
IJSART - Volume 1 Issue 4 –APRIL 2015 ISSN [ONLINE]: 2395-1052

Page | 149 www.ijsart.com

UDP based Data Transfer Protocol over Fast Long

Distance Network

Prof. Shraddha Patel
1
, Prof. Kiran Acharya

2
, Prof. Manoj Patel

3

Department of Computer Engineering
1, 2, 3 Alpha College of Engineering & Technology, Khatraj, India

Abstract- many applications need to transfer bulk data, but

their requirements are not completely the same. A basic and

general requirement is high speed. Most applications require

stable and reliable transfer. Traditional TCP performs very

poorly over FLDnet. The main reason is its conservative

congestion control mechanism like slow start and congestion

avoidance and flow control mechanism UDP can transfer fast

over FLDnet.UDP has no reliable transfer mechanism like

sequence number, ACK and retransmission. Additionally,

UDP makes no flow control and congestion control like TCP.

So, it runs fast over FLDnet. But it's unreliable. If reliability is

added into UDP and the advantage of fast is kept, it will

satisfy the requirement of much e-Science application Based

on UDP, several new transfer protocols with reliability are

designed, such as Reliable Blast UDP (RBUDP), SABUL,

UDP-based Data Transport (UDT), Tsunami .They are

usually above the TCP and UDP and use UDP to transfer

data and TCP to transfer control information.

Keywords- transmission control protocol (TCP); Fast long

Distance Network(FLDnet),RBDU Reliable Blast UDP,UDP –

user datagram protocol,UDT-UDP based data transfer

protocol,Transmission control protocol.

I. INTRODUCTION

TCP variants still cannot satisfy the requirement of

bulk data transfer over FLDnet. Examples of large volumetric

datasets involved in these applications include satellite

weather data, astronomy observation data, and network

monitoring data. In the past these data were usually stored in

local storage and then were delivered or processed in a batch

mode. Today they can be transferred to a remote site in real

time and be processed there. Unfortunately, existing

applications cannot automatically utilize the high speed

networks when they move from the traditional Internet with

relatively lower speed. TCP significantly underutilizes the

bandwidth in high speed long distance networks. With this

background, we need a new transport protocol to support these

distributed data intensive applications.

So we want to design and develop a new protocol.

This new protocol is expected to make use of the bandwidth

 much more efficiently than TCP, while allowing them both to

share the network with fairness and friendliness.

II. UDP BASED PROTOCOL

Up to now, most researchers focus on modification

on TCP. But, there are still some researchers try to design new

protocols based on UDP. UDP is much simpler than TCP. It

merely adds ports to identify individual application processes

and a checksum to detect erroneous packets and simply

discard them.UDP has no reliable transfer mechanism like

sequence number, ACK and retransmission. Additionally, UDP

makes no low control and congestion control like TCP. So, it

runs fast over FLDnet. But it's unreliable. If reliability is

added into UDP and the advantage of fast is kept, it will

satisfy the requirement of many e-Science applications. There

is no protocol directly modified on UDP known to the authors.

UDP based protocols usually above the TCP and

UDP and use UDP to transfer data and TCP to transfer control

information. Based on UDP, RBUDP adds simple ACK and

retransmission mechanism to guarantee reliability. RBUDP

firstly uses UDP to continually transfer all the data, the

receiver keeps a tally of the packets that are received but gives

no ACK until it receives the finish signal DONE. SABUL is

an application level data transfer protocol for high bandwidth

delay product networks. It use rate based congestion control

that tunes the inter packet transmission time to achieve

efficiency and fairness.UDT is more complex than RBUDP

and it's similar to TCP. Based on UDP, in addition to add. For

reliability; UDT receiver sends selective acknowledgment

(SACK) at a fixed interval and sends negative

acknowledgment (NAK) once a loss is detected to explicitly

feedback packet loss. Reliability, UDT also adds congestion

control and flow control mechanism. The basic principle of

Tsunami is the same as RBUDP. Tsunami receiver periodically

(every 50 blocks) makes a retransmission request and

periodically calculates the current error rate and sends it to the

sender. Second, Tsunami adds rate-based congestion control

mechanism. The sender control the sending rate by adjusting

the inter-packet delay according to the error rate received.

http://www.scialert.net/asci/result.php?searchin=Keywords&cat=&ascicat=ALL&Submit=Search&keyword=congestion+control

