
IJSART - Volume 2 Issue 11 –NOVEMBER 2016 ISSN [ONLINE]: 2395-1052

Page | 66 www.ijsart.com

Company Transmogrification using OOP Concepts

Priyanka K R1, Shruthi B M2

1, 2 Department of CSE
1, 2 GSSS Institute of Engineering and Technology for Women, Mysuru, India

Abstract- Object-oriented modeling (OOM) is a common
approach to modeling applications, systems, and business
domains by using the object-oriented paradigm throughout the
entire development life cycles. OOM is a main technique
heavily used by both OOA and OOD activities in modern
software engineering. However, the lack of an organized work
plan has spelt the doom of those who jumped on corporate
object orientation without a precise growth plan. Object
orientation, however, promises to relieve the company from
the ever-increasing necessity to adapt every product as soon
as a requirement change occurs, by limiting the changes to a
restricted number of well-identified code fragments. This
paper presents an account of how object-oriented software
development was introduced in companies, the foundation of
understanding object orientation, and the hurdles to
overcome, in the process of building a reusable application
framework.

Keywords- Encapsulation, Inheritance, Polimorphism, Object-
oriented modeling (OOM), Object Oriented Analysis (OOA), Object
Oriented Design (OOD).

I. INTRODUCTION

Object-oriented programming is an everyday “task”
for research institutions, but how is it going to happen in a
business institution? Which applications are really object-
oriented and which aren't? And, above all, is this approach
really a winning approach?

Office automation software and basic office software
has recently known a very rapid evolution, which has favored
downsizing and rightsizing of information systems in the great
majority of companies, and that imposed windows as a client
platform for all business software. This tendency has created a
request for business applications that are more and more
versatile and sophisticated, and integrated with office
automation applications. Above all, the expectations of
medium-level users have grown to the point at which they
now require their software to adapt to the workflow in the
company in a very rapid and cost-effective ways. Users
demand that their word processor, which allows them to
typeset pages at their best, be used also for other documents
besides letters to their clients. Specifically, they want to be
free to send formatted letters regarding all financial measures
including cash flow and balances. Conversely, a program as

versatile as a spreadsheet should be able to be customized in
order to provide better client handling policies such as
discounts and price application politics.

These expectations reflect the modern marketing
schemes for software companies that consider software and
hardware as a plastic and easily reconfigurable continuum.
This is completely different from what was normal to expect
in the information systems just about ten years ago.

Corporate software developers need to be able to
cope with the current reality of office automation. The new
generation of products has to cope with the issues of
versatility, cost-effectiveness, continuous improvement,
adaptation to company workflow, and easy configurability.
These issues are very difficult to cope with, since the price of
the products must not increase. In addition to this, there is the
additional complication of mass production driven by global
economy, thus making the task of software development
nearly impossible to accomplish.

The scenario for business software of these last five
to six years has seen the sudden born of the "Second
Republic" for business software, with the net distinction
between operators that have abandoned the technological
challenge, continuing to propose traditional solutions (destined
to inevitable oblivion), and those who have tried and found
adequate instruments to keep the pace with times (Figure 1).

It is no longer possible to develop software from
scratch. There is a tremendous advantage in taking parts that
are already developed, and to modify them, assembling them
to obtain the final result. For a single developer, this “recipe”
seems simple, and since there are increasingly many object-
oriented frameworks being sold, business software houses
have tempted to go that way. Although at the beginning the
experience is always positive, later development mutates into
an impossibly hard task: how is it possible? Is the new object-
oriented "religion" treacherous? In order to understand the
correct avenue to undertake at our software house, we decided
to evaluate the various avenues.

The approach chosen for object-oriented software
construction will be presented, and evaluated. At the end, of
the paper, there will be a conclusion section illustrating the

IJSART - Volume 2 Issue 11 –NOVEMBER 2016 ISSN [ONLINE]: 2395-1052

Page | 67 www.ijsart.com

result of applying object orientation to our selected software
development group.

II. PROPOSED APPROACH

Firstly, make a distinction between real object-
oriented programming and what is proposed as object-oriented
programming but in reality it is not. Traditional object-
oriented programming is based on three main concepts:
Inheritance, Encapsulation and Polymorphism. This means
that new objects can always be derived from pre-existing
objects by inheritance. This would give us a very good
advantage in that we would be able to improve objects simply
by driving them. Also, it would be possible for us to create
abstract objects that encapsulate the basic rules for business
procedures. This would allow us to conceive an object as
combination of two parts: the first part is the fixed part that is
contained in the abstract class. The second part is the variable
part, which is implemented through the new object, changing
as soon as the rules change (for example, fiscal regulations
change every year or so).

