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Abstract- Non-experimental sciences rely heavily on data that 

is generated indirectly. Multicollinearity is a problem that 

arises when there aren't enough data points or when the data 

used to draw conclusions isn't clear. Unfortunately, the 

estimate of linear statistical models is complicated by the 

problem of multicolliearity. Extremely multicollinear 

explanatory variables might produce parameter estimates that 

are extremely sensitive to changes in the model's specification 

and pattern coverage. Statistics experts are aware that 

multicollinearity significantly increases the likelihood of 

improper model specification and that suboptimal model 

specification weakens the high linear independence of 

parameter estimates over multicollinear explanatory variable 

units. 

 

This paper develops a method for predicting the 

parameters of a linear statistical model while addressing the 

multicollinearity issue using orthonormal and morepenrose 

generalised inverse matrices. In addition to the new estimator, 

the generalised mean squared errors for the estimate have 

also been determined. 

 

I. INTRODUCTION 

 

 The majority of the information used in the non-

experimental sciences is generated through other means. The 

multicollinearity problem is a term that refers to what happens 

when there is insufficient information as well as ambiguity in 

the statistical results that are based on the information. Sadly, 

the issue of multicollinearity contributes to the difficulties that 

is involved in the estimation of linear statistical models. When 

regression techniques are attempted to be applied to 

explanatory variables that are highly multicollinear, the 

resulting parameter estimates are extremely sensitive to 

changes in the model specification as well as variations in the 

amount of data collected. 

 

The concept of multicollinearity refers to a condition 

of interdependence that can take place completely 

independently of the nature, or even the existence of, or the 

reliance that exists between X and Y. 

 

The presence of multicollinearity poses a risk, and in 

many cases, a significant risk, to the accurate and efficient 

estimation of the kind of structural relationship that is 

typically sought through the application of regression 

techniques. Multicollinearity is a threat. 

 

II. MULTICOLLINEARITY  IN STATISTICAL MODEL 

 

 Estimating the parameters of a dependency 

connection, as opposed to the parameters of an 

interdependency relationship, is the goal of regression 

analysis. First, we establish that Y and X are connected to one 

another in a linear fashion. 

 

Y = X +     ….. (2.1) 

 

Y, X as a sample of N observations on one dependent and n 

independent variables, each of  which is normalized to unit 

length.    

 as a vector of true (structural) coefficients   

   as a true error term, with distributional properties specified 

by the general linear model.  

Least squares regression analysis leads to estimates 

 

1 1 1ˆ (X X) X Y 
 

 

with variance – covariance matrix  

 

2 1 1ˆV ( ) (X X)  
 

 

As interdependence among explanatory variables x 

grows, the correlation matrix (X1X) approaches singularity, 

and elements of the inverse matrix (X1X)1 explode.   

 

 

 



IJSART - Volume 9 Issue 9 – SEPTEMBER 2023                                                                            ISSN  [ONLINE]: 2395-1052 
 

Page | 507                                                                                                                                                                     www.ijsart.com 

 

III. REASONS FOR  MULTICOLLINEARITY 

 

A cause for multicollinearity is the employment of 

lagged values of several explanatory components as separate 

explanatory variables inside the courting process.  

1. This is among the most important factors that contribute 

to multicollinearity. As a consequence of this, the 

existence of multicollinearity inside the dispersed lag 

models can be seen to be absolutely guaranteed. 

2. The connections that exist between the many different 

aspects of the economy typically get stronger over the 

course of time. For instance, during periods of economic 

expansion, wages, savings, intake, investment, rate levels, 

and employment levels, amongst other things, tend to 

increase. On the other hand, during times of economic 

contraction, these same factors normally tend to decrease. 

As a direct consequence of this, the aspects of growth and 

fashion in time series are the ones that contribute to 

multicollinearity the most significantly. 

3. As a result of the imprecision of the dimensioning, there 

is the possibility of multicollinearity. 

4. It is possible, but not guaranteed, that the model will 

consist of a higher number of explanatory variables than 

there are observations. However, this is the case. 

 

IV. ADVERSES OF MULTICOLLINEARITY 

 

The main adverses of multicollinearity are : 

 

i)    As a result of the decline in estimating precision, it 

becomes exceedingly challenging to arrive at accurate 

estimations of the regression coefficients. There are three 

aspects to the reduction in precision. 

 

A) Precise estimates are prone to extremely significant error. 

B) There is a strong possibility that these errors are 

intertwined with one another. 

 

C) The coefficients' sampling variances can sometimes be 

quite large in magnitude. 

 

I) Estimates of regression coefficients become extremely 

sensitive to particular sets of sample records, and the addition 

of some greater observations or the deletion of a few 

observations can sometimes produce dramatic shifts in some 

of the coefficients. This sensitivity is due to the fact that 

regression coefficients tend to be positively correlated with the 

number of observations used in the analysis. 

 

Ii) If there is a high level of multicollinearity, one may also 

incur a high cost in terms of R2, and only a select fraction of 

the calculated regression coefficients will be statistically 

significant. 

