based control plane from the hardware-
based data plane; as a flexible protocol, Open Flow[10] can be
used to manage network traffic between the control plane and
the data plane. One of the kernel function Open-Flow
performs is the flow table lookup[11]. The flow table lookup
requires multiple fields of the incoming packet to be examined
against entries in a prioritized flow table. This is similar to the
classic multi-field packet classification mechanism[12]. hence
we use interchangeably the flow table lookup and the
OpenFlow packet classification in this paper. The major
challenges of packet classification include: (1) supporting
large rule sets (up to 100K rules), (2) sustaining high
performance (over millions of packets per second[2]), and (3)
facilitating dynamic updates. Many existing solutions for
multifield packet classification employ Ternary Content
Addressable Memories (TCAMs[13,14]). TCAMs cannot
support efficient dynamic updates; for example, a rule to be
inserted can move across the entire rule set. This is an
expensive operation. TCAMs are not scalable with respect to
the rule set size. Besides they are also very power-hungry.
Field Programmable Gate Array (FPGA) technology has been
widely used to implement algorithmic solutions for real-time

applications. FPGA-based packet classification engine can
achieve very high throughput for rule sets of moderate size.
However, as the number of packet header fields or the rule set
size increases (e.g., OpenFlow packet classifi- cation), FPGA-
based approaches often suffer from clock rate degradation.
Future Internet applications require the hardware to perform
frequent incremental updates and adaptive processing.
Because it is prohibitively expensive to reconstruct an optimal
architecture repeatedly for timely updates, many sophisticated
solutions have been proposed for packet classification
supporting dynamic updates over the years. Due to the rapid
growth of the network size and the bandwidth requirement of
the Internet, it remains challenging to design a flexible and
run-time reconfigurable hardware-based engine without
compromising any performance.

II. RELATED WORK

Packet classification can be broadly categorized into

Decision Tree based, Decomposition based.

Decision-tree-based approaches involve cutting the

search space recursively into smaller subspaces based on the
information from one or more fields in the rule. In a decision
tree is mapped onto a pipelined architecture on FPGA; for a
rule set containing 10K rules, a throughput of 80Gbps is
achieved for packets of minimum size (40 bytes). However,
the performance of decision-tree-based approaches is rule-set-
dependent. A cut in one field can lead to duplicated rules in
other fields (rule set expansion). As a result, a decision-tree
can use up to O(Nd) memory. This approach can be
impractical.

Decomposition-based approaches first search each

packet header field individually. The partial results are then
merged to produce the final result. To merge the partial results
from all the fields, hash-based merging techniques can be
explored. however, these approaches either require expensive
external memory accesses, or rely on a second hard ware
module to solve hash collisions.

BV-based approach:

IJSART - Volume 2 Issue 12–DECEMBER2016 ISSN [ONLINE]: 2395-1052

Page | 106 www.ijsart.com

Field-Split BV (FSBV) approach [9] and its variants
split each field into multiple subfields of s-bits; a rule is
mapped onto each subfield as a ternary string. Lookup
operations can be performed in all the subfields in a pipelined
fashion; the partial result in each PE1 is represented by a BV
of N bits. Logical AND operations can be used to merge all
the extracted BVs to generate the final match result on FPGA.
We show the basic architecture [5],[9] of BV-based
approaches; FSBV approach can be visualized as a special
case of s = 1. To access an N-bit data, wires of length O (N)
are often used for the memory; as N increases, the clock rate
of the entire pipeline deteriorates.

Fig 1: Basic architecture of BV-based approaches.

III. TWO-DIMENSIONAL PIPELINED
ARCHITECTURE WITH SELF CONFIGURED

MODULAR PE

Modular PE:

A modular PE is used to match a single packet header
against one rule (N = 1) in a 1-bit subfield (s = 1). In order to
minimize the number of I/O pins utilized, a modular PE is also
responsible for propagating input packet headers to other PEs.
A modular PE should be able to handle both prefix match and
exact match.

Fig 2: Modular Processing Element

Let us consider the internal organization of a modular

PE as shown in above figure. The main difference between the
modular PE in above, and the PEs used in the basic pipelined
architecture, is that the modular PE in figure only produces the
match result for exactly 1 rule at a time (2x1-bit data
memory). The modular PE in this work has other components:

1) Rule decoder: the logic-based rule decoder is mainly
responsible for dynamic updates.
2) s-bit register for input packet header: it is used in the
construction of vertical pipelines.

