
IJSART - Volume 9 Issue 9 – SEPTEMBER 2023 ISSN [ONLINE]: 2395-1052

Page | 389 www.ijsart.com

Robust Efficient And High-Speed Overlap-Free

Karatsuba-Based Finite-Field Multiplier

R.Vaishnavi 1, E L Shajini2
1, 2 Dept of ECE

1, 2 Vins Christian College Of Engineering

Abstract- Cryptography systems have become inseparable

parts of almost every communication device. Among

cryptography algorithms, public-key cryptography, and in

particular elliptic curve cryptography (ECC), has become the

most dominant protocol at this time. In ECC systems,

polynomial multiplication is considered to be the most slow

and area consuming operation. Here proposes a novel

hardware architecture for efficient field-programmable gate

array (FPGA) implementation of finite field multipliers for

ECC using overlap-free karatsuba algorithm. Proposed

system implemented on different for various operand sizes,

and performance parameters were determined. In existing

approximate recursive multipliers are low-power designs that

exploit approximate building blocks to scale up to their final

size. Here present two novel 4 x 4 approximate multipliers

obtained by carry manipulation. They are used to compose 8 x

8 designs with different error-performance trade-off.

Comparing to state-of-the art works, the proposed method

resulted in a lower combinational delay and area–delay

product indicating the efficiency of design.

Keywords- Cryptography, public-key cryptography ,in

particular elliptic curve cryptography, efficient field-

programmable gate array, overlap-free karatsuba.

I. INTRODUCTION

 Several applications, such as elliptic curve

cryptography (ECC), error correcting codes, and signal

processing, require finite field multiplications as key units in

the main arithmetic operation-processes. For example, in, the

National Institute of Standards and Technology (NIST) has

recommended five binary extension fields, i.e., m = 163, 233,

283, 409, and 571, for the elliptic curve digital signature

algorithm (ECDSA) implementation. Generally, ECC/ECDSA

is based on a point multiplication kP, wherek is an integer and

P is a point on the elliptic curve. The point multiplication

involves two major operations, i.e., point addition and point

doubling (these two operations can be realized by affine or

projective coordinates). To avoid inversion operation, point

addition and point doubling can employ the projective

coordinates to have only operations of finite field addition,

squaring, and multiplication (addition and squaring are

simpler operations than the multiplication). Based on this

consideration, finite field multiplication surely becomes the

bottleneck of the point multiplication and has gained

substantial attentions from the research community recently.

 In the binary extension fields, multiplication based on

different field representation such as polynomial basis (PB),

dual basis (DB), and normal basis (NB) involves different

arithmetic operations and hardware architectures. Generally,

the structures of the finite field multiplications can be

classified into three major categories: bit-serial, digit serial,

and bit-parallel architectures. Among these structures, the

digit-serial multipliers can provide tradeoff between space and

time complexities and thus are seen as ideal candidate in

practical implementation. Recent reports have shown that the

digit-serial multipliers based fast algorithm can achieve lower

complexity than the conventional strategy.

 Beginning at 2015, Fan and Hasan have pointed out

that the bit-parallel multiplication using Karatsuba algorithm

(KA), Overlap-Free Karastsuba Algorithm (OFKA) and

Toeplitz matrix-vector product (TMVP) decompositions, can

lead to the sub-quadratic space complexity, which is suitable

for the implementation of high-performance ECC. Recently,

Lee and Meher and Lee et al. have derived new (a, b)-way KA

and (a,b)-way Toeplitz block TMVP (TBTMVP)

decompositions, respectively, to obtain subquadratic space

complexity digit-serial multipliers.

 Very-large-scale integration (VLSI) is the process of

creating an integrated circuit by combining thousands of

transistors into a single chip. VLSI began in the 1970s when

complex semiconductor and communication technologies

were being developed. VLSI is one of the basic building

blocks of today’s higher end or advance technology. VLSI is

finding its applications in a variety of areas from simple

electronic consumer products to very complex circuits used in

space electronics. Nowadays the trend in digital hardware

product is to integrate as much circuitry as possible onto a

single-chip. VLSI has offered new opportunity to design the

circuits which were not possible before with old circuits.

Programmable logic devices (PLD) and Electronic Design

IJSART - Volume 9 Issue 9 – SEPTEMBER 2023 ISSN [ONLINE]: 2395-1052

Page | 390 www.ijsart.com

Automation (EDA) tools have added much advancement in

VLSI design.

