
IJSART - Volume 3 Issue 6 – JUNE 2017 ISSN [ONLINE]: 2395-1052

Page | 292 www.ijsart.com

Security of Data in Cloud using Key Managers

C.Monica1, D.Siva2
Department of Computer Science and Engineering

1ME Student,IIET Anna University Chennai
2Assistant Professor,IIET Anna University Chennai

Abstract-Storage of data at off-site in cloud helps the
customers to focus on data storage system. In order to help
customer, the data has been outsourced to third-party
administrative control. This has encountered serious security
concerns. To provide a security for data in cloud and also to
propose a proper key management system using key sharing.
To technique with multiple key managers. Data security
provides key management, access control, and file assured
deletion.The data security utilizes shamir’s(k,n) threshold
scheme to manage keys. Cryptographic keys must be stored in
a robust manner and a single point of failure should not affect
the availability of data. To avoid man-in-the-middle attack
user can access their key and data is ensured through a policy
file that states policies under which access is granted to the
keys. The DaSCE makes use of both symmetric and
asymmetric keys. The confidentiality and integrity services for
data are provided through symmetric keys that are secured by
using asymmetric keys. Asymmetric key pairs are generated by
third party KM’s. Out of the key pair, only public key is
transmitted to the client.

Keywords-Cloud computing, High Level Petri Nets (HLPN),
Key Managers, cloud computing

I. INTRODUCTION

CLOUD computing has emerged as a promising
com- puting paradigm and has shown tremendous potential in
managing the hardware and software resources located at
third-party service providers. On-demand access to the
computing resources in a pay-as-you-go manner relieves the
customers from building and maintaining complex
infrastructures. Cloud computing presents every computing
component as a utility, such as software, platform, and
infrastructure. The economy of infrastructure, maintenance,
and flexibility makes cloud computing attractive for
organizations and individual customers. Despite benefits,
cloud computing faces certain challenges and issues that
hinder widespread adoption of cloud. For instance, security,
performance, and quality are a few to mention.

The development and operation of data storage sites

is an ongoing process in organizations. Off-site data storage is
a cloud application that liberates the customer from focusing
on data storage systems. Representing system characteristics

and capabilities as utility, causes the user to focus on aspects
directly related to data (security, transmission, processing).
However, moving data to the cloud, administered and operated
by certain vendors requires high level of trust and security.
Multiple users, separated through logical barriers of virtual
machines, share resources including storage space.
Multitenancy and virtualization generate risks and underpins
the confidence of users to adopt the cloud model.

Armbrust et al. ranked data confidentiality and

auditing at number three in the list of top ten obstacles
impeding widespread cloud adoption. The cloud service
providers can access the data without authorization from the
user and other machines in cloud can also access the data.
Data being the principal asset for organizations, needs to be
secured. Especially, when data must enter a public cloud. To
avoid unauthorized access to cloud data, access control
mechanism must be enforced. Moreover, data leakage and
data privacy strategies must be employed so that only
authorized users can access and utilize data.

Refraining cloud service providers from utilizing the

customer data requires high preventive measures. Encryption
techniques provide a solution to ensure privacy and
confidentiality of stored data. However, key management
becomes a prime issue in the case of encryption. Compromise
or failure of a key storage facility may lead to the loss of data.
Therefore, cryptographic keys must be stored in a robust
manner and a single point of failure should not affect the
availability of data.

The security concerns of outsourcing data to public

clouds, serves as our motivation to work for the development
of data security technique. We aim for a technique capable of
addressing the aforementioned critical issues. We propose a
data security scheme that uses key manager servers for the
management of cryptographic keys. Shamir’s (k, n) threshold
scheme is used for the management of keys that uses k shares
out of n to rebuild the key.

II. FILE ASSURED DELETION (FADE)

The FADE protocol provides privacy, integrity,

access control, and assured deletion to outsourced data. The
FADE uses both symmetric and asymmetric keys. Sym-metric

IJSART - Volume 3 Issue 6 – JUNE 2017 ISSN [ONLINE]: 2395-1052

Page | 293 www.ijsart.com

keys are protected by using Shamir’s (k, n) scheme to ample
the trust level in the key. The FADE works with a group of
key managers (KM). Following keys are used by FADE
protocol.