We denote the register buffering the input packet

header bits as the input register; we denote the register after
the AND gate as the output register. Similar to FSBV, for a 1-
bit subfield, the prefix rule can be handled efficiently. In
above figure, the packet header bit is used to address the
memory directly; the extracted BV is then ANDed with the
BV output from the previous PE in the pipeline. A rule
requiring exact match can be treated as a special case of a
prefix rule. Hence we do not introduce any other new
components for exact match.

2–Dimensional pipelined architecture:

In the basic pipelined architecture, the BVs in each
PE for N rules are N- bit long. For distributed RAM
(distRAM) or Block RAM (BRAM) modules of fixed size, the
number of memory modules required for each PE grows
linearly with respect to N. This means the length of the longest
wire connecting different memory modules in a PE also
increases at O (N) rate, which degrades the throughput of the
pipeline for large N. To handle a larger number of rules and
more input packet header bits, we use multiple modular PEs to
construct a complete 2 dimensional pipelined architecture. We
use PE [l,j] to denote the modular PE located in the l-th row

IJSART - Volume 2 Issue 12–DECEMBER2016 ISSN [ONLINE]: 2395-1052

Page | 107 www.ijsart.com

and j-th column, where l = 0,1,2,3 and j = 0,1,2. We use
distRAM for the data memory in each PE, so that the overall
architecture can be easily fit on FPGA and the memory access
in each PE is localized.

We are using incorporate range search method, in this

method, two values are loaded at each pipeline stage, per rule
the packet header value is checked against both lower and
upper bound of rules. These values either can be stored locally
in the pipeline stage or stored in stage memory. In the
incorporate range search, stages do not require storage of
entire bits. In the pipeline architecture each individual bit is
independent on the other bits therefore partitioning is possible.
Therefore there is no requirement to load all N bits at each
pipeline stage, only N/P bits are required to load in pipeline
stage, where P is number of partitions. Thus memory
bandwidth requirement is decreased. XNOR gate is used for
comparison of rules and header field. Rules and header field
are the inputs of XNOR gate, due to use of XNOR gate we
eliminate the generation of bit vectors by field splitting which
improves the memory. Bits of header field are used as address
to stage memory. The output bit vector of stage memory and
the bit-vector generated from the previous stage are bitwise
ANDed together and generate final bit vector of the current
stage and the priority encoder find out the highest priority
match from the resultant bit-vector.

We define horizontal direction as the forward (right)

or backward (left) direction along which the BVs are
propagated. We use output registers of modular PEs to
construct horizontal pipelines (e.g., PE [0,0], PE [0,1], and PE
[0,2]). The data propagated in the horizontal pipelines mainly
consist of BVs.

The below diagram shows the 2 dimensional

pipelined architecture for multi field packet classification. The
processing elements are arranged in a 2 dimensional pipelined
passion.

Fig 3: A 2 dimensional pipelined architecture (N=4, L=3) and

priority encoders

Dynamic updates;

Open Flow packet classification requires the

hardware to adapt to frequent incremental updates for the rule
set during run-time. In this section, we propose a dynamic
update scheme which supports fast incremental updates of the
rule set without sacrificing the pipeline performance.

Modification

After the RID check, suppose RID R already exists in
the rule set; Rule modification can be performed as: Given a
rule with RID R, along with all of its field values and priority,
compute the up-to-date BVs, and replace the outdated BVs in
the BV arrays with the up-to-date BVs. In any subfield, a rule
is represented by a ternary string {0,1,*}s. In reality, a rule is
represented by two binary strings, the first string specifying
the non-wildcard ternary digits while the second string
specifying the wildcards.

Fig 4: modifying R2

Modifying Prefix Rule:

The BVs are arranged in an orthogonal direction to

the rules in the data memory. To modify a single rule, 2s
memory write accesses are required in the worst case. As can
be seen later, even in the worst case, no more than 2s bits are
modified in our approach. We show an example for rule

IJSART - Volume 2 Issue 12–DECEMBER2016 ISSN [ONLINE]: 2395-1052

Page | 108 www.ijsart.com

modification in above figure. In this example, we modify the
subfield j = 0 of the rule R2 in Figure 4. In this subfield, based
on Algorithm 1 [9], R2 is to be updated from “0*” to“1*”. A
naive solution is to update the entire BV array. However, since
we exploit distRAM for data memory, each bit of a BV is
stored in one distRAM Entry; this means every bit
corresponding to a rule can be modified independently. Hence
in above figure, to update the subfield j = 0 of R2, only 4 bits
have to be modified (in 4 memory accesses). To avoid data
conflicts, memory write accesses are configured as single-
ported. Hence in any subfield, we always allocate 2s clock
cycles for 2s memory write accesses (worst case) for
simplicity.