 The microprocessor is a VLSI device. Before the

introduction of VLSI technology most ICs had a limited set of

functions they could perform. An electronic circuit consists of

a CPU, ROM, RAM and other glue logic. Multiplication is the

third basic mathematical operation of arithmetic, the others

being addition, subtraction and division. The multiplication of

integers, rational numbers, and real numbers is defined by a

systematic generalization of this basic definition.

Multiplication can also be visualized as counting objects

arranged in a rectangle or as finding the area of a rectangle

whose sides have given lengths. The area of a rectangle does

not depend on which side is measured first, which illustrates

the commutative property.

 The Karatsuba algorithm (KA) for multiplying two

polynomials was introduced. It saves coefficient

multiplications at the cost of extra additions compared to the

ordinary multiplication method. The basic KA is performed as

follows. Consider two degree-1 polynomials A(x) and B(x)

with n = 2 coefficients:

 Let D0, D1, D0,1 be auxiliary variables with

 Then the polynomial C(x) = A(x)B(x) can be

calculated in the following way:

 This method requires three multiplications and four

additions. The ordinary method requires n2 multiplications and

(n − 1)2 additions, i.e., four multiplications and one addition.

Clearly, the KA can also be used to multiply integer numbers.

The KA can be generalized for polynomials of arbitrary

degree. The following algorithm describes a method to

multiply two arbitrary polynomials with n coefficients using

the one-iteration KA.

 In the present section we explore various techniques

to implement the 233 bit Karatsuba multiplier. We explore

techniques like Padding, Binary, Simple, Generalized and the

proposed Hybrid Karatsuba Multiplier. The design tradeoffs

involved in the various architectures are reported.

 The Padded Karatsuba multiplier is the most simple

method of implementing a fully recursive Karatsuba multiplier

for a field (2n) GF , where n= 2k + d and k is the largest

integer such that 2k < n . The Padded Karatsuba multiplier

extends the n bit multiplicands to 2k+1 bits by padding its

most significant bits with 2k+1-n zeroes. This then allows the

use of the basic recursive Karatsuba algorithm. The obvious

drawback of this method is the extra arithmetic introduced due

to the padding.

 The Binary Karatsuba multiplier was proposed. The

algorithm modifies the basic Karatsuba multiplier to handle

any field of the form (2n) GF , where n = 2k + d, and k is the

largest integer such that 2k < n . The algorithm splits each

multiplicand into two terms, the higher term containing d bits

and the lower term containing 2k bits. The higher term partial

product (Ak Bh) is determined by a Binary Karatsuba

algorithm for d bits. The number of times the Binary

Karatsuba algorithm is called recursively depends on the

hamming weight of n . For example, the binary equivalent of

233 is (11101001)2, therefore the Binary Karatsuba algorithm

is used recursively for 5 iterations.

 The Simple Karatsuba multiplier is the basic

recursive Karatsuba multiplier with a small modification. If an

n bit multiplication is needed to be done, n being any integer,

it is split into two polynomials. The Al and Bl polynomials

have n / 2 terms while the Ah and Bh polynomials have n / 2

terms. The Karatsuba multiplication can then be done with

two n / 2 bit multiplications and a single n / 2 bit

multiplication.

 The basic Karatsuba multiplier defines a method to

multiply two n bit polynomials using three n / 2 bit

multipliers. This is achieved by splitting the n bit polynomial

into a 2-term polynomial with each term having n / 2 bits. In it

was shown that if A and B are two n k = 3 bit polynomials, the

Karatsuba multiplier for 3-term polynomials can be used. This

results in six multiplications and 13 additions.

II. LITERATURE SURVEY

Approximate computing has become an emerging

research topic for energy-efficient design of circuits and

systems. Many approximate arithmetic circuits have been

proposed; therefore it is critical to summarize the available

approximation techniques to improve performance and energy

efficiency at a acceptable accuracy loss. This paper presents

an overview of circuit-level techniques used for approximate

arithmetic. This paper provides a detailed review of circuit-

level approximation techniques for the arithmetic data path. Its

focus is on identifying critical circuit-level approximation

IJSART - Volume 9 Issue 9 – SEPTEMBER 2023 ISSN [ONLINE]: 2395-1052

Page | 391 www.ijsart.com

techniques that apply to computational units and blocks.

Approximate adders, multipliers, dividers, and squarer are

introduced and classified according to their approximation

methods. FFT and MAC are discussed as computational

blocks that employ an approximate algorithm for

implementation.

