
IJSART - Volume 2 Issue 2 –FEBRUARY 2016 ISSN [ONLINE]: 2395-1052

Page | 106 www.ijsart.com

Using Data Reduction Techniques for Effective Bug
Triage

Shanthipriya. D1, Deepa.K2

1 Department of Computer Science & Engineering
2 Department of Information Technology

1, 2 Sri Ramakrishna Engineering College,Coimbatore – 641 022, TamilNadu, India

Abstract- An automatic bug triage process is an inevitable
step to fix the software bugs. To decrease the manual and time
cost, text classification techniques are applied to perform the
automatic bug triage. The main goal of essential bug triaging
software is to allocate possibly experience developers to new
coming bug reports. The existing bug triage approach suffers
from large scale and low quality bug data. The proposed
system employs the combination of feature selection algorithm
(FS) and instance selection algorithm (IS) for bug triage.
These data reduction techniques are used to shrink the bug
data and also to enhance the accuracy. The performance of
proposed system is evaluated by using Mozilla bug data set.
To show the effectiveness, scales of bug data is reduced to
avoid the manual and time cost, upgrades the accuracy of bug
triage with standard bug data in software maintenance.

Keywords- Bug Triage, Feature selection, Instance selection, Mining
Software repository.

I. INTRODUCTION

A Software bug is an issue causing a program to
collapse or create unacceptable output. The problem is caused
by inadequate or invalid logic. A bug can be an error, mistake,
flaw or fault, which may cause collapse or variation from
usual results. Most bugs are due to human errors in source
code or its design. A program is said to be buggy when it
includes a huge number of bugs, which concern program
functionality and cause erroneous results [5]. The details of
bugs are stored in large database which is named as bug
repository or bug tracking system [2]. An open source bug
repository [2], which is employed by many large software
companies for open source projects i.e., Mozilla [9]. To solve
the real world engineering issues some data mining methods
[16] are exercised to describe with some useful information
accumulated in bug ordnance. Bug Triage is the process to
assign relevant developer to each bug reports in order to fix it
[19].

Due to huge number of daily bugs and lack of skill

person of all the bugs, manual triage is an expensive in time
cost and labor cost, low in precision. To defeat the limitations
of existing work, an automatic bug triage approach is

proposed [17]. This approach applies the text classification
techniques in order to expect the valid developer for bug
reports without tossing.

In this paper, we proposed the data reduction

techniques using the combination of the instance selection
algorithm (IS) [4] and feature selection algorithm (FS) [11,
12] . These approaches are used to shrink the data scale and
also improve the accuracy of bug data set. The order of
applying the reduction techniques may concern the
consequence of bug triage approach. In this paper, to
determine the order of bug data reduction techniques, i.e., FS
to IS or IS to FS we propose a Predictive model [17]. The text
classification technique i.e., Naive Bayes is used to predict
correct developer to solve and fix the bug reports [21] in order
to shrink the manual triager cost. The proposed system
performance is verified using Mozilla bug data set [9] which
obtains 78% accuracy after the training set reduction. The
outcome shows that the experiment on reduce training sets can
obtain better accuracy than that on original training set.

The remainder section of this paper is organized as

follows: Section 2 explains the proposed methodology.
Section 3 explains the experimental results and discussion.
Section 4 lists the related work. In Section 5 we briefly
conclude this paper and present our future work.

II. RELATED WORKS

As our Knowledge, there is no combination of data

reduction methods in turn to decrease the data scale and
upgrade the exactness of bug triage approach in the
illustration.

Jeong, Kim, Zimmermann introduced a tossing graph

model based on Markov property from the conception of
reassign the bug reports to other developers [6]. Shivaji and
colleagues [12] proposed the feature selection techniques to
predict the software bugs. Anvik, L. Hiew, and G. C. Murphy
[1] extend the machine learning approaches. They describe the
bug triage as semi-supervised approach which updated with
weighted recommendation list; based on the probabilistic view
the relevant developers are employed to the human triage [4,

IJSART - Volume 2 Issue 2 –FEBRUARY 2016 ISSN [ONLINE]: 2395-1052

Page | 107 www.ijsart.com

13]. Cubranic and Murphy [3] projected supervised learning
method (NB Classifier) to assist in bug triage by using text
categorization to predict the relevant developers. A
classification model should be designed to investigate the
relationship among the datas in bug data set and to check the
quality [20, 17].

Fu.Y, Zhu.X, and Li.B [4] investigated to obtain the

accurate prediction model with minimum cost by labelling
most informative instances. In contrast to these papers, our
paper aims to employ the information gain algorithm to
develop the software value of bug data prediction. In this
paper, we focus on the issue of bug data reduction and low in
precision of bug data set. Further the combination of feature
selection and instance selection algorithm intend to shrink the
bug data set and develop the performance of bug triage with
high-quality bug data in software maintenance and
improvement.