If the update process requires the priority of the old

rule to be changed, i.e., the new rule and the old rule have
different priorities; we update the priority encoders based on a
dynamic tree structure. The time complexity to update the
dynamic tree is O (log N). In general, if a prioritized rule set
requires prefix match to be performed, the parallel time
complexity for modifying a rule is O(max[2s,log N]).

Deletion:

After the RID check, suppose RID R already exists in
the rule set; Rule deletion can be performed as: Given a RID
R, delete the rule with RID Ri from the rule set. i.e., Ri should
no longer produce any matching result. To handle rule
deletion, let us first consider all the n rules handled by a
particular horizontal pipeline consisting of [L/S] PEs. We
propose to use n valid bits to keep track of all the n rules. A
valid bit is a binary digit indicating the validity of a specific
rule. A rule is valid only if its corresponding valid bit is set to
“1”.

For a rule to be deleted, we reset its corresponding

valid bit to “0”. An invalid rule is not available for producing
any match result. We show an example for rule deletion in
below figure. In this example, initially R0 and R1 are valid;
R2 is invalid. R1 is to be deleted from the rule set. During the
deletion, the valid bit corresponding to R1 is reset to “0”. The
n valid bits are directly ANDed with the bit vector of length n
propagated through the horizontal pipeline. As a result, if a
rule is invalid, the corresponding position for this rule in the
final AND result can only be “0”, indicating the input does no
match this rule.

 Fig 5: Deleting an old rule

Insertion:

After the RID check, suppose RID R does not exist in
the rule set; Rule insertion can be performed as: Given a rule
with RID R, along with all of its field values and priority, add
the new rule with RID R into the rule set. i.e., checks the valid
bits, and modifies one of the invalid rules and validates the
new rule.

To insert a rule, (1) we first check whether there is
any invalid rule in the rule set; we denote this process as
validity check. (2) Then we reuse the location of any invalid
rule to insert the new rule: we modify one of the invalid rules
into the new rule by following the same algorithm presented.
Finally, we validate this new rule by updating its
corresponding valid bit.

The below figure shows how to insert a new rule. A
new rule can be inserted by changing the rule value. Before
that the RID check is performed whether the new rule inserted
is present in the rules which are used before.

Fig 6: Inserting a new rule R as R2

Above figure shows an example of rule insertion in a

subfield. In this figure, initially rule R2 is invalid as indicated
by the valid bit. During insertion, the locality in the BV array
corresponding to R2 is reused by the new rule R. We validate
the new rule R by setting its valid bit to “1”.

IJSART - Volume 2 Issue 12–DECEMBER2016 ISSN [ONLINE]: 2395-1052

Page | 109 www.ijsart.com

IV. TWO DIMENSIONAL PIPELINED
ARCHITECTURE USING MODULAR PE WITH

PARITY GENERATOR

Modular PE with parity generator

The below diagram explains the concept of
classifying the packets while providing dynamic updates along
with parity-generator.

Fig 7: Modular PE with parity generator

The parity generator generates the parity value for the

input bit vectors which are to be matched. For this purpose the
XOR operation for the bit vector bit by bit individually. The
corresponding parity value is set for the input bit vectors. The
header fields are checked for packet matching with the given
rules by performing XNOR operation. The result of XNOR
operation gives individual bit vectors. All the bit vectors are
merged to get the final output by performing and operation for
the partial results. The final output is considered as matched
output. The party values are also generated for the contents in
the data memory.

 If the parity of input bit vector matched with any of

the contents in the data memory then that corresponding bit
vector is the final bit vector of the output and the final output
is said to be matched. The searching speed is also increased
due to reduction in complexity and reduction in parameter
comparison operations. By using parity bits, delay for each
search operation is reduced. Hence, it boosts the search speed
of parallel CAM. We employ dual-port (read) data memory on
FPGA. Two concurrent packets can be processed in each
modular PE. the input BVs for the two concurrently processed
packets as bv1in and bv2in, respectively; we denote the output
BVs for the two concurrent packets as bv1out and bv2out,
respectively. The throughput is twice the maximum clock rate
achieved on FPGA. Assuming the same clock rate can be
sustained, this technique doubles the throughput achieved by
the modular PE. For each of the two concurrent packets, the
modular PE compares an s-bit subfield of the packet header
against a set of n rules.

V. EXPERIMENTAL RESULTS

We conducted experiments using Xilinx ise design
suite 14.5, targeting on FPGA.