Improving the accuracy of a neural network (NN)

usually requires using larger hardware that consumes more

energy. However, the error tolerance of NNs and their

applications allow approximate computing techniques to be

applied to reduce implementation costs. Given that

multiplication is the most resource-intensive and power-

hungry operation in NNs, more economical approximate

multipliers (AMs) can significantly reduce hardware costs. In

this article, we show that using AMs can also improve the NN

accuracy by introducing noise. We consider two categories of

AMs: 1) deliberately designed and 2) Cartesian genetic

programing (CGP)-based AMs. The exact multipliers in two

representative NNs, a multilayer perceptron (MLP) and a

convolutional NN (CNN), are replaced with approximate

designs to evaluate their effect on the classification accuracy

of the Mixed National Institute of Standards and Technology

(MNIST) and Street View House Numbers (SVHN) data sets,

respectively. Interestingly, up to 0.63% improvement in the

classification accuracy is achieved with reductions of 71.45%

and 61.55% in the energy consumption and area, respectively.

Finally, the features in an AM are identified that tend to make

one design outperform others with respect to NN accuracy.

Those features are then used to train a predictor that indicates

how well an AM is likely to work in an NN.

Approximate computing has emerged as a new

paradigm for high-performance and energy-efficient design of

circuits and systems. For the many approximate arithmetic

circuits proposed, it has become critical to understand a design

or approximation technique for a specific application to

improve performance and energy efficiency with a minimal

loss in accuracy. This article aims to provide a comprehensive

survey and a comparative evaluation of recently developed

approximate arithmetic circuits under different design

constraints. Specifically, approximate adders, multipliers, and

dividers are synthesized and characterized under optimizations

for performance and area. The error and circuit characteristics

are then generalized for different classes of designs. The

applications of these circuits in image processing and deep

neural networks indicate that the circuits with lower error rates

or error biases perform better in simple computations, such as

the sum of products, whereas more complex accumulative

computations that involve multiple matrix multiplications and

convolutions are vulnerable to single-sided errors that lead to a

large error bias in the computed result. Such complex

computations are more sensitive to errors in addition than

those in multiplication, so a larger approximation can be

tolerated in multipliers than in adders. The use of approximate

arithmetic circuits can improve the quality of image

processing and deep learning in addition to the benefits in

performance and power consumption for these applications.

Multiplication is an essential image processing

operation commonly implemented in hardware DSP cores. To

improve DSP cores’ area, speed, or energy efficiency, we can

approximate multiplication. We present an approximate

multiplier that generates two partial products using hybrid

radix-4 and logarithmic encoding of the input operands. It uses

the exact radix-4 encoding to generate the partial product from

the three most significant bits and the logarithmic

approximation with mantissa trimming to approximate the

partial product from the remaining least-significant bits. The

proposed multiplier fills the gap between highly accurate

approximate non-logarithmic multipliers with a complex

design and less accurate approximate logarithmic multipliers

with a more straightforward design. We evaluated the

multiplier’s efficiency in terms of error, energy (power-delay-

product) and area utilisation using NanGate 45 nm. The

experimental results show that the proposed multiplier exhibits

good area utilisation and energy consumption and behaves

well in image processing applications.

Approximate multipliers are used in error-tolerant

applications, sacrificing the accuracy of results to minimize

power or delay. In this paper we investigate approximate

multipliers using static segmentation. In these circuits a set of

m contiguous bits (a segment of m bits) is extracted from each

of the two n -bits operand, the two segments are in input to a

small m×m internal multiplier whose output is suitably shifted

to obtain the result. We investigate both signed and unsigned

multipliers, and for the latter we propose a new segmentation

approach. We also present simple and effective correction

techniques that can significantly reduce the approximation

error with reduced hardware costs. We perform a detailed

comparison with previously proposed approximate multipliers,

considering a hardware implementation in 28 nm technology.

The comparison shows that static segmented multipliers with

the proposed correction technique have the desirable

characteristic of being on (or close to) the Pareto-optimal

frontier for both power vs normalized mean error distance and

power vs mean relative error distance trade-off plots. These

multipliers, therefore, are promising candidates for

applications where their error performance is acceptable. This

is confirmed by the results obtained for image processing and

image classification applications.