IJSART - Volume 1 Issue 4 –APRIL 2015 ISSN [ONLINE]: 2395-1052

Page | 150 www.ijsart.com

2.1 RBUDP

Based on UDP, R111 'DP adds simple ACK and

retransmission mechanism to guarantee reliability. But it is

different from TCP's ACK. In TCP, receiver sends an ACK to

sender for each or every other received segment. This is too

frequent. Sending ACK takes up handling time and the ACK

packets also take up bandwidth. On other hand, in FLDnet,

because the RTT is large, after the sender sends out all the

packets allowed by window, it may has to wait for a long time

to receive the ACK.While, RBUDP firstly uses UDP to

continually transfer all the data, the receiver keeps a tally of

the packets that are received but gives no ACK until it

receives the finish signal DONE. Then, the receiver sends an

ACK consisting of a bitmap tally of the received packets by

TCP. The sender resends the missing packets and the process

repeats until no more packets need to be retransmitted. Uses

UDP for data traffic and TCP for signaling traffic. Estimates

available bandwidth on the network using Iperf/app_perf (this

requires user interaction i.e, NOT automated). Tries to send

just below this rate in “blasts” to avoid losses (payload = RTT

* Estimated BW). If losses do occur within a “blast”, TCP is

used to exchange loss reports. Lost packets are recovered by

retransmitting the lost packets in smaller “blasts”.

Advantages

Keeps the pipe as full as possible, Avoid TCP‟s per-

packet ack interaction, Provides analytical model- so

performance is “predictable”.

Disadvantages

Sending rate needs to be adjusted by the user (no

means of automatically adjusting sending rate in response to

the dynamic network conditions) -Thus the solution is good

ONLY in dedicated/QOS supported networks.

No flow control - a fast sender can flood a slow

receiver. Offered solution is to use app_perf (modified Iperf

developed by the authors to take into account the receiver

bottleneck) for bandwidth estimation.

Another problem is that because the sender has to

keep all the packets that have been sent for retransmission if

needed, if the file size is bigger than the memory, it can‟t be

done.

2.2 UDT

UDT is more complex than RBUDP and it's similar

to TCP. Based on UDP, in addition to add reliability, UDT

also adds congestion control and flow control mechanisms.

For reliability, UDT receiver sends selective acknowledgment

(SACK) at a fixed interval and sends negative

acknowledgment (NAK) once a loss is detected to explicitly

feedback packet loss. For congestion control, UDT adopts

DAIMD (AMID with decreasing increase) algorithm to adjust

sending rate (not congestion window size like TCP). To

differentiate congestion and error, UDT does not react to the

first packet loss, while decreases the sending rates i f there is

more than one packet loss in a congestion event. Additionally.

UDT uses receiver-based packet pairs to estimate the link

capacity. Like TCP, UDT also uses a low control window to

limit the number of unacknowledged packets.

2.2.1 Configurable congestion control

CCC provide tool for fast implementation

,deployment and evaluation of new congestion control

algorithms.CCC is one of the features included in the current

UDT.CCC is written in C++ and it provides a set of control

events handlers and parameters in a base C++ class. The

UDT/CCC library is at the application level and it does not

need root privilege to be installed. Meanwhile, it was specially

developed to require very UDT/CCC is Udp based data

transport library with configurable congestion control allow

user to make use of new congestion control algorithm through

simple few changes to the existing applications. Udt describes

its design, implementation, and evaluation.

Two orthogonal elements

The UDT protocol

The UDT congestion control algorithm

Protocol design & implementation

Functionality

Efficiency

Congestion control algorithm

Efficiency, fairness, friendliness, and stability

UDT protocol and the UDT congestion control algorithm.

 The UDT protocol can work with many different

congestion control algorithms

 Congestion control algorithm can be used in other

protocols. (For example, using it in TCP to form a

new TCP variant.)

 Protocol design and implementation decides the

functionalities of a protocol, and it also contributes

partly to the efficiency

IJSART - Volume 1 Issue 4 –APRIL 2015 ISSN [ONLINE]: 2395-1052

Page | 151 www.ijsart.com

 Congestion control algorithm decides the

characteristics of fairness, friendliness, stability, and

part of efficiency.

 Both of the two elements have an impact on the

efficiency. The former affects the efficiency through

the usage of the processor time, whereas the latter

through the tuning of data sending rate.

2.3.2 UDT OVERVIEW

 Applications make use of transport protocols such as

TCP through a socket API. To use UDT, applications interact

with the UDT socket API, while UDT uses system socket API

to transfer data over UDP.

Protocol Architecture

This is an abstract view of a UDT instance. The timer

is used to trigger various timeout events. In order to send user

data to another UDT instance, a single UDP channel is set up.