The variable K is termed as data key and is used to

encrypt file F of the client. The S is a secret key that is used to
encrypt K. The public/private key pair generated by KMs is
represented by (ei, di) and is used to encrypt S. The K and S
are symmetric keys. The operations supported by FADE are:
(a) File upload, (b) File download, (c) Policy Revocation, and
(d) Policy Renewal. The aforementioned operations are
explained below.

2.1 File Upload

When data must be uploaded to the cloud, the client
re- quests the KM to generate a public/private key pair. The
said is done by sending a policy file, Pi, to the KM. The KM
generates the key pair, associate that with the Pi, and sends the
public part of the key (ei, ni) to the client. After receiving the
public key for Pi, the client performs the following
cryptographic operations. The client encrypts the F with the K
to generate {F}K (F encrypted with K). The K is then
encrypted with Si to get{K}Si. Subsequently, Si is encrypted
with the public key generated by the KM with Pi. The Si is
encrypted using asymmetric encryption (Siei mod n). The Pi,
{F}K, {K}Si, and(Sie mod n) are uploaded to the cloud
afterwards. The hashed MAC (HMAC) of data file is also
uploaded with the encrypted file. The client deletes all of the
symmetric keys through secure overwriting.

When FADE works with full quorum of KMs, Si is

di- vided into n shares and each share is encrypted with a
public key generated by one of the KMs. The key is divided
based on Shamir’s (k, n) threshold scheme. To get back the Si,
k shares are needed. The FADE protocol does not authenticate
the client for the file upload process.

2.2 File Download

The client requests cloud to download the file and en-
crypted keys. The client checks for the integrity of the file
through the HMAC. Afterwards, the client generates a secret
number R and calculates Rei and then generates SieRei =
(SiR)ei. The (SiR)ei is then sent to KM for decryption. The
KM decrypts (SiR)ei with corresponding di and sends back
SiR. At this point, ABE comes into the play. The KM sends
SiR with ABE, where the attributes used are based on Pi. The
client extracts Si from the received message and decrypts K
that in turn is used to decrypt F. The process is highlighted.
2.3 Policy Revocation

If Pi needs to be revoked, then the client requests the
KM by sending the Pi. The KM generates a random number r
and sends it to the client after encryption with ABE. The
authentic client decrypts r, calculates the hash value, and sends
it back to the KM. After verification, the KM revokes Pi and
acknowledges the client.

2.4 Policy Renewal

If Pi needs to be renewed as Pj, client downloads all
of the keys and sends Pi and encrypted Si to KM along with
Pj. The KM decrypts Si. Moreover, KM sends new public key
parameters (ej, nj) to client. We will now formally analyze
FADE in the following section.

III. DaSCE

The security of FADE depends on the key exchange

between the client and the KM. if the key exchange is
compromised, then si is compromised, that in turn leak all the
keys and the data. We observed that the reason for the said
attack is the independence of communication steps between
the client and the KM that allows the attacker to launch the
attack and subvert the whole process.

3.1 File Upload

For establishing a session key, we assume that the

required parameters are fixed and publically available to all of
the users. We call these parameters as α and p, where α is a
large number known as the primitive root and p is a large
prime number. The process comprises of following steps.

 The client generates a random number x and calculates αx

mod p and sends to the KM.
 The KM generates a random number y and calculates αy

mod p. The KM also calculates (αx)y as a session key,EK,
between client and KM.

 The KM generates digital signature over {αy, αx}
(SKM{αy, αx}) and encrypts it with the
generated session key to generate EK(SKM{αy,
αx}).

 The KM sends (αy , EK(SKM{αy, αx})) to the client.
 The client verifies the signature using the public key of

the KM and calculates the session key as (αy)x.
 The client calculates EK(SCli{ αx , αy }) and encrypts

Piwith EK and sends both of the values to the KM.
Thesent message contains EK(SCli{ αx , αy }), EK(Pi).