IJSART - Volume 9 Issue 9 – SEPTEMBER 2023 ISSN [ONLINE]: 2395-1052

Page | 392 www.ijsart.com

Libraries of approximate circuits are composed of

fully characterized digital circuits that can be used as building

blocks of energy-efficient implementations of hardware

accelerators. They can be employed not only to speed up the

accelerator development but also to analyze how an

accelerator responds to introducing various approximate

operations. In this paper, we present a methodology that

automatically builds comprehensive libraries of approximate

circuits with desired properties. Target approximate circuits

are generated using Cartesian genetic programming. In

addition to extending the EvoApprox8b library that contains

common approximate arithmetic circuits, we show how to

generate more specific approximate circuits; in particular,

MxN-bit approximate multipliers that exhibit promising

results when deployed in convolutional neural networks. By

means of the evolved approximate multipliers, we perform a

detailed error resilience analysis of five different ResNet

networks. We identify the convolutional layers that are good

candidates for adopting the approximate multipliers and

suggest particular approximate multipliers whose application

can lead to the best trade-offs between the classification

accuracy and energy requirements. Experiments are reported

for CIFAR-10 and CIFAR-100 data sets.

Approximate arithmetic circuits are an attractive

alternative to accurate arithmetic circuits because they have

significantly reduced delay, area, and power, albeit at the cost

of some loss in accuracy. By keeping errors due to

approximate computation within acceptable limits,

approximate arithmetic circuits can be used for various

practical applications such as digital signal processing, digital

filtering, low power graphics processing, neuromorphic

computing, hardware realization of neural networks for

artificial intelligence and machine learning etc. The degree of

approximation that can be incorporated into an approximate

arithmetic circuit tends to vary depending on the error

resiliency of the target application. Given this, the manual

coding of approximate arithmetic circuits corresponding to

different degrees of approximation in a hardware description

language (HDL) may be a cumbersome and a time-consuming

process—more so when the circuit is big. Therefore, a

software tool that can automatically generate approximate

arithmetic circuits of any size corresponding to a desired

accuracy would not only aid the design flow but also help to

improve a designer’s productivity by speeding up the

circuit/system development. In this context, this paper presents

‘Approximator’, which is a software tool developed to

automatically generate approximate arithmetic circuits based

on a user’s specification. Approximator can automatically

generate Verilog HDL codes of approximate adders and

multipliers of any size based on the novel approximate

arithmetic circuit architectures proposed by us. The Verilog

HDL codes output by Approximator can be used for synthesis

in an FPGA or ASIC (standard cell based) design

environment. Additionally, the tool can perform error and

accuracy analyses of approximate arithmetic circuits. The

salient features of the tool are illustrated through some

example screenshots captured during different stages of the

tool use.

In approximate operators, dynamic truncation allows

trading off energy and quality of computation at runtime.

Although it exploits the specificity of the data being

processed, its significant energy overhead over simple static

truncation fundamentally limits its energy benefits. This brief

describes a simple and efficient design methodology that

reduces the energy consumption of dynamically truncated

multipliers, based on a smart mapping of the partial products.

A configurable hardware correction strategy is also proposed

to enable graceful quality degradation, as well as more

aggressive energy reduction at a given quality. When applied

to Wallace multipliers, the proposed approach achieves

quality, in terms of Mean Error Distance, up to 11× higher

than the conventional dynamic truncation, at the same energy.

In the case study of Discrete Cosine Transform compression,

the proposed approximate multiplier reaches image qualities

by 15-35% better, compared to prior art.

High speed multimedia applications have paved way

for a whole new area in high speed error-tolerant circuits with

approximate computing. These applications deliver high

performance at the cost of reduction in accuracy. Furthermore,

such implementations reduce the complexity of the system

architecture, delay and power consumption. This paper

explores and proposes the design and analysis of two

approximate compressors with reduced area, delay and power

with comparable accuracy when compared with the existing

architectures. The proposed designs are implemented using 45

nm CMOS technology and efficiency of the proposed designs

have been extensively verified and projected on scales of area,

delay, power, Power Delay Product (PDP), Error Rate (ER),

Error Distance (ED), and Accurate Output Count (AOC). The

proposed approximate 4 : 2 compressor shows 56.80%

reduction in area, 57.20% reduction in power, and 73.30%

reduction in delay compared to an accurate 4 : 2 compressor.

The proposed compressors are utilised to implement 8 × 8 and

16 × 16 Dadda multipliers. These multipliers have comparable

accuracy when compared with state-of-the-art approximate

multipliers. The analysis is further extended to project the

application of the proposed design in error resilient

applications like image smoothing and multiplication.