(Note that this channel only exists logically, as UDP is not

connection-oriented.) Sender A sends user data in UDP

packets to Receiver B. Each UDP packet is assigned a unique

sequence number and a timestamp. Receiver B will

periodically feedback acknowledgments and loss reports as

well.

2.4 Functionalities

The reliability control is provided by sequencing and

acknowledgment. Each UDT packet is assigned a unique

increasing sequence number. The receiver will send back

acknowledgments and loss reports according to packet arrival.

Lost packets will be retransmitted.

The streaming service is implemented in buffer

management.

UDT also has a series of mechanisms to set up,

maintain, and tear down a UDT connection.

Finally, each UDT instance has both a sender and

receiver, in order to provide duplex data transfer service.

• A UDT entity has two parts: the sender and the

receiver

• The sender is responsible for data packet sending and

the receiver is responsible for data packet receiving,

control packet sending and receiving, and timer

expiration detection.

• All data and control packets in both directions are

transferred between a pair of UDP ports.

• The receiver maintains 4 self-clocked timers, which

are queried after each time bounded UDP receiving.

• They are ACK, NAK,SYN, and EXP, for

acknowledging, loss report, rate control, and timer

out detection, respectively.

• ACK and SYN timers are constant and fixed in UDT,

while NAK and EXP timers are updated during the

runtime of UDT according to the RTT and current

data transfer speed.

Efficiency Consideration

 Less packets

 Timer-based acknowledging

 Less CPU time

 Reduce per packet processing time

 Reduce memory copy

IJSART - Volume 1 Issue 4 –APRIL 2015 ISSN [ONLINE]: 2395-1052

Page | 152 www.ijsart.com

 Reduce loss list processing time

 Light ACK vs. regular ACK

 Parallel processing

 Threading architecture

 Less burst in processing

 Evenly distribute the processing time

Application Programming Interface (API)

An application can make use of the UDT/CCC

library in four ways. The library provides a set of C++ API

that is very similar to the system socket API. Network

programmers can learn it easily and use it in a similar way as

using TCP sockets. In particular, applications can use the

setsockopt/getsockopt method to set and configure a specific

congestion control algorithm at run time.

UDT's congestion control algorithm.

 When we say "congestion control" here, we mean the

mechanism to effectively utilize the network

bandwidth. Another term, "flow control", is usually

used to name the approach to prevent incoming

traffic overwhelming the receiver. Congestion control

is a more difficult problem.

 Congestion control can tune the data sending rate in

two ways: limit the number of on-flight packets and

set the inter-packet time. TCP uses the window-based

approach, whereas UDT uses the rate-based

approach.

 The most common congestion control algorithm is

TCP's AIMD algorithm. We have already discussed

AIMD.

 Another important factor in congestion control is how

to indicate a network congestion. Most protocols use

packet loss information, including both TCP and

UDT. The increase in round trip time delay can also

indicate congestion somewhere along the network.

 Congestion control vs. flow control

 Congestion control: effectively utilize the

network bandwidth

 Flow control: prevent the receiver from

being overwhelmed by incoming packets

 Window-based vs. rate-based

 Window-based: tune the maximum number

of on-flight packets (TCP)

 Rate-based: tune the inter-packet sending

time (UDT)

 AIMD: additive increases multiplicative decreases

 Feedback

 Packet loss (Most TCP variants, UDT)

 Delay (Vegas, FAST)

The CCC Interface

We identify four categories of configuration features to

support configurable congestion control mechanisms. They are

1) Control Event Call backs

Seven basic call-back functions are defined in the

base CCC class.Init and close, onACK, onLoss, on Timeout,

onPktSent, onPktReceived, processCustomMsg.

2) Protocol Configuration

To accommodate certain control algorithms, some of

the protocol behaviour has to be customized. For example; a

control algorithm may be sensitive to the way that data

packets are acknowledged. UDT/CCC provides necessary

protocol configuration APIs for these purposes. Finally,

UDT/CCC also allows users to modify the values of RTT

(Round Trip Time) and RTO. A new congestion control class

can choose to use either the RTT value provided by UDT, or

its own calculated value. Similarly, the RTO value can also be

redefined. There are other features of the UDT protocol that

are either not related to congestion control or are helpful to

most control algorithms. These features, such as selective

acknowledgement (SACK) and robust reordering (RR) cannot

be configured by CCC users, although some of the features

can be configured through UDT interfaces.

3) Packet Extension

It is necessary to allow user-defined control packets

for a configurable protocol stack.