III. NEED FOR BUG TRIAGE PROCESS

Bug triage is an important process in bug fixing process
in order to assign relevant developers to new coming bugs.
Fig.1 represents the bug triage process [19]. Some of the steps
involved in bug triage process are

1. Find bugs to triage
2. Pre-filter bug reports
3. Search for duplicates of bugs
4. Check information provided in bug report
5. Attempt to reproduce bug
6. Set bug status
7. Prioritize bug

Fig.1 Bug Triage Process

8. Notify developers – needed only in very specific

cases if bug seems to be a blocker / critical.

IV. PROPOSED METHODOLOGY

The fig.2 illustrated the system architecture of the
proposed system. Bug datas of Mozilla are taken from an open
source bug repository i.e., Bugzilla. This open source bug

repository contains all information about the software bugs.
Each bug has the bug statement and the details of the
developer who employed on that particular bug. The bug
details may be divided into two parts: summary and
description. The proposed system can use bug data reduction
technique which reduces labor cost and time cost. Here, the
bug data reduction method is used to prepare the content for
bug triage. This proposed system mainly concerns on two
goals. First, reduces the data scale and second, improves the
accuracy of bug data.

The instance selection and feature selection are pre-

processing techniques which are used for bug data reduction.

Fig.2 the Text Categorization approach for Bug triage

For a specified bug data set, the instance selection is

applied to find the significant subsets (i.e., bug reports in bug
data set) and after/ before feature selection is applied to find
the subset of appropriate features (i.e., words in bug data set).
In proposed system, the combination of these techniques is
used.

Algorithm: Data reduction based on FSIS
Input:

 training set T with n words and m bug reports
 reduction order FSIS
 final number nF of words,
 final number mI of bug reports,

1. apply FS  n words of T
2. calculate objective values for all the words
3. select the top nF words of T
4. generate a training set TF
5. apply IS mI bug reports of TF
6. terminate IS when the number of bug reports is

equal to or less than mI
7. Generate the final training set TFI.

Output:
 reduced data set TFI for bug triage

IJSART - Volume 2 Issue 2 –FEBRUARY 2016 ISSN [ONLINE]: 2395-1052

Page | 108 www.ijsart.com

By applying these techniques, the bug data scale can
get reduced and also upgrades the performance of the bug
triage approach. The predictive model is proposed in order to
predict the correct order to shrink the bug data set. By
employing this model FS to IS or IS to FS order can be
predicted without any complication. The text classification
approach i.e., Naive Bayes is used to predict the correct
developer for the predicted bug. C4.5 AdaBoost is used to
calculate the precision, recall and to balance this F measure
values are calculated. The accuracy of Mozilla bug data set
can be calculated as 78% which reduces data scale and
improves the performance of bug triage approach.

V. RESULTS AND DISCUSSION

The performance of bug data set can be measured by
using both training and test bug data set. In this attributes of
each training and test bug data set can be calculated. The
attributes are named as bug dataset details as B1 to B10 and
developer details as D1 to D8. The pre-processing techniques
for data reduction i.e., feature selection and instance selection
is applied to in training bug data set.

Fig.3 Comparison result between original and reduced

bug data set (Training bug data Set)

The training data set contains 40 bug records which
give complete information about the bug data stored in large
database i.e., Bugzilla.Fig.3 illustrates the comparison
between original bug data set and reduced bug data set.

Fig.4 Comparison Graph for Precision, Recall and F- measure

The classifier i.e., Naive Bayes is trained by training
data set with their data reduction order. Then, the classifier is
used to predict the correct order to test data set and reduce the
labor cost. By this, the bug triage approach is upgraded by
their performance. Fig.4 illustrates the precision, recall, and F-
measure values of Mozilla bug data set are 0.667, 0.737 and
0.70. The accuracy is measured as 78% by using Naive Bayes
classifier for training data set.

VI. CONCLUSION

Bug triage is an important and significant step of
software protection in both labor cost and time cost. The
proposed method combines the feature selection algorithm
(FS) with instance selection algorithm (IS) in order to trim
down the scale of bug data sets as well as develop the data
value. A Predictive model is utilized to establish the order of
applying reduction order, i.e., FS to IS or IS to FS. The
proposed system performance is verified using Mozilla bug
data set. To exhibit the value, a scale of data set is condensed
by using data reduction technique in order to diminish the time
and labor cost, upgrades the precision of bug triage with high-
quality bug data in software progress and maintenance.