 Approximate multipliers attract a large interest in the

scientific literature that proposes several circuits built with

IJSART - Volume 9 Issue 9 – SEPTEMBER 2023 ISSN [ONLINE]: 2395-1052

Page | 393 www.ijsart.com

approximate 4-2 compressors. Due to the large number of

proposed solutions, the designer who wishes to use an

approximate 4-2 compressor is faced with the problem of

selecting the right topology. In this paper, we present a

comprehensive survey and comparison of approximate 4-2

compressors previously proposed in literature. We present also

a novel approximate compressor, so that a total of twelve

different approximate 4-2 compressors are analyzed. The

investigated circuits are employed to design 8 × 8 and 16 × 16

multipliers, implemented in 28nm CMOS technology. For

each operand size we analyze two multiplier configurations,

with different levels of approximations, both signed and

unsigned. Our study highlights that there is no unique winning

approximate compressor topology since the best solution

depends on the required precision, on the signedness of the

multiplier and on the considered error metric.

III. PROPOSED SYSTEM

 The conventional multiplication method is not the

most efficient method, other methods, such as KA and its

variations, have been developed.

 For two polynomials of degree one

and , DFG for

the 4-bit multiplier is represented in 2(b). It is worth noting

that the 4-bit multiplier is constructed recursively using the 2-

bit submultipliers block I includes splitting, submultiplication,

and alignment stages. Furthermore, block II calculates the

overlaps of common terms. For an n-bit multiplier, consider

two n-term polynomials. and , which are in GF(2n).

These polynomials with n − 1 degree are presented as follows:

 where and are polynomial coefficients.

 and split into most (AH, BH) and

least (AL, BL) significant halves as follows:

where n = 2m.Using KA, the product of could be

calculated recursively as

Where

Three submultipliers are required in order to obtain

the multiplication results using KA. In terms of complexity

analysis, the number of gates required for implementation of

an n-bit multiplier is

KAXOR(n) = 3 KAXOR(n/2) + 4n − 4

KAAND(n) = 3 KAAND (n/2)

TKA(n) = 3 Tx + TKA(n/2).

Fig.3.1 Proposed overlap-free Karatsuba-based multiplication

strategy

 The nonrecursive forms of these equations are as

follows:

KAXOR(n) = 6 nlog2(3) − 8n + 2

KAAND(n) = nlog2(3)

TKA(n) = Ta +(3 log2(n) − 1) Tx

OVERLAP-FREE KARATSUBA ALGORITHM

 The OKA is a speed-optimized version of the original

Karatsuba. In this method, to improve the longest path delay,

inputs are split into odd and even orders instead of the high

IJSART - Volume 9 Issue 9 – SEPTEMBER 2023 ISSN [ONLINE]: 2395-1052

Page | 394 www.ijsart.com

and low parts. Once more, it is assumed that A(x) and B(x) are

two polynomial in G F(2n) and n = 2m. These polynomials

could be rewritten as

where Ae and Be include the even order and Ao and Bo include

the odd-order terms of polynomials A(X) and B(x), respectively.

 Following a similar approach to the KA, the

polynomial multiplication could be calculated as: A(x)B(x) =

(Ae(y) + x Ao(y)) × (Be(y) + x Bo(y)) = G2(y)y + [G1(y) −

G2(y) − G0(y)]x + G0(y)

Where

G0 = AeBe

G1 = (Ao + Ae)(Bo + Be)

G2 = AoBo

 Similar to the KA, the overlap-free algorithm also

uses three sub multipliers. However, term G0(y) + yG2(y) has

only odd exponents (x 2n+1), and term G1(y) contains only

terms with even exponents (x 2n). Therefore, there is no

overlap between the components of these two terms, which

allows removing an XOR gate from the critical path of the

Karatsuba multiplier. It should be noted that the DFG for a

first-order OKA multiplier is similar to that of the KA, for the

4-bit multiplier, the critical path of overlap-free is one XOR

gate delay shorter than a Karatsuba multiplier. By solving the

recursive equation for area and space requirements, the

estimated values of the OKA implementation are as follows:

OKAXOR(n) = 3 OKAXOR(n/2) + 4n – 4

OKAAND (n) = 3 OKAAND(n/2)

TOKA(n) = 2 Tx + TOKA(n/2)

OKAXOR(n) = 6 nlog2(3) − 8n + 2

OKAAND (n) = nlog2(3)

TOKA(n) = Ta + (2 log2(n) – 1) Tx

 Overlap-free Karatsuba space complexity is the same

as the KA. However, its time complexity is decreased from (3

log2(n) − 1)Tx in KA to (2 log2(n) − 1)Tx in OKA.