4) Performance Monitoring

Protocol performance information supports the

decisions and diagnosis of a control algorithm. The

IJSART - Volume 1 Issue 4 –APRIL 2015 ISSN [ONLINE]: 2395-1052

Page | 153 www.ijsart.com

performance monitor provides information including the

duration time since the connection was started, RTT, sending

rate, receiving rate, loss rate, packet sending period,

congestion window size, flow window size, number of ACKs,

and number of NAKs.

Software Architecture

In UDT/CCC software architecture, UDT layer has

five function components: the API module, the sender, the

receiver, the listener, and the UDP channel, as well as four

data components: sender‟s protocol buffer, receiver‟s protocol

buffer, sender‟s loss list, andreceiver‟s loss list.

III. TSUNAMI

The basic principle of Tsunami is the same as

RBUDP. Tsunami mainly makes two points of improvement

on RBUDP.

First, Tsunami receiver does not wait for finishing of

all the data transfer, but periodically (every 50 blocks) makes

a retransmission request and periodically calculates the current

error rate and sends it to the sender. Second, Tsunami adds

rate-based congestion control mechanism. The sender control

the sending rate by adjusting the inter-packet delay according

to the error rate received. Additionally, if the number of

packets that need to be retransmitted is too large, the sender

will restart transmission of the file at the given block number.

IV.SABUL

SABUL is an application level data transfer protocol

for high bandwidth delay product networks. It use rate based

congestion control that tunes the inter packet transmission

time to achieve efficiency and fairness. In order to remove

fairness bias between flows with different network delay

SABUL has been implemented as an open C++ Library.

SABUL connection is unidirectional: data can be sent from

one side to the other side.SABUL designed for reliability, high

performance, fairness and stability.

SABUL use two connection: Control connection over

TCP and DATA connection over UDP. Data is send from

sender to receiver Over UDP channel while Control

information containing current state of transfer is sent over

TCP channel from receiver to sender.

Performance Characteristics:

Efficiency: Utilize bandwidth efficiently in high BDP

environment.

Intra Protocol fairness: SABUL is designed to be fair with

other SABUL flows so that data intensive application like grid

application can employ parallelism. Intra protocol fairness is

examine by simulating SABUL flows with different initial

sending rate and different rtts.

TCP Fairness: Designed to be friendly to TCP flow so that it

can be safely deployable on public network.

Stability: Protocol is more stable if it has less oscillation

throughput.

SIMULATION

Simulation of UDT is performed in NS2. Figure

shows the topology for simulation.

Simulation is setup for a point to point topology of

two directly connected nodes as shown fig. Different

simulation Scenario in ns2 for performance analysis. Scenario

run for two directly connected node. Simulation use DropTail

queue. Queue Size is set at least BDP.Link Capacity is

1Gbps.UDP packet size is 1500 bytes.

Measuring the efficiency of UDT proptocol

RTT Vs Throughput is shown in below figure.

UDT perform better than TCP in high RTT

environment. As shown in fig. because of TCP AIMD

0

500

1000

1 10 100 125 250 500

Thoughput

Thoughput

n0

n1

http://www.scialert.net/asci/result.php?searchin=Keywords&cat=&ascicat=ALL&Submit=Search&keyword=congestion+control

IJSART - Volume 1 Issue 4 –APRIL 2015 ISSN [ONLINE]: 2395-1052

Page | 154 www.ijsart.com

algorithm throughput of TCP degrade as RTT increase.

With reference to topology as shown in figure we

have Queue Size is 1000 and with varying RTT

100,10,1,0.1,0.01 and Bandwidth 500,100,10,1,0.1.

Bandwidth utilization of UDT flow with different link

capacity and different RTT shown in figure.

Bandwidth utilization of UDT flow with different

link capacity and different RTT in figure..Udt protocol has

higher bandwidth utilization.

Measuring impact of queue size

If we set Bandwidth 1000Mbps and Queue Size

10,100,1000 with varying RTT 100,10,1,0.1.

Result show that UDT can reach high bandwidth

utilization with very small queue size. In 1Gbps ,10 ms RTT

network, it only require a queue of 10 packets length to reach

85% of bandwidth utilization, and 100 packets length to reach

97% bandwidth utilization.

UDT can reach high bandwidth utilization with very

small queue size.

Simulation of UDT

TOPOLOGY:

As shown in Figure, simulation topology utilizes

GSAT-3 satellite configuration having maximum 8 Mbps

forward link and 384 kbps return channel. The satellite is geo

stationary. Our test set up is configured in mesh topology

having 580-600 ms RTT and varying BER.