The future work of the proposed system is to get

better the outcome of data reduction in bug triage to
investigate how to organize a high quality bug data set and
deal with a domain-specific software assignment. For
predicting reduction orders, aim to give attempts to locate out
the possible relationship among the attributes of bug data sets
and the reduction orders.

REFERENCES

[1] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix

this bug?”in Proc. 28th Int. Conf. Softw. Eng., May
2006, pp. 361–370.

[2] Bugzilla, (2015). [Online]. Avaialble: http://bugzilla.org/

[3] D.Cubranic and G. C. Murphy, “Automatic bug triage

using text categorization,” in Proc. 16th Int. Conf. Softw.
Eng. Knowl. Eng., Jun. 2004, pp. 92–97.

[4] Y. Fu, X. Zhu, and B. Li, “A survey on instance

selection for active learning,” Knowl. Inform. Syst., vol.
35, no. 2, pp. 249–283, 2013.

[5] https://www.techopedia.com/definition/24864/software-

bug

[6] G. Jeong, S. Kim, and T. Zimmermann, “Improving bug

triage with tossing graphs,” in Proc. Joint Meeting 12th

IJSART - Volume 2 Issue 2 –FEBRUARY 2016 ISSN [ONLINE]: 2395-1052

Page | 109 www.ijsart.com

Eur. Softw. Eng. Conf. 17th ACM SIGSOFT Symp.
Found. Softw. Eng., Aug. 2009, pp. 111–120.

[7] S. Kim, H. Zhang, R. Wu, and L. Gong, “Dealing with

noise in defect prediction,” in Proc. 32nd ACM/IEEE
Int. Conf. Softw. Eng., May 2010, pp. 481–490.

[8] D. Matter, A. Kuhn, and O. Nierstrasz, “Assigning bug

reports using a vocabulary-based expertise model of
developers,” in Proc. 6th Int. Working Conf. Mining
Softw. Repositories, May 2009, pp. 131–140.

[9] Mozilla. (2015). [Online]. Available: http://mozilla.org/

[10] E.Murphy-Hill, T. Zimmermann, C. Bird, and N.

Nagappan, “The design of bug fixes,” in Proc. Int. Conf.
Softw. Eng., 2013, pp. 332– 341.

[11] M. Rogati and Y. Yang, “High-performing feature

selection for text classification,” in Proc. 11th Int. Conf.
Inform. Knowl. Manag., Nov. 2002, pp. 659–661.

[12] S. Shivaji, E. J. Whitehead, Jr., R. Akella, and S. Kim,

“Reducing features to improve code change based bug
prediction,” IEEE Trans. Soft. Eng., vol. 39, no. 4, pp.
552–569, Apr. 2013.

[13] Sun, D. Lo, S. C. Khoo, and J. Jiang, “Towards more

accurate retrieval of duplicate bug reports,” in Proc. 26th
IEEE/ACM Int. Conf. Automated Softw. Eng., 2011, pp.
253–262.

[14] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An

approach to detecting duplicate bug reports using natural
language and execution information,” in Proc. 30th Int.
Conf. Softw. Eng., May 2008, pp. 461–470.

[15] D. R. Wilson and T. R. Mart_ınez, “Reduction

techniques for instance-based learning algorithms,”
Mach. Learn., vol. 38, pp. 257–286, 2000.

[16] T. Xie, S. Thummalapenta, D. Lo, and C. Liu, “Data

mining for software engineering,” Comput., vol. 42, no.
8, pp. 55–62, Aug. 2009.

[17] J. Xuan, H. Jiang, Y. Hu, Z. Ren, Z. Luo, W.Zou and X.

Wu, “Towards Effective Bug Triage with Software Data
Reduction Techniques” in IEEE Trans. on Knowl. and
Data Eng., vol. 27, no. 1, Jan. 2015.

[18] J. Xuan, H. Jiang, Z. Ren, and W. Zou, “Developer

prioritization in bug repositories,” in Proc. 34th Int.
Conf. Softw. Eng., 2012, pp. 25– 35.

[19] J. Xuan, H. Jiang, Z. Ren, J. Yan, and Z. Luo,
“Automatic bug triage using semi-supervised text
classification,” in Proc. 22nd Int. Conf. Softw. Eng.
Knowl. Eng., Jul. 2010, pp. 209–214.

[20] T. Zimmermann, N. Nagappan, P. J. Guo, and B.

Murphy, “Characterizing and predicting which bugs get
reopened,” in Proc. 34th Int. Conf. Softw. Eng., Jun.
2012, pp. 1074–1083.

[21] W. Zou, Y. Hu, J. Xuan, and H. Jiang, “Towards

training set reduction for bug triage,” in Proc. 35th
Annu. IEEE Int. Comput. Soft. Appl. Conf., Jul. 2011,
pp. 576–581.