 The KM verifies the signature of the client. Upon
successful verification, the KM decrypts Pi and generates
(ei, ni) with Pi. The KM stores the decrypted Pi.

IJSART - Volume 3 Issue 6 – JUNE 2017 ISSN [ONLINE]: 2395-1052

Page | 294 www.ijsart.com

 The KM encrypts (ei, ni) with the EK to generate(EK(ei,
ni)), which is sent to the client.

 The client encrypts the file F with key K, calculatesMAC
with IK; and encrypts K and IK with Si. After-wards Si is
encrypted with ei. Subsequently, the clientsends all the
encrypted data to cloud.

 The client erases all of the keys except public key pa-
rameters received from the KM.

3.2 File Download

The file download process of DaSCE is depicted. The
process starts with the client downloading the data from the
cloud. To decrypt F, we need the K that is encrypted with Si.
The Si is encrypted with (ei, ni), received from KM. The client
establishes the session key with the KMs and during the
process both the client and the KMs authenticate each other
using digital signatures.

The process of key establishment and authentication

is the same as discussed. In the third step, after verifying the
authenticity of the KMs, the client generates a random number
R and encrypts it with the public key of the corresponding
KM. The client then calculates SieiRei and sends it along with
its own signature and encrypted Pi. We combine these steps to
minimize the communication overhead. The KM after
verifying the digital signature of the client, decrypts Pi and
checks whether the policy still holds or otherwise. If the policy
is valid, then the KM decrypts SieiRei with the corresponding
di to generate SiR. The purpose of R is to mask the actual
value of Si. The KM encrypts SiR with the session key, which
is sent to the client. It is noteworthy, that in FADE, SiR is
returned by applying ABE. However, in the DaSCE, we do not
use ABE, instead session key is used to send SiR to the
legitimate user. Therefore, the access control is being
managed by the aforementioned technique.

 The client after receiving SiR extracts Si from SiR.

It isimportant to remember that with multiple KMs, a share of
Si will be received from at least k KMs. Consequently k
number of Sis will be used to generate Si. The client decrypts
K and IK using Si. It verifies the integrity of F using IK and
decrypts F upon successful verification.

DaSCE file download

The file download process of DaSCE is depicted. The

process starts with the client downloading the data from the
cloud. To decrypt F, we need the K that is encrypted with Si.
The Si is encrypted with (ei, ni), received from KM. The client
establishes the session key with the KMs and during the
process both the client and the KMs authenticate each other
using digital signatures.

3.3 Policy Revocation

The same process of key establishment, as discussed
is used for the policy revocation in DaSCE. The client
encrypts Pi with the session key and sends to KM. The KM
after performing decryption on Pi revokes the keys generated
with Pi. The deleted keys include the private key di and
associated prime numbers pi and qi. It also sends
acknowledgement to the client. When di associated with Pi is
deleted, the corresponding Si cannot be decrypted. This results
in logical deletion of F as K cannot be decrypted without Si.
Therefore, we say that F is assuredly deleted. It is noteworthy
that assured deletion does not correspond to physical deletion
of data. It is difficult to get assurance of file deletion from
system outside the administrative control of data owner.

To boost the level of trust in the proposed scheme,

the key generation and management is not dependent on a
single KM. Shamir’s secret sharing scheme is applied to
counter any malicious KM. Any malicious KM cannot get
hold of Si independently. At least k number of KMs needs to
be compromised in order to get access of enough di’s that can
be used to decrypt Si. It is also noteworthy that for decryption
process Si is sent to KM. However, Si is not sent in plain as
discussed in Section 5.3. The Si is masked by multiplication
with R. Therefore, even if malicious KM

Keeps the resultant decrypted information, the

extraction of Si will remain a challenge. Moreover,
aforementioned case of malicious KM seems hard to be
translated into successful attack. If we build a case of a
malicious user that somehow has got hold of some other user’s
encrypted Si, the malicious user has to go through the

IJSART - Volume 3 Issue 6 – JUNE 2017 ISSN [ONLINE]: 2395-1052

Page | 295 www.ijsart.com

authentication process of at least k number of KMs to decrypt
the Si. Moreover, the system can tolerate the failure of n – k
server while providing the correct functionality. The aforesaid
fact makes the system robust to the point of working of n – k
servers.

