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Abstract- Cryptography systems have become inseparable 

parts of almost every communication device. Among 

cryptography algorithms, public-key cryptography, and in 

particular elliptic curve cryptography (ECC), has become the 

most dominant protocol at this time. In ECC systems, 

polynomial multiplication is considered to be the most slow 

and area consuming operation. Here proposes a novel 

hardware architecture for efficient field-programmable gate 

array (FPGA) implementation of finite field multipliers for 

ECC using overlap-free karatsuba algorithm. Proposed 

system implemented on different for various operand sizes, 

and performance parameters were determined. In existing 

approximate recursive multipliers are low-power designs that 

exploit approximate building blocks to scale up to their final 

size. Here present two novel 4 x 4 approximate multipliers 

obtained by carry manipulation. They are used to compose 8 x 

8 designs with different error-performance trade-off. 

Comparing to state-of-the art works, the proposed method 

resulted in a lower combinational delay and area–delay 

product indicating the efficiency of design. 
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I. INTRODUCTION 

 

 Several applications, such as elliptic curve 

cryptography (ECC), error correcting codes, and signal 

processing, require finite field multiplications as key units in 

the main arithmetic operation-processes. For example, in, the 

National Institute of Standards and Technology (NIST) has 

recommended five binary extension fields, i.e., m = 163, 233, 

283, 409, and 571, for the elliptic curve digital signature 

algorithm (ECDSA) implementation. Generally, ECC/ECDSA 

is based on a point multiplication kP, wherek is an integer and 

P is a point on the elliptic curve. The point multiplication 

involves two major operations, i.e., point addition and point 

doubling (these two operations can be realized by affine or 

projective coordinates). To avoid inversion operation, point 

addition and point doubling can employ the projective 

coordinates to have only operations of finite field addition, 

squaring, and multiplication (addition and squaring are 

simpler operations than the multiplication). Based on this 

consideration, finite field multiplication surely becomes the 

bottleneck of the point multiplication and has gained 

substantial attentions from the research community recently.  

 

 In the binary extension fields, multiplication based on 

different field representation such as polynomial basis (PB), 

dual basis (DB), and normal basis (NB) involves different 

arithmetic operations and hardware architectures. Generally, 

the structures of the finite field multiplications can be 

classified into three major categories: bit-serial, digit serial, 

and bit-parallel architectures. Among these structures, the 

digit-serial multipliers can provide tradeoff between space and 

time complexities and thus are seen as ideal candidate in 

practical implementation. Recent reports have shown that the 

digit-serial multipliers based fast algorithm can achieve lower 

complexity than the conventional strategy.  

 

 Beginning at 2015, Fan and Hasan have pointed out 

that the bit-parallel multiplication using Karatsuba algorithm 

(KA), Overlap-Free Karastsuba Algorithm (OFKA) and 

Toeplitz matrix-vector product (TMVP) decompositions, can 

lead to the sub-quadratic space complexity, which is suitable 

for the implementation of high-performance ECC. Recently, 

Lee and Meher and Lee et al. have derived new (a, b)-way KA 

and (a,b)-way Toeplitz block TMVP (TBTMVP) 

decompositions, respectively, to obtain subquadratic space 

complexity digit-serial multipliers. 

 

 Very-large-scale integration (VLSI) is the process of 

creating an integrated circuit by combining thousands of 

transistors into a single chip. VLSI began in the 1970s when 

complex semiconductor and communication technologies 

were being developed.  VLSI is one of the basic building 

blocks of today’s higher end or advance technology. VLSI is 

finding its applications in a variety of areas from simple 

electronic consumer products to very complex circuits used in 

space electronics. Nowadays the trend in digital hardware 

product is to integrate as much circuitry as possible onto a 

single-chip. VLSI has offered new opportunity to design the 

circuits which were not possible before with old circuits. 

Programmable logic devices (PLD) and Electronic Design 
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Automation (EDA) tools have added much advancement in 

VLSI design. 

 

 The microprocessor is a VLSI device. Before the 

introduction of VLSI technology most ICs had a limited set of 

functions they could perform. An electronic circuit consists of 

a CPU, ROM, RAM and other glue logic. Multiplication is the 

third basic mathematical operation of arithmetic, the others 

being addition, subtraction and division. The multiplication of 

integers, rational numbers, and real numbers is defined by a 

systematic generalization of this basic definition. 