These possibilities, however, would be useless
without a means to capture and exchange experience. This was
made possible, at least in the beginning, by libraries. In object-
oriented programming, libraries become frameworks.
Application frameworks take some time to get used to, as they
are philosophically different from the library concepts
previously used. In order to effectively begin the construction
of a software program that complies with object orientation, it
is necessary to choose appropriately not only the library that
will build the program, but also the framework into which the
program will be contained. We had no other way but to choose
to build our own framework. However, this was very difficult
to realize until much later in the development stage. In the
beginning, in fact, it was even very difficult to choose the
correct language for object-oriented development. There are at

least three different languages that one can use to develop
software using the object oriented paradigm: C++, Smalltalk,
and Java.

For any single object-oriented programmer, it seems
very easy to choose one of those programming languages.
However, in corporate development, it is very important to
choose a strategy that leads to the most cost-effective solution.
At the same time, we wanted to continue and transmit and
transfer the experience that was proper to all the programmers
in our group. Therefore, the most obvious solution for
development was C++. Most of the development in the
previous products was made either in assembly language or in
C++ already. The C language had been used for some time
and had been abandoned after its imitations had become
apparent.

Many were the issues that we had to consider while
trying to develop a corporate basis for object-oriented
development. To begin with, we were really concerned with
having a language that allowed us to develop not just single
components, but also full-fledged applications. However, it
was very important to maintain complete flexibility, to
integrate in a market. Most of these segments have internal
corporate cultures where there has been some in-house
software development. Some of that software needs to be
preserved since it is usually the only repository for corporate
culture and, sometimes, databases. Thus, one of the first and
foremost requirements in these kinds of applications is to
develop software that is fully integrated with the existing
applications. The most important word is "flexibility" (Figure
2).

IJSART - Volume 2 Issue 11 –NOVEMBER 2016 ISSN [ONLINE]: 2395-1052

Page | 68 www.ijsart.com

This demand configures a alienation: on the one side,
there is the development for the market; on the other side,
there is the development for the final user. These two
development paradigms are different. User-oriented
development has to answer the demand of the public very
quickly. It is not possible to achieve that level of flexibility
just with object-oriented programming. In general, user-
oriented development tends to appeal to companies that
produce customized software for specific users. Market-
oriented software development, on the other hand, is more
complex, because it requires careful consideration of the
market, possibly involving thorough market analysis, and the
designation of a strategy to satisfy the largest customer base
by means of a careful analysis of the component base and the
development prioritized by component requirement. However,
market oriented software can take advantage of the traditional
distribution channel structure without having to be constrained
like the traditional package development.

The intent in a company was to build the starting
point that lets the employers free to concentrate on single
problems reusing the work already done. In modern terms, a
collection of reusable business software components is
required.

Initially, C++ could be chosen as the computer
language to develop all the software as at that time there was
no other language available for object-oriented software
development, but however even afterwards the platform wasn't
abandoned, as it was judged the most powerful and flexible
development platform we could find.

III. THE FIRST STEPS

The first problem tackled was that of reporting. We
chose this problem because it is the most general for
personalization. The result was WOORM, a report generator
put on the market starting from 1993 and to date integrated
with all our Windows software solutions. Someone might
think it’s a waste effort, since there are a very large number of
report generators available today on the market, but to have
not just built it, but also designed it, allowed us to incorporate
the many domain-specific characteristics for business
software. The result is that WOORM produces all printouts in
our applications, from simple customer directories to
consolidated balance sheets, with little effort. This specialized
component helped us save nearly one thousand development
hours in the following years (Figure 3).

The second problem is to solve data entry. The key
concept around which all business data entry has to revolve is
the business document. We created an abstract class that
encompassed the main features of the business document,
these being a header, a variable number of lines, each with
their own type, and one or more footer information packages.
The class must be able to create a document, modify it,
connect it to a database and save it, print it, in full autonomy.
This abstract class then is specialized in concrete classes that
give “birth” to the concrete business documents. Inheritance
insures that the properties of the base class remain, while
polymorphism insures that special behavior be encapsulated
where it is needed. In turn, every concrete object can be
further specialized, so that a deferred invoice, for example, is
identical to an interactive invoice, with the added capability to
build itself from the bills and slips already recorded in the
database. Other smart objects manipulate field entry, which
can involve dates, quantities, currency amounts, or codes
linked to extensible tables that allow further manipulation and
so on. The availability and high reusability of such
components and the presence of the underlying framework
saved several hundred hours per development cycle.