 

Iii) The possibility of falling for a false hypothesis rises as a 

direct result of the prevalence of huge preferred blunders. To 

put it another way, the significance of the examination will be 

diminished. 

 

V. ESTIMATION OF MULTICOLLINEAR 

STATISTICAL MODEL 

 

Consider the linear regression model, 

 

nx1 nxk kx1 nx1Y X  
    ….(5.1) 

 

1 2

nE 0, E I           

Rank of X K  

Under the problem of multicollinearity, the Ridge Regression 

estimator for  is given by  

 
1

1 1ˆ( ) X X I X Y, 0


          ….(5.2) 

 

Let  
 P : Q

 be a 
(K K)

 orthonormal matrix; P and  Q are 

(K r)
 and 

 K (K r) 
 submatrices ; T is a 

(r r)
 

diagonal matrix with positive diagonal elements; and r is rank 

of matrix X. Then the canonical   form of 
1(X X)

 can be 

expressed as  

 

 
1

1 1

1

T 0 P
X X P Q PTP

0 0 Q

  
   

     
….(5.3) 

 

Further one may have  
1 1Q X XQ 0

 so that XQ=0                                    

Now   (5.2) can be written as  

 

 
1 1 1ˆ( ) P T I P X Y


   
 ….(5.4) 

 

we have , 
1 g 1ˆ ˆ(0) Lt ( ) (X X) X Y     0

 

              ….(5.5)where 

1 g 1 1(X X) PT P
 is the  More – Penrose generalized 

inverse of matrix 
1X X .  
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ˆ(0)
 gives the OLS solution of satisfied  the normal 

equations  

 

1 1ˆX X (0) X Y 
    

 ….(5.6) 

For some d, if C= Pd, an estimable function of   is given by 

C1. It  can be  shown that the necessary and sufficient 

condition for the  

 

1 1ˆ ˆMSE C ( ) MSE C (0)      
     is that 

1
1 1 g 2 12

2
I (X X)





                

 ….(5.7) 

 

where, 
1Q 

 

The condition (5.3.7) is satisfied if, 

2

1

2

 
 

 

    ….(5.8) 

or 

1 1 22 1


 
           

 ….(5.9) 

or 
1 1 2X X   

   

 ….(5.10) 

 

Where  
1P and   

 is the  largest  given value of 

1(X X)
.   

By  substituting
1 1pp QQ I 

 and 
XQ 0

 in   (5.1), one  

may obtain the model as  

     

Y Z     ….(5.11) 

 

  1 2E 0, E I        

 where 
1Z XP, P   

 

The  OLS estimator of   is  given by  

 

1 1 1ˆ (0) (Z Z) Z Y 
   

 ….(5.12) 

 

and 
ˆ ( ) 0,  

 Here, 
ˆ ( ) 

 is the Ridge Regression 

estimator of  
1P  

. Also,   

1 1ˆ ˆˆ ˆ(0) P (0) and ( ) P ( ).       
 

The  equivalence  condition of  (5.7) is given by  

 

 
1

1 1 2 12
r 2 2

ˆ I T


  

               

 
 ….(5.13) 

1
1 1 22

rI T





           

 ….(5.14) 

We have, 

1 1ˆ ˆMSE C ( ) MSR C (0)      
      

  ….(5.15) 

C Pd 0 and 0    
 

iff

1 1ˆ ˆMSE d ( ) MSE d (0) , d 0        
    ….(5.16) 

By using Internally studentized residual sum of squares, the 

necessary and sufficient condition for satisfying (5.15) and 

(5.16) is given by  

 

2

1

2
ˆ ˆ(0) (0)



 
  
     

 ….(5.17) 

 

Thus, an optimum value for   in the Ridge Regression  

estimator
 

1
1 1ˆ X X I X Y



       is given by  

 

2

1

2
ˆ(0) (0)



 
 

   ….(5.18) 

 

The Ridge Regression estimator of  is given by  

 

1
1 1ˆ( ) X X I X Y



      ….(5.19) 

The  Generalized  mean squared error  matrix of 
ˆ( ) 

 is 

given by 

 

1 1
1 2 1 2 1 1ˆ ˆ ˆMSE ( ) (X X) I X X X X I

 
                   

….(5.20) 

       

The mean square  error matrix of 
1ˆp ( ) 

 is given by  

 

1 1
2 2 1ˆ ˆ ˆMSE ( ) T I T (0) (0) T I

 
                    

….(5.21) 

 

The mean   square error  matrix of 
ˆ (0)

 is given by  
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   1 2 1ˆˆMSE 0 MSE P 0 Z T     
    ….(5.22) 

We have,  

 
1 1

ˆ ˆMSE 0 MSE ( ) T I F T I
 

                    
….(5.23) 

 

Which is positive definite  for 0   iff   

 

2 2 1 1ˆ ˆ ˆF 2 I T (0) (0)     
     

 ….(5.24) 

 

is  positive definite. But  F is positive  definite iff 

 

1
1 1 22ˆ ˆ(0) I T (0)





                                  

…. (5.25) 

 

IV. CONCLUSIONS 

 

When trying to estimate the parameters of a linear