Multiplication can also be visualized as counting objects 

arranged in a rectangle  or as finding the area of a rectangle 

whose sides have given lengths. The area of a rectangle does 

not depend on which side is measured first, which illustrates 

the commutative property. 

 

 The Karatsuba algorithm (KA) for multiplying two 

polynomials was introduced. It saves coefficient 

multiplications at the cost of extra additions compared to the 

ordinary multiplication method. The basic KA is performed as 

follows. Consider two degree-1 polynomials A(x) and B(x) 

with n = 2 coefficients: 

 

 

 
 

  Let D0, D1, D0,1 be auxiliary variables with 

 

 

 

 
 

 Then the polynomial C(x) = A(x)B(x) can be 

calculated in the following way: 

 

 
 

 This method requires three multiplications and four 

additions. The ordinary method requires n2 multiplications and 

(n − 1)2 additions, i.e., four multiplications and one addition. 

Clearly, the KA can also be used to multiply integer numbers. 

The KA can be generalized for polynomials of arbitrary 

degree. The following algorithm describes a method to 

multiply two arbitrary polynomials with n coefficients using 

the one-iteration KA. 

 

 In the present section we explore various techniques 

to implement the 233 bit Karatsuba multiplier. We explore 

techniques like Padding, Binary, Simple, Generalized and the 

proposed Hybrid Karatsuba Multiplier. The design tradeoffs 

involved in the various architectures are reported. 

 The Padded Karatsuba multiplier is the most simple 

method of implementing a fully recursive Karatsuba multiplier 

for a field (2n) GF , where n= 2k + d and k is the largest 

integer such that 2k < n . The Padded Karatsuba multiplier 

extends the n bit multiplicands to 2k+1 bits by padding its 

most significant bits with 2k+1-n zeroes. This then allows the 

use of the basic recursive Karatsuba algorithm. The obvious 

drawback of this method is the extra arithmetic introduced due 

to the padding. 

 

 The Binary Karatsuba multiplier was proposed. The 

algorithm modifies the basic Karatsuba multiplier to handle 

any field of the form (2n) GF , where n = 2k + d, and k is the 

largest integer such that 2k < n . The algorithm splits each 

multiplicand into two terms, the higher term containing d bits 

and the lower term containing 2k bits. The higher term partial 

product ( Ak Bh ) is determined by a Binary Karatsuba 

algorithm for d bits. The number of times the Binary 

Karatsuba algorithm is called recursively depends on the 

hamming weight of n . For example, the binary equivalent of 

233 is (11101001)2, therefore the Binary Karatsuba algorithm 

is used recursively for 5 iterations. 

 

 The Simple Karatsuba multiplier is the basic 

recursive Karatsuba multiplier with a small modification. If an 

n bit multiplication is needed to be done, n being any integer, 

it is split into two polynomials. The Al and Bl polynomials 

have n / 2 terms while the Ah and Bh polynomials have n / 2 

terms. The Karatsuba multiplication can then be done with 

two n / 2 bit multiplications and a single n / 2 bit 

multiplication. 

 

 The basic Karatsuba multiplier defines a method to 

multiply two n bit polynomials using three n / 2 bit 

multipliers. This is achieved by splitting the n bit polynomial 

into a 2-term polynomial with each term having n / 2 bits. In it 

was shown that if A and B are two n k = 3 bit polynomials, the 

Karatsuba multiplier for 3-term polynomials can be used. This 

results in six multiplications and 13 additions.  

 

II. LITERATURE SURVEY 

 

Approximate computing has become an emerging 

research topic for energy-efficient design of circuits and 

systems. Many approximate arithmetic circuits have been 

proposed; therefore it is critical to summarize the available 

approximation techniques to improve performance and energy 

efficiency at a acceptable accuracy loss. This paper presents 

an overview of circuit-level techniques used for approximate 

arithmetic. This paper provides a detailed review of circuit-

level approximation techniques for the arithmetic data path. Its 

focus is on identifying critical circuit-level approximation 
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techniques that apply to computational units and blocks. 

Approximate adders, multipliers, dividers, and squarer are 

introduced and classified according to their approximation 

methods. FFT and MAC are discussed as computational 

blocks that employ an approximate algorithm for 

implementation. 