PROPOSED MULTIPLICATION STRATEGY

 A new and efficient implementation of the finite-field

multiplier is proposed. The proposed implementation strategy

is obtained by studying the theoretical boundaries of area and

delay of conventional, Karatsuba, and overlapfree methods.

An observed trend is used as a guideline for creating finite-

field multipliers of various sizes. Moreover, hardware

resources requirements and combinational delay for two

different implementation approaches, theoretical gatebased

analysis and FPGA, are evaluated. The total number of gates

for hardware implementation of the binary polynomial

multiplication algorithms for different operand sizes is

presented . It can be observed that considering small operand

sizes, the number of gates required for implementing CAs is

lower than that of the KA. However, as the operand size

grows, the number of gates for implementing CA becomes

substantially higher than Karatsuba and overlap-free. As an

example, for operand size of 409 bits, the CA requires almost

163% more gates than the Karatsuba or overlap-free.

 The total combination delay in terms of gate delays

for all three algorithms. It was assumed that the delay of the

XOR and AND gates is the same; Tx = Ta = Tg. In this figure,

the CA has the minimum delay; however, as operand size

grows, the delay of conventional and overlapfree Karatsuba

converge to almost the same value. On the other hand,

Krartsuba’s delay rises at a faster rate compared to the other

two algorithms. It is also worth noting that the delays of 163,

193, and 233 bits recursive multipliers are the same since they

have an equal number of stages.

 Another interesting point is that the number of stages

required to implement recursive multipliers, including KA and

OKA, increases logarithmically with operand size rather than

linearly. As an instance, in the case of the 233 bit, the first

four stages recursively perform multiplication down to 15-bit

multipliers. However, performing a 15-bit multiplication

requires another four stages. It is also worth noting that the

overall delay of these multipliers is determined by their

corresponding number of stages.

 To compare the efficiency of algorithms, area–delay

product (ADP) was calculated for all algorithms where, on

average, overlap-free has the minimum and conventional has

the highest ADP. Since our target platform is FPGAs, not

digital gate-based devices, we investigated on-FPGA time and

space analysis of these algorithms and validated the outcome

by implementing algorithms. When it comes to the FPGA

devices, the building blocks constructing most functions are

lookup tables (LUTs) and not combinational gates. The LUTs

are considered as universal gates where any function could be

IJSART - Volume 9 Issue 9 – SEPTEMBER 2023 ISSN [ONLINE]: 2395-1052

Page | 395 www.ijsart.com

represented. Therefore, in order to accurately estimate the

complexity and delay analysis, these structures should be

implemented on the FPGA using the LUTs. DFG for FPGA

implementation of a 2-bit and a 4-bit binary polynomial

multiplier using six-input LUTs. As shown in this figure,

irrespective of the number of gates and the difference in the

DFGs, the LUT-based implementations are similar. The

difference between LUT implementation of these algorithms

in terms of performance and the number of LUTs becomes

distinct as the operand size increases.

 Therefore, the theoretical estimations that are

conventionally used to evaluate the efficiency of the

algorithms cannot be simply extended to their actual FPGA

implementation. There are techniques to estimate the number

of LUTs and delay for FPGA implementation of

combinational circuits. However, in a pragmatic approach, all

algorithms mentioned above for various operand sizes were

implemented on FPGA. In terms of area, all algorithms utilize

almost the same number of LUTs when their operand sizes are

small. However, the difference in the area grows nonlinearly

as the operand sizes increase. For example, for a 283-bit

conventional multiplier, FPGA utilization is almost 69%

higher than that of the KA. For 409 bit, the number of LUTs is

approximately twice the number required for the Karatsuba

implementation. It is expected that gap becomes wider for

larger operand sizes. The overlap-free implementation,

however, utilizes a slightly higher number of LUTs comparing

to Karatsuba. As an instance, a 409-bit overlap-free requires

almost 2.7% more LUTs than the Karatsuba implementation.

Regarding the combinational delay, the CA is roughly 44%

faster than Karatsuba on average. This number for overlap-

free is smaller and is approximately 36%. The delays of

Karatsuba and overlap-free are relatively close for small

operand sizes. However, the difference grows with the size of

multiplier operands in a way that for a 409-bit multiplier,

overlap-free is almost 14% faster.