3.4 Policy Renewal

The policy renewal does not involve any operation on

F. The client downloads Si and Pi; establishes session key
with the KM; and sends Pi, SieiRei, and Pj to KM by session
key encryption. The KM decrypts SieiRei to obtain SiR and
generates new public/private key pair for Pj. Therefore, the
KM sends SiR and new public parameters (ej, nj) to the client.
The client extracts Si and re-encrypts it with (ej, nj). Finally,
the client sends Pj and encrypted Si to the cloud.

IV. FILE UPLOAD/DOWNLOAD WITH SINGLE KEY

MANAGER

We used files of nine different sizes (0.3 KB, 1 KB,
10 KB, 30 KB, 50 KB, 100 KB, 500 KB, 1 MB, and 10 MB)
to measure time consumption in file upload and download
process. The results are provided in Fig. 15. In general, file
transmission time increased with the increase in file size.
However, in some cases the change in file transmission time
was small that may be caused due to network conditions at
various times. Nevertheless, file transmission time was
dependent on the network. In case of file upload,
cryptographic operations time varied between 0.037 sec and
0.201 sec. The cryptographic operations time increases with
the increase in the file size. In the case of 10 MB file, the
cryptographic operations time makes 2.35% of total file
upload time and 2.45% of file transmission time. The time for
session key establishment almost remained constant (having
slight changes). The largest time taken during key
establishment was noted to be 0.0898sec that constituted
2.67% of the total upload time. Thepercentage for key
establishment time was 2.39% for 10MB file. Similarly, in
case of file download operations the cryptographic operations
time varied from 0.039 sec to 0.211 sec.

The cryptographic operations time was dependent on

the size of the file. Therefore, the time increases with the file
size. However, it made lower percentage of total upload time
and file transmission time. The key establishment time does
not depend on the file size; therefore, it remains almost
constant. Slight changes were possible, due to network
transmission conditions. The DaSCE and FADE takes same
amount of time for cryptographic operations. However, unlike
FADE, we perform additional steps for key establishment in
DaSCE that makes an additional overheads. Therefore, key

establishment process increases the time consumption of
DaSCE as compared to the protocols that run without
establishing the session keys. It is noteworthy that the increase
in time consumption upturns the security level for policy files,
symmetric, and asymmetric keys used in the DaSCE.

V. FILE UPLOAD/DOWNLOAD WITH MULTIPLE

MANAGERS

Subsequently, we evaluated the performance of

DaSCE by using multiple KMs. The file sizes we used were
0.3 KB, 1 KB, 10 KB, 50 KB, 100 KB, 500 KB, and 1MB.
The number of KMs used was one, three, five, seven, fifteen,
25, and 50. Fig. 16 revealed the key establishment time and
cryptographic operation time for the aforementioned files sizes
and the KMs. The key establishment time increased with the
increase in the number of KMs. This is because the client had
to complete all the message passing steps necessary to
establish the key with all the KMs. The key establishment time
varies between 0.069 (single KM) seconds and 0.24 seconds
(50 KMs). It must be noted that there was slight increase in the
key establishment up to ten KMs. However, with higher
number of KMs the increase followed a higher trend. As
discussed earlier, the increase in time consumption due to key
establishment augments the security level. Therefore, we say
that user has to select the number of KMs judicially. A
balance between tolerate able time consumption and security
level in needed while deciding the number of KMs. In the
coming discussion we will also see that the key establishment
time constitutes low percentage of total time. The
cryptographic operation time remained constant for the file of
same size as final symmetric encryption is done on client with
generated keys (symmetric key, K). It depicts the key
establishment time and cryptographic operation time taken by
file download with multiple KMs. It must be noted that the
key establishment constituted a low percentage of the total
consumed time.

IJSART - Volume 3 Issue 6 – JUNE 2017 ISSN [ONLINE]: 2395-1052

Page | 296 www.ijsart.com

VI. IMPLEMENTATION AND EVALUATION

We used C# for implementing a working prototype of
DaSCE. The .Net cryptographic packages were used for the
involved cryptographic operations. Large prime numbers were
handled by using the BigInt class. Policies were uploaded as a
separate file to the cloud and the KM.