 

Improving the accuracy of a neural network (NN) 

usually requires using larger hardware that consumes more 

energy. However, the error tolerance of NNs and their 

applications allow approximate computing techniques to be 

applied to reduce implementation costs. Given that 

multiplication is the most resource-intensive and power-

hungry operation in NNs, more economical approximate 

multipliers (AMs) can significantly reduce hardware costs. In 

this article, we show that using AMs can also improve the NN 

accuracy by introducing noise. We consider two categories of 

AMs: 1) deliberately designed and 2) Cartesian genetic 

programing (CGP)-based AMs. The exact multipliers in two 

representative NNs, a multilayer perceptron (MLP) and a 

convolutional NN (CNN), are replaced with approximate 

designs to evaluate their effect on the classification accuracy 

of the Mixed National Institute of Standards and Technology 

(MNIST) and Street View House Numbers (SVHN) data sets, 

respectively. Interestingly, up to 0.63% improvement in the 

classification accuracy is achieved with reductions of 71.45% 

and 61.55% in the energy consumption and area, respectively. 

Finally, the features in an AM are identified that tend to make 

one design outperform others with respect to NN accuracy. 

Those features are then used to train a predictor that indicates 

how well an AM is likely to work in an NN. 

 

Approximate computing has emerged as a new 

paradigm for high-performance and energy-efficient design of 

circuits and systems. For the many approximate arithmetic 

circuits proposed, it has become critical to understand a design 

or approximation technique for a specific application to 

improve performance and energy efficiency with a minimal 

loss in accuracy. This article aims to provide a comprehensive 

survey and a comparative evaluation of recently developed 

approximate arithmetic circuits under different design 

constraints. Specifically, approximate adders, multipliers, and 

dividers are synthesized and characterized under optimizations 

for performance and area. The error and circuit characteristics 

are then generalized for different classes of designs. The 

applications of these circuits in image processing and deep 

neural networks indicate that the circuits with lower error rates 

or error biases perform better in simple computations, such as 

the sum of products, whereas more complex accumulative 

computations that involve multiple matrix multiplications and 

convolutions are vulnerable to single-sided errors that lead to a 

large error bias in the computed result. Such complex 

computations are more sensitive to errors in addition than 

those in multiplication, so a larger approximation can be 

tolerated in multipliers than in adders. The use of approximate 

arithmetic circuits can improve the quality of image 

processing and deep learning in addition to the benefits in 

performance and power consumption for these applications.   

 

Multiplication is an essential image processing 

operation commonly implemented in hardware DSP cores. To 

improve DSP cores’ area, speed, or energy efficiency, we can 

approximate multiplication. We present an approximate 

multiplier that generates two partial products using hybrid 

radix-4 and logarithmic encoding of the input operands. It uses 

the exact radix-4 encoding to generate the partial product from 

the three most significant bits and the logarithmic 

approximation with mantissa trimming to approximate the 

partial product from the remaining least-significant bits. The 

proposed multiplier fills the gap between highly accurate 

approximate non-logarithmic multipliers with a complex 

design and less accurate approximate logarithmic multipliers 

with a more straightforward design. We evaluated the 

multiplier’s efficiency in terms of error, energy (power-delay-

product) and area utilisation using NanGate 45 nm. The 

experimental results show that the proposed multiplier exhibits 

good area utilisation and energy consumption and behaves 

well in image processing applications. 

 

Approximate multipliers are used in error-tolerant 

applications, sacrificing the accuracy of results to minimize 

power or delay. In this paper we investigate approximate 

multipliers using static segmentation. In these circuits a set of 

m contiguous bits (a segment of m bits) is extracted from each 

of the two n -bits operand, the two segments are in input to a 

small m×m internal multiplier whose output is suitably shifted 

to obtain the result. We investigate both signed and unsigned 

multipliers, and for the latter we propose a new segmentation 

approach. We also present simple and effective correction 

techniques that can significantly reduce the approximation 

error with reduced hardware costs. We perform a detailed 

comparison with previously proposed approximate multipliers, 

considering a hardware implementation in 28 nm technology. 