 In terms of delay, for theoretical gate-based analysis

as well as FPGA implementation results, the conventional

method is the fastest, followed by the overlap-free and

subsequently Karatsuba. In addition, the delay of overlap-free

is close to Karatsuba on FPGA, while in theoretical results, it

is closer to the CA. Moreover, the ADP for all three

algorithms was evaluated As results denote, the ADP for the

conventional method is smaller than the other methods for

operand sizes less than 409 bit. Numerically, a 283-bit

multiplier using the conventional method is 14% more

efficient than Karatsuba and 9% more efficient than the

overlap-free method. These numbers for a 93-bit multiplier are

64% and 66% consecutively. The trend indicates that the CA

is the most efficient method for smaller operand sizes. It is

also worth noting that for operand sizes larger than 93 bits,

overlap-free is more efficient than the KA. It is expected that

the overlap-free remains the most efficient method for larger

operand sizes. Since the efficiency continues to trend toward

the overlap-free method for large operand sizes, a hybrid

approach should be considered to implement finite-field

multiplication. The DFG for the proposed overlap-free-based

multiplication strategy (OBS) method is shown in Fig. 2.1.

The highest level is based on the overlap-free. However, the

conventional approach is used at the first level (level 1). In

order to illustrate the proposed hybrid approach.For each

multiplier, the level in which the conventional method was

used changed from level 1 to level 4, using a CA at lower

levels helps to reduce the number of LUTs required for the

FPGA implementation of the multipliers.

IV. RESULT AND DISCUSSION

Figure 4.1 Proposed 4 bit Karatsuba multiplier

Figure 4.2 Area analysis

 Minimum period: No path found

 Minimum input arrival time before clock: No path found

 Maximum output required time after clock: No path found

 Maximum combinational path delay: 7.725ns

Figure 4.3 Delay analysis

IJSART - Volume 9 Issue 9 – SEPTEMBER 2023 ISSN [ONLINE]: 2395-1052

Page | 396 www.ijsart.com

Figure 4.4 Power analysis

Figure 4.5 F Proposed 8 bit multiplier

Figure 4.6 Power analysis

Figure 4.7 Delay analysis

Figure 4.8 Area analysis

V. CONCLUSION

Thus, the cryptography systems have become

inseparable parts of almost every communication device.

Among cryptography algorithms, public-key cryptography,

and in particular elliptic curve cryptography (ECC), has

become the most dominant protocol at this time. In ECC

systems, polynomial multiplication is considered to be the

most slow and area consuming operation. Proposed a novel

hardware architecture for efficient field-programmable gate

array (FPGA) implementation of finite field multipliers for

ECC. Proposed system implemented on different for various

operand sizes, and performance parameters were determined.

Finally, 4 bit and 8 bit data for overlap free Karatsuba

multiplier derived for ECC. They are used to compose 8 x 8

designs with different error-performance trade-off. Comparing

to state-of-the art works, the proposed method resulted in a

lower combinational delay and area–delay product indicating

the efficiency of design.

REFERENCES

[1] Q. Xu, T. Mytkowicz, and N. S. Kim, “Approximate

computing: A survey,” IEEE Des. Test, vol. 33, no. 1, pp.

8–22, Feb. 2016.

[2] V. K. Chippa, S. T. Chakradhar, K. Roy, and A.

Raghunathan, “Analysis and characterization of inherent

application resilience for approximate computing,” in

Proc. 50th ACM/EDAC/IEEE Des. Automat. Conf., 2013,

pp. 1–9.

[3] K. Chen, P. Yin, W. Liu, and F. Lombardi, “A survey of

approximate arithmetic circuits and blocks,” Inf.

Technol., vol. 64, no. 3, pp. 79–87, 2022.

[4] M. S. Ansari, V. Mrazek, B. F. Cockburn, L. Sekanina, Z.

Vasicek, and J. Han, “Improving the accuracy and

hardware efficiency of neural networks using approximate

multipliers,” IEEE Trans. Very Large Scale Integration

(VLSI) Syst., vol. 28, no. 2, pp. 317–328, Feb. 2020.

[5] L. B. Soares, M. M. A. da Rosa, C. M. Diniz, E. A. C. da

Costa, and S. Bampi, “Design methodology to explore

hybrid approximate adders for energy-efficient image and

video processing accelerators,” IEEE Trans. Circuits Syst.