The system consists of two servers (the cloud and the

KM) and a client (work station). Multiple policies were
combined using OR and/or AND operations. The policy and
data files were not merged into a single file, to keep the policy
renewal operation light weight. According to the processes
described in Section 5, we also implemented the client side
software functions, such as file upload, down-load, revocation,
and renewal.

In our prototype, the client interacts with the KM (s)

and the cloud for setting up the keys, and
uploading/downloading data. The KM sets up the keys,
revokes, and/or renews policies and manages the keys
accordingly. We evaluated the DaSCE on the basis of: (a)
Key(s) establishment time, (b) Key Transmission time, (c) File
transmission time, and (d) Cryptographic operations time. It is
noteworthy, that the time required for key establishment is the
time for setting up a session key be-tween the involved parties.
The cryptographic operations time is the time taken by AES
and MAC operations. Above given parameters collectively
make up total file upload/download time. Moreover, the
aforesaid parameters are evaluated using single and multiple
KMs.

VII. CONCLUSIONS AND FUTURE ENHANCEMENT

We proposed the DaSCE protocol, a cloud storage

security system that provided key management, access control,
and file assured deletion. Assured deletion was based on
policies associated with the data file uploaded to cloud. On
revocation of policies, access keys are deleted by the KMs that
result in halting of the access to the data. There-fore, the files
were logically deleted from the cloud. The key management
was accomplished using (k, n) threshold secret sharing
mechanism. We modeled and analyzed FADE. The analysis
highlighted some issues in key management of FADE. DaSCE
improved key management and authentication processes. The
working of the DaSCE protocol was formally analyzed using
HLPN, SMT-Lib, and Z3 solver. The performance of the
DaSCE was evaluated based on the time consumption during
file upload. The direction in which this project can be
enhanced by generating policy files when user upload their
files in cloud. Inside the policy file contains username,
filename which is upload by the user and access permission.

This policy file will be encrypted by Key Manager by using
user attributes. In future, the DaSCE methodology can be
extended to secure group shared data and secured data
forwarding

REFERENCES

[1] Ali M, Bilal K, Khan S.U, Veeravalli B, Li K, and

Zomaya A.Y. (2015), “DROPS: Division and Replication
of Data in the Cloud for Optimal Performance and
Security,” IEEE Transactions on Cloud Computing, DOI:
10.1109/TCC.2015.2400460.

[2] Ali M, Khan S.U, and Vasilakos A.V.(2015), “Security in
cloud computing: Opportunities and challenges,”
Information Sciences, Vol. 305, pp. 357-383.

[3] Armbrust M, Fox A, R. Griffith.(2010), “A View of
Cloud Computing,” Communications of the ACM, Vol.
53, No. 4, pp. 50-58.

[4] Blumenthal M.S.(2011), “Is Security Lost in the Clouds?”
Communications and Strategies, No. 81, pp. 69-86.

[5] Cachinand C and Schunter M. (2011), "A cloud you can
trust," IEEE Spectrum, Vol. 48, No. 12, pp. 28-51.

[6] CloudSecurityAlliancesecurityalliance.org/initiatives/cdg/
CSA_CCAQIS_Survey.pdf (accessed March 24, 2013).

[7] Cremers C. (2008), "The Scyther Tool: Verification,
falsification, and analysis of security protocols." In
Computer Aided Verification, Springer Berlin
Heidelberg, pp. 414-418.

[8] Diffie W, Oorschot P.C.V, and Wiener M.J. (1992),
“Authentication and authenticated key exchanges,”
Designs, Codes and Cryptography, Vol. 2, No. 2, pp. 107-
125.

[9] En N and Srensson N. (2003), “An extensible SAT-
solver,” Lecture Notes in Computer Science, vol. 2919,
Springer, pp. 502-518.

[10] Gomes C.P, Kautz H, Sabharwa Al, and Selman B.
(2007), “Satisfia-bility solvers,” In Handbook of
Knowledge Representation, Elsevier.