The comparison shows that static segmented multipliers with 

the proposed correction technique have the desirable 

characteristic of being on (or close to) the Pareto-optimal 

frontier for both power vs normalized mean error distance and 

power vs mean relative error distance trade-off plots. These 

multipliers, therefore, are promising candidates for 

applications where their error performance is acceptable. This 

is confirmed by the results obtained for image processing and 

image classification applications. 
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Libraries of approximate circuits are composed of 

fully characterized digital circuits that can be used as building 

blocks of energy-efficient implementations of hardware 

accelerators. They can be employed not only to speed up the 

accelerator development but also to analyze how an 

accelerator responds to introducing various approximate 

operations. In this paper, we present a methodology that 

automatically builds comprehensive libraries of approximate 

circuits with desired properties. Target approximate circuits 

are generated using Cartesian genetic programming. In 

addition to extending the EvoApprox8b library that contains 

common approximate arithmetic circuits, we show how to 

generate more specific approximate circuits; in particular, 

MxN-bit approximate multipliers that exhibit promising 

results when deployed in convolutional neural networks. By 

means of the evolved approximate multipliers, we perform a 

detailed error resilience analysis of five different ResNet 

networks. We identify the convolutional layers that are good 

candidates for adopting the approximate multipliers and 

suggest particular approximate multipliers whose application 

can lead to the best trade-offs between the classification 

accuracy and energy requirements. Experiments are reported 

for CIFAR-10 and CIFAR-100 data sets. 

 

Approximate arithmetic circuits are an attractive 

alternative to accurate arithmetic circuits because they have 

significantly reduced delay, area, and power, albeit at the cost 

of some loss in accuracy. By keeping errors due to 

approximate computation within acceptable limits, 

approximate arithmetic circuits can be used for various 

practical applications such as digital signal processing, digital 

filtering, low power graphics processing, neuromorphic 

computing, hardware realization of neural networks for 

artificial intelligence and machine learning etc. The degree of 

approximation that can be incorporated into an approximate 

arithmetic circuit tends to vary depending on the error 

resiliency of the target application. Given this, the manual 

coding of approximate arithmetic circuits corresponding to 

different degrees of approximation in a hardware description 

language (HDL) may be a cumbersome and a time-consuming 

process—more so when the circuit is big. Therefore, a 

software tool that can automatically generate approximate 

arithmetic circuits of any size corresponding to a desired 

accuracy would not only aid the design flow but also help to 

improve a designer’s productivity by speeding up the 

circuit/system development. In this context, this paper presents 

‘Approximator’, which is a software tool developed to 

automatically generate approximate arithmetic circuits based 

on a user’s specification. Approximator can automatically 

generate Verilog HDL codes of approximate adders and 

multipliers of any size based on the novel approximate 

arithmetic circuit architectures proposed by us. The Verilog 

HDL codes output by Approximator can be used for synthesis 

in an FPGA or ASIC (standard cell based) design 

environment. Additionally, the tool can perform error and 

accuracy analyses of approximate arithmetic circuits. The 

salient features of the tool are illustrated through some 

example screenshots captured during different stages of the 

tool use. 

 

In approximate operators, dynamic truncation allows 

trading off energy and quality of computation at runtime. 

Although it exploits the specificity of the data being 

processed, its significant energy overhead over simple static 

truncation fundamentally limits its energy benefits. This brief 

describes a simple and efficient design methodology that 

reduces the energy consumption of dynamically truncated 

multipliers, based on a smart mapping of the partial products. 

A configurable hardware correction strategy is also proposed 

to enable graceful quality degradation, as well as more 

aggressive energy reduction at a given quality. When applied 

to Wallace multipliers, the proposed approach achieves 

quality, in terms of Mean Error Distance, up to 11× higher 

than the conventional dynamic truncation, at the same energy. 

In the case study of Discrete Cosine Transform compression, 

the proposed approximate multiplier reaches image qualities 

by 15-35% better, compared to prior art. 

 

High speed multimedia applications have paved way 

for a whole new area in high speed error-tolerant circuits with 

approximate computing. These applications deliver high 

performance at the cost of reduction in accuracy. Furthermore, 

such implementations reduce the complexity of the system 

architecture, delay and power consumption. This paper 

explores and proposes the design and analysis of two 

approximate compressors with reduced area, delay and power 

with comparable accuracy when compared with the existing 

architectures. The proposed designs are implemented using 45 

nm CMOS technology and efficiency of the proposed designs 

have been extensively verified and projected on scales of area, 

delay, power, Power Delay Product (PDP), Error Rate (ER), 

Error Distance (ED), and Accurate Output Count (AOC). The 

proposed approximate 4 : 2 compressor shows 56.80% 

reduction in area, 57.20% reduction in power, and 73.30% 

reduction in delay compared to an accurate 4 : 2 compressor. 