I: Reg. Papers, vol. 66, no. 6, pp. 2137–2150, Jun. 2019.

[6] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy,

“Low-power digital signal processing using approximate

adders,” IEEE Trans. Comput.- Aided Des. Integr.

Circuits Syst., vol. 32, no. 1, pp. 124–137, Jan. 2013.

[7] L. Chen, J. Han, W. Liu, P. Montuschi, and F. Lombardi,

“Design, evaluation and application of approximate high-

radix dividers,” IEEE Trans. Multi-Scale Comput. Syst.,

vol. 4, no. 3, pp. 299–312, Jul.–Sep. 2018.

IJSART - Volume 9 Issue 9 – SEPTEMBER 2023 ISSN [ONLINE]: 2395-1052

Page | 397 www.ijsart.com

[8] M. Horowitz, “Computing’s energy problem (and what

we can do about it),” in Proc. IEEE Int. Solid-State

Circuits Conf., 2014, pp. 10–14.

[9] H. Jiang, F. J. H. Santiago, H. Mo, L. Liu, and J. Han,

“Approximate arithmetic circuits: A survey,

characterization, and recent applications,” Proc. IEEE,

vol. 108, no. 12, pp. 2108–2135, Dec. 2020.

[10] W. Liu, J. Xu, D. Wang, C. Wang, P. Montuschi, and F.

Lombardi, “Design and evaluation of approximate

logarithmic multipliers for low power errortolerant

applications,” IEEE Trans. Circuits Syst. I: Reg. Papers,

vol. 65, no. 9, pp. 2856–2868, Sep. 2018.

[11] M. S. Kim, A. A. D. Barrio, L. T. Oliveira, R. Hermida,

and N. Bagherzadeh, “Efficient Mitchell’s approximate

log multipliers for convolutional neural networks,” IEEE

Trans. Comput., vol. 68, no. 5, pp. 660–675, May 2019.

[12] U. Lotric, R. Pilipovi c, and P. Buli c, “A hybrid radix-4

and approximate logarithmic multiplier for energy

efficient image processing,” Electron. Low-Size Low-

Power Sensors Syst.: From Custom Des. Embedded

Solutions, vol. 10, no. 10, May 2021, Art. no. 1175.

[13] A. G. M. Strollo, E. Napoli, D. De Caro, N. Petra, G.

Saggese, and G. Di Meo, “Approximate multipliers using

static segmentation: Error analysis and improvements,”

IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 69, no. 6,

pp. 2449–2462, Jun. 2022, doi:

10.1109/TCSI.2022.3152921.

[14] T. Yang, T. Ukezono, and T. Sato, “A low-power high-

speed accuracycontrollable approximate multiplier

design,” in Proc. 23rd Asia South Pacific Des. Automat.

Conf., 2018, pp. 605–610.

[15] M. Ce ska, J. Maty as, V. Mrazek, L. Sekanina, Z.

Vasicek, and T. Vojnar, “ADAC: Automated design of

approximate circuits,” in Computer Aided Verification.

Berlin, Germany: Springer, 2018.

[16] S. Ullah, S. S. Murthy, and A. Kumar, “SMApproxLib:

Library of FPGAbased approximate multipliers,” in Proc.

55th ACM/ESDA/IEEE Des. Automat. Conf., 2018.

[17] V. Mrazek, L. Sekanina, and Z. Vasicek, “Libraries of

approximate circuits: Automated design and application

in CNN accelerators,” IEEE J. Emerg. Sel. Topics

Circuits Syst., vol. 10, no. 4, pp. 406–418, Dec. 2020,

[18] P. Balasubramanian, R. Nayar, O. Min, and D. L.

Maskell, “Approximator: A software tool for automatic

generation of approximate arithmetic circuits,”

Computers, vol. 11, no. 1, Jan. 2022.

[19] S. Vahdat, M. Kamal, A. Afzali-Kusha, and M. Pedram,

“TOSAM: An energy-efficient truncation- and rounding-

based scalable approximate multiplier,” IEEE Trans. Very

Large Scale Integration (VLSI) Syst., vol. 27, no. 5, pp.

1161–1173, May 2019.

[20] F. Frustaci, S. Perri, P. Corsonello, and M. Alioto,

“Approximate multipliers with dynamic truncation for

energy reduction via graceful quality degradation,” IEEE

Trans. Circuits Syst. II: Exp. Briefs, vol. 67, no. 12, pp.

3427–3431, Dec. 2020.