At this stage of development, employers of the
company realized that they had reached a crucial step: the
creation of a reusable code base flexible enough to be
integrated in every product they produced. This by-product
was a major result by itself. We called the resulting framework
Task Builder (Figure 4). Task Builder immediately became
apparent that it was a valuable commercial asset by itself. It
was then decided to commercialize it through our regular
market channel, targeting it to the advanced mid- to large-
sized company that has a software development unit and
highly customized business procedures (or processes, as many
were starting to say).

IJSART - Volume 2 Issue 11 –NOVEMBER 2016 ISSN [ONLINE]: 2395-1052

Page | 69 www.ijsart.com

IV. PUTTING IT ALL TOGETHER

The final step required is to make the creation of
complex business objects. There are many similarities in
simple accounting documents, mortgaging definitions, and
invoices, for example: in every case the debit must match the
credit, fiscal and internal enumerators must be incremented,
and so forth. Many documents also require very similar cross-
checks in the company’s databases. Most of the times, these
cross-checks are nearly the same, while what varies is the
subset of the databases that are joined to make the check.

The employers of the company decided to generate a
new set of abstract documents whose specializations would be
the business documents we usually work with. This gave birth
to a two-level structure: On one hand, there are two abstract
levels, one for documents, and the other for business objects.
On the other hand, concrete manifestations of the abstract
levels become specialized documents or business objects,
ready to work together in the final product (Figure 5).

This allows encapsulating all the business
components together. The initial framework is fully available
to developers, who can make every class specialized for
particular requirements, or compose a new object by means of
the framework’s primitives. We can then reach vertical
markets with comparatively small effort, building the vertical
component on the general-purpose elements we have in the
framework. This reduced the time to market, making highly
competitive in the current market. Component based
approaches do not have the cohesive structure that inheritance
provides, and as such often mislead developers.
Specialization, on the other hand, can be coupled with
composition, including the component based approach, with
no commotions.

V. CONCLUSIONS

We have developed a fully object-oriented
architecture that allows us to decouple the software
development teams from the competitive peer pressure and
from sudden changes in fiscal regulations. Our approach
benefits from inheritance and composition, and relies on a
framework that assigns precise responsibilities to every
business object. This makes it possible to avoid the lack of
direction in the component ware approach, giving us a unity of
purpose in the software development, and a unity of scope in
component augmentation.

VI. FUTURE ENHANCEMENTS

To enhance and expand the number of instruments
available enriches the dealer’s choices, who can better exploit
the consolidated know-how, or integrate the technologies from
separate vendors, in view of personalizing the application for
the needs of specific clients, with reduced times and costs. The
installation of the business components on distributed
architectures enhances their scalability and improves the

IJSART - Volume 2 Issue 11 –NOVEMBER 2016 ISSN [ONLINE]: 2395-1052

Page | 70 www.ijsart.com

interoperability and openness of the business information
system.

In future, we will see the integration of standard
interfaces such as COM and CORBA, so as to make them
usable also outside of our framework, and make them work in
a distributed architecture either in a client/server structure, or
in an Intranet (local components for full control) / Extranet
(Business to Business integration) / Internet (third party
support).

REFERENCES

[1] G. Booch, “Object-Oriented Analysis and Design with

Applications,” Cummings, 1991.

[2] G. Booch, J. Rumbaugh, and I. Jacobson, “The Unified
Modeling Language User Guide,” Second Edition,
Addison-Wesley, 1999.

[3] P. Coad and E. Yourdon, “Object-Oriented Analysis,”
Prentice-Hall, 1989.

[4] A. Cockburn, “Surviving Object-Oriented Projects: A
Manager's Guide,” Addison-Wesley, 1997.

[5] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W.
Lorensen, “Object-Oriented Modelling and Design,”
Prentice-Hall 1991.

[6] I. Jacobson, M. Griss, P. Johnsson, “Software Reuse,”
Addison-Wesley 1997.

[7] Microsoft Corporation, “MSDN Library,” DVDROM
edition, 2000.