The proposed compressors are utilised to implement 8 × 8 and 

16 × 16 Dadda multipliers. These multipliers have comparable 

accuracy when compared with state-of-the-art approximate 

multipliers. The analysis is further extended to project the 

application of the proposed design in error resilient 

applications like image smoothing and multiplication. 

 

 Approximate multipliers attract a large interest in the 

scientific literature that proposes several circuits built with 
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approximate 4-2 compressors. Due to the large number of 

proposed solutions, the designer who wishes to use an 

approximate 4-2 compressor is faced with the problem of 

selecting the right topology. In this paper, we present a 

comprehensive survey and comparison of approximate 4-2 

compressors previously proposed in literature. We present also 

a novel approximate compressor, so that a total of twelve 

different approximate 4-2 compressors are analyzed. The 

investigated circuits are employed to design 8 × 8 and 16 × 16 

multipliers, implemented in 28nm CMOS technology. For 

each operand size we analyze two multiplier configurations, 

with different levels of approximations, both signed and 

unsigned. Our study highlights that there is no unique winning 

approximate compressor topology since the best solution 

depends on the required precision, on the signedness of the 

multiplier and on the considered error metric. 

 

III. PROPOSED SYSTEM 

 

      The conventional multiplication method is not the 

most efficient method, other methods, such as KA and its 

variations, have been developed. 

 

 For two polynomials of degree one 

and   , DFG for 

the 4-bit multiplier is represented in 2(b). It is worth noting 

that the 4-bit multiplier is constructed recursively using the 2-

bit submultipliers block I includes splitting, submultiplication, 

and alignment stages. Furthermore, block II calculates the 

overlaps of common terms. For an n-bit multiplier, consider 

two n-term polynomials.  and , which are in GF(2n ). 

These polynomials with n − 1 degree are presented as follows: 

 

 
 

 where and  are polynomial coefficients. 

   and   split into most (AH, BH ) and 

least (AL, BL ) significant halves as follows: 

 

 
 

 
 

where n = 2m.Using KA, the product of   could be 

calculated recursively as 

 

 

 
 

Where 

 

 

 

 
 

Three submultipliers are required in order to obtain 

the multiplication results using KA. In terms of complexity 

analysis, the number of gates required for implementation of 

an n-bit multiplier is 

 

KAXOR(n) = 3 KAXOR(n/2) + 4n − 4 

KAAND(n) = 3 KAAND (n/2) 

TKA(n) = 3 Tx + TKA(n/2). 

 
Fig.3.1 Proposed overlap-free Karatsuba-based multiplication 

strategy 

 

 The nonrecursive forms of these equations are as 

follows: 

KAXOR(n) = 6 nlog2(3) − 8n + 2 

KAAND(n) = nlog2(3) 

TKA(n) = Ta +( 3 log2(n) − 1 ) Tx 

 

OVERLAP-FREE KARATSUBA ALGORITHM 

 

 The OKA is a speed-optimized version of the original 

Karatsuba. In this method, to improve the longest path delay, 

inputs are split into odd and even orders instead of the high 
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and low parts. Once more, it is assumed that A(x) and B(x) are 

two polynomial in G F(2n) and n = 2m. These polynomials 

could be rewritten as 

 

 

 

 
  

 

where Ae and Be include the even order and Ao and Bo include 

the odd-order terms of polynomials A(X) and B(x), respectively. 