Duplex link:

n4-n2: 8 Mb Bandwidth, 2.5 ms Delay

n1-n3: Mb Bandwidth, 2.5 ms Delay

Simplex link:

n2-n0: 8 Mb Bandwidth, 590 ms Delay

n0-n2: 384Kb Bandwidth, 590 ms Delay

n0-n1: 8 Mb Bandwidth, 590 ms Delay

n1-n3: 384Kb Bandwidth, 590 ms Delay

 Throughput of UDT flow VS Simulation time

Observation:

 Result shows that throughput of UDT flow against

link error rate. As shown in fig. Throughput of UDT is

decrease as link BER increase from 0.0001, 0.001, 0.01, and

0.1.UDT perform better in high RTT with high PER

situation.UDT does not reduce its sending rate for any loss

report, and increase link capacity. Result shows that

throughput of single UDT flow against link error rate.BER set

to 0.1, 0.01, 0.001, and 0.0001. As shown in graph throughput

100ms

1ms
0.01ms

0

100

200

300

400

500

100ms

10ms

1ms

0.1ms

0.01ms

820

840

860

880

900

920

940

960

QS-10

QS-100

QS-1000 0

5

10

15

20

25

30

35

10
time

30 50 70 90

0.0001 PER

0.001 PER

0.01 PER

0.1 PER

IJSART - Volume 1 Issue 4 –APRIL 2015 ISSN [ONLINE]: 2395-1052

Page | 155 www.ijsart.com

decrease as BER increase from 0.0001 to 0.1.UDT perform

better with high BER.

 RBUDP

Simulation is run for same topology as for UDT.Link

efficiency is set to 1 Gbps with different packet size is set to

1500 bytes. Queue is DropTail queue. Queue size to least

BDP. In RBUDP, sending rate needs to be adjusted by the

user. RBUDP protocol can tries to send data packets just

below the sending rate in „blast‟ and the sending rate can be

specified in advance by user. It sends data at user specified

sending rate. Thus the protocol works only for private or QOS

enabled network.

RTT Vs Throughput

RBUDP protocol can tries to send data packets just

below the sending rate in „blast‟ and the sending rate can be

specified in advance by user.

It sends data at user specified sending rate.Thus the

protocol works only for private or QOS enabled network.

V. CONCLUSION

This new protocol is expected to make use of the

bandwidth much more efficiently than TCP, while allowing

them both to share the network with fairness and

friendliness.UDT also performing better in high RTT

environment.

REFERENCES

[1] Y. H. Gu and R. L. Grossman, "UDT: UDP-based

data transfer for highspeed wide area networks,"

Computer Networks, vol. 51, pp. 1777-1799,2007

[2] Xiuchao Wu, Mun Choon Chan, A. L. Ananda, and

Chetan Ganjihal, A New High Speed Congestion

Control Algorithm for Safely Ramping Up

Bandwidth-greedy and Elastic Applications of the

Internet, IEEE ICNP2009 conference.

[3] UDT open source project, http://udt.sf.net

[4] UDT: A Transport Protocol for Data Intensive

Applications, Yunhong Gu and Robert L.

Grossman,draft-gg-udt-02.txt.

[5] Performance Comparison of UDP-based Protocols

Over Fast Long Distance Network. Yongmao Ren,

Haina Tang, Jun Li and Hualin Qian.

[6] Configurable Congestion Control Feature of UDT

Protocol. International Journal of Computer Science

and Telecommunications [Volume 3, Issue 5, May

2012].

[7] Performance Evaluation of UDP-based High-speed

Transport Protocols, Zhaojuan Yue, Yongmao Ren,

Jun Li

[8] Supporting Configurable Congestion Control in Data

Transport Services Yunhong Gu1 and Robert L.

Grossman

[9] Experiences in Design and Implementation of a High

Performance Transport Protocol Yunhong Gu,

Xinwei Hong, and Robert L. Grossman.

[10] Optimizing UDP-based Protocol Implementations,

Yunhong Gu and Robert L. Grossman.

[11] GridTCP: A transport layer data transfer protocol for

satellite based Grid Computing Haresh S. Bhatt,

Hitesh J Kotecha, VH Patel, K. Bandyopadhyay

0

50

100

150

200

500 250 125 100 10 1

SD RATE
2000Mbps

SD RATE
1500Mbps

http://udt.sf.net/
http://ascidatabase.com/author.php?author=Yongmao&last=Ren
http://ascidatabase.com/author.php?author=Haina&last=Tang
http://ascidatabase.com/author.php?author=Jun&last=Li
http://ascidatabase.com/author.php?author=Hualin&last=Qian
http://ascidatabase.com/author.php?author=Hualin&last=Qian
http://ascidatabase.com/author.php?author=Hualin&last=Qian