Fig8: Output waveforms for Multi field packet classification

with parity

In our approach, the construction of BVs does not

explore any rule set features, the performance of our
architecture is rule set independent.

the shape or morphology in an image. According to

the Comparision of Existed and Proposed Approach (S=2,
L=4, N=8):

S:Stride, L:Packet header length, N:Size of the rule set

Table 1: Comparision of Existed and Proposed Approach
(S=2, L=4, N=8)

Parameters Decompositi
on based
self-
reconfigurab
le PEs on
FPGA

Decompositi
on based
self-
reconfigurab
le PEs with
Parity
generator on
FPGA

Latency(ns) 4.114 4.040

Time(ns) 15.339 12.338

Clockrate
(MHz)

65.2 81.05

VI. CONCLUSION

Due to increase in demand of data, it is a great

challenge to develop rule set independent solutions for next

IJSART - Volume 2 Issue 12–DECEMBER2016 ISSN [ONLINE]: 2395-1052

Page | 110 www.ijsart.com

generation packet classification that supports larger rule set
and more packet header fields. In this project dynamically
updatable packet classification using parity generator is
implemented which rule is set independent and reduces the
look up operations and enhances the search speed. With the
addition of extra parity block the delay is also reduced.

REFERENCES

[1] Yun R. Qu and Viktor K. Prasanna,” High-performance

and Dynamically Updatable Packet Classification Engine
on FPGA” IEEE, 2015.

[2] Y. R. Qu, S. Zhou, and V. K. Prasanna, “High-
performance architecture for dynamically updatable
packet classification on FPGA,” in ACM/IEEE Symp on
Architectures for Networking and Communications
Systems (ANCS), 2013, pp. 125–136.

[3] Z. P. Ang, A. Kumar, and Y. Ha, “High Speed Video
Processing Using Fine-Grained Processing on FPGA
Platform,” in Proc. of IEEE International Symposium on
Field-Programmable Custom Computing Machines
(FCCM), 2013, pp. 85–88.

[4] R. Salvador, A. Otero, J. Mora, E. de la Torre, T. Riesgo,
and L. Sekanina, “Self-Reconfigurable Evolvable
Hardware System for Adaptive Image Processing,” IEEE
Transactions on Computers, vol. 62, no. 8, pp. 1481–
1493,2013

[5] T. Ganegedara and V. K. Prasanna, “StrideBV: Single
Chip 400G+ Packet Classification,” in Proc. of IEEE
International Conference on High Performance Switching
and Routing (HPSR), 2012, pp. 1–6.

[6] L. Frigerio, K. Marks, and A. Krikelis, “Timed Coloured
Petri Nets for Performance Evaluation of DSP
Applications: The 3GPP LTE Case Study,” in VLSI-SoC:
Design Methodologies for SoC and SiP. Springer Berlin
Heidelberg, 2010, vol. 313, pp. 114–132.

[7] Y.-H. E. Yang and V. K. Prasanna, “High Throughput
and Large CapacityPipelined Dynamic Search Tree on
FPGA,” in Proc. of ACM/SIGDA International Symp. on
Field Programmable Gate Arrays (FPGA), 2010, pp. 83–
92.

[8] A. Sudarsanam, R. Barnes, J. Carver, R. Kallam, and A.
Dasu, “Dynamically Reconfigurable Systolic Array
Accelerators: A Case Study with Extended Kalman
Filter and Discrete Wavelet Transform Algorithms,”

Computers Digital Techniques, IET, vol. 4, no. 2, pp.
126–142, 2010.

[9] W. Jiang and V. K. Prasanna, “Field-split Parallel
Architecture for High Performance Multi-match Packet
Classification using FPGAs,” in Proc. of Annual Symp.
on Parallelism in Algs. And Arch. (SPAA), 2009, pp.
188–196.

[10] N. McKeown, T. Anderson, H. Balakrishnan, G.
Parulkar,L. Peterson, J. Rexford, S. Shenker, and J.
Turner, “OpenFlow:Enabling Innovation in Campus
Networks,” SIGCOMM Comput. Commun. Rev., vol. 38,
no. 2, pp. 69–74, 2008.

[11] “OpenFlow Switch Specification
V1.3.1,”https://www.opennetworking.org/images/stories/
downloads/sdnresources/onf-
specifications/openflow/openflow-spec-1.3.1.pdf.

[12] P. Gupta and N. McKeown, “Algorithms for packet
classification,” IEEE Network, vol. 15, no. 2, pp. 24–32,
2001.

[13] F. Yu, R. H. Katz, and T. V. Lakshman, “Efficient
Multimatch Packet Classification and Lookup with
TCAM,” IEEE Micro,vol. 25, no. 1, pp. 50–59, 2005.

[14] K. Lakshminarayanan, A. Rangarajan, and S.
Venkatachary, “Algorithms for Advanced Packet
Classification with Ternary CAMs,” SIGCOMM Comput.
Commun. Rev., vol. 35, no. 4, pp. 193–204, 2005.