 

 Following a similar approach to the KA, the 

polynomial multiplication could be calculated as: A(x)B(x) = 

(Ae(y) + x Ao(y)) × (Be(y) + x Bo(y)) = G2(y)y + [G1(y) − 

G2(y) − G0(y)]x + G0(y) 

Where 

 

G0 = AeBe 

G1 = (Ao + Ae)(Bo + Be) 

G2 = AoBo 

 

 Similar to the KA, the overlap-free algorithm also 

uses three sub multipliers. However, term G0(y) + yG2(y) has 

only odd exponents (x 2n+1), and term G1(y) contains only 

terms with even exponents (x 2n). Therefore, there is no 

overlap between the components of these two terms, which 

allows removing an XOR gate from the critical path of the 

Karatsuba multiplier. It should be noted that the DFG for a 

first-order OKA multiplier is similar to that of the KA, for the 

4-bit multiplier, the critical path of overlap-free is one XOR 

gate delay shorter than a Karatsuba multiplier. By solving the 

recursive equation for area and space requirements, the 

estimated values of the OKA implementation are as follows: 

 

OKAXOR(n) = 3 OKAXOR(n/2) + 4n – 4 

OKAAND (n) = 3 OKAAND(n/2) 

TOKA(n) = 2 Tx + TOKA(n/2) 

OKAXOR(n) = 6 nlog2(3) − 8n + 2 

OKAAND (n) = nlog2(3) 

TOKA(n) = Ta + (2 log2(n) – 1)  Tx 

 

 Overlap-free Karatsuba space complexity is the same 

as the KA. However, its time complexity is decreased from (3 

log2(n) − 1)Tx in KA to (2 log2(n) − 1)Tx in OKA. 

PROPOSED MULTIPLICATION STRATEGY 

 

 A new and efficient implementation of the finite-field 

multiplier is proposed. The proposed implementation strategy 

is obtained by studying the theoretical boundaries of area and 

delay of conventional, Karatsuba, and overlapfree methods. 

An observed trend is used as a guideline for creating finite-

field multipliers of various sizes. Moreover, hardware 

resources requirements and combinational delay for two 

different implementation approaches, theoretical gatebased 

analysis and FPGA, are evaluated. The total number of gates 

for hardware implementation of the binary polynomial 

multiplication algorithms for different operand sizes is 

presented . It can be observed that considering small operand 

sizes, the number of gates required for implementing CAs is 

lower than that of the KA. However, as the operand size 

grows, the number of gates for implementing CA becomes 

substantially higher than Karatsuba and overlap-free. As an 

example, for operand size of 409 bits, the CA requires almost 

163% more gates than the Karatsuba or overlap-free. 

 

 The total combination delay in terms of gate delays 

for all three algorithms. It was assumed that the delay of the 

XOR and AND gates is the same; Tx = Ta = Tg. In this figure, 

the CA has the minimum delay; however, as operand size 

grows, the delay of conventional and overlapfree Karatsuba 

converge to almost the same value. On the other hand, 

Krartsuba’s delay rises at a faster rate compared to the other 

two algorithms. It is also worth noting that the delays of 163, 

193, and 233 bits recursive multipliers are the same since they 

have an equal number of stages. 

 

 Another interesting point is that the number of stages 

required to implement recursive multipliers, including KA and 

OKA, increases logarithmically with operand size rather than 

linearly. As an instance, in the case of the 233 bit, the first 

four stages recursively perform multiplication down to 15-bit 

multipliers. However, performing a 15-bit multiplication 

requires another four stages. It is also worth noting that the 

overall delay of these multipliers is determined by their 

corresponding number of stages. 

 

 To compare the efficiency of algorithms, area–delay 

product (ADP) was calculated for all algorithms  where, on 

average, overlap-free has the minimum and conventional has 

the highest ADP. Since our target platform is FPGAs, not 

digital gate-based devices, we investigated on-FPGA time and 

space analysis of these algorithms and validated the outcome 

by implementing algorithms. When it comes to the FPGA 

devices, the building blocks constructing most functions are 

lookup tables (LUTs) and not combinational gates. The LUTs 

are considered as universal gates where any function could be 
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represented. Therefore, in order to accurately estimate the 

complexity and delay analysis, these structures should be 

implemented on the FPGA using the LUTs. DFG for FPGA 

implementation of a 2-bit and a 4-bit binary polynomial 

multiplier using six-input LUTs. As shown in this figure, 

irrespective of the number of gates and the difference in the 

DFGs, the LUT-based implementations are similar. The 

difference between LUT implementation of these algorithms 

in terms of performance and the number of LUTs becomes 

distinct as the operand size increases. 

 

 Therefore, the theoretical estimations that are 

conventionally used to evaluate the efficiency of the 

algorithms cannot be simply extended to their actual FPGA 

implementation. There are techniques to estimate the number 

of LUTs and delay for FPGA implementation of 

combinational circuits. However, in a pragmatic approach, all 

algorithms mentioned above for various operand sizes were 

implemented on FPGA. In terms of area, all algorithms utilize 

almost the same number of LUTs when their operand sizes are 

small. However, the difference in the area grows nonlinearly 

as the operand sizes increase. For example, for a 283-bit 

conventional multiplier, FPGA utilization is almost 69% 

higher than that of the KA. For 409 bit, the number of LUTs is 

approximately twice the number required for the Karatsuba 

implementation. It is expected that gap becomes wider for 

larger operand sizes. The overlap-free implementation, 

however, utilizes a slightly higher number of LUTs comparing 

to Karatsuba. As an instance, a 409-bit overlap-free requires 

almost 2.7% more LUTs than the Karatsuba implementation. 

Regarding the combinational delay, the CA is roughly 44% 

faster than Karatsuba on average. This number for overlap-

free is smaller and is approximately 36%. The delays of 

Karatsuba and overlap-free are relatively close for small 

operand sizes. However, the difference grows with the size of 

multiplier operands in a way that for a 409-bit multiplier, 

overlap-free is almost 14% faster. 

 

 In terms of delay, for theoretical gate-based analysis 

as well as FPGA implementation results, the conventional 

method is the fastest, followed by the overlap-free and 

subsequently Karatsuba. In addition, the delay of overlap-free 

is close to Karatsuba on FPGA, while in theoretical results, it 

is closer to the CA. Moreover, the ADP for all three 

algorithms was evaluated As results denote, the ADP for the 

conventional method is smaller than the other methods for 

operand sizes less than 409 bit. Numerically, a 283-bit 

multiplier using the conventional method is 14% more 

efficient than Karatsuba and 9% more efficient than the 

overlap-free method. These numbers for a 93-bit multiplier are 

64% and 66% consecutively. The trend indicates that the CA 

is the most efficient method for smaller operand sizes. It is 

also worth noting that for operand sizes larger than 93 bits, 

overlap-free is more efficient than the KA. It is expected that 

the overlap-free remains the most efficient method for larger 

operand sizes. Since the efficiency continues to trend toward 

the overlap-free method for large operand sizes, a hybrid 

approach should be considered to implement finite-field 

multiplication. The DFG for the proposed overlap-free-based 

multiplication strategy (OBS) method is shown in Fig. 2.1. 

The highest level is based on the overlap-free. However, the 

conventional approach is used at the first level (level 1). In 

order to illustrate the proposed hybrid approach.For each 

multiplier, the level in which the conventional method was 

used changed from level 1 to level 4, using a CA at lower 

levels helps to reduce the number of LUTs required for the 

FPGA implementation of the multipliers. 

 

IV. RESULT AND DISCUSSION 

 

 
Figure 4.1 Proposed 4 bit Karatsuba multiplier 

 

 
Figure 4.2 Area analysis 

 

   Minimum period: No path found 

   Minimum input arrival time before clock: No path found 

   Maximum output required time after clock: No path found 

   Maximum combinational path delay: 7.725ns 

 

Figure 4.3 Delay analysis 
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Figure 4.4 Power analysis 

 

 
Figure 4.5 F Proposed 8 bit multiplier 

 

 
Figure 4.6 Power analysis 

 

 
Figure 4.7 Delay analysis 

 

 
Figure 4.8 Area analysis 

 

V. CONCLUSION 

 

Thus, the cryptography systems have become 

inseparable parts of almost every communication device. 

Among cryptography algorithms, public-key cryptography, 

and in particular elliptic curve cryptography (ECC), has 

become the most dominant protocol at this time. In ECC 

systems, polynomial multiplication is considered to be the 

most slow and area consuming operation. Proposed a novel 

hardware architecture for efficient field-programmable gate 

array (FPGA) implementation of finite field multipliers for 

ECC. Proposed system implemented on different for various 

operand sizes, and performance parameters were determined. 

Finally, 4 bit and 8 bit data for overlap free Karatsuba 

multiplier derived for ECC.  They are used to compose 8 x 8 

designs with different error-performance trade-off. Comparing 

to state-of-the art works, the proposed method resulted in a 

lower combinational delay and area–delay product indicating 

the efficiency of design. 
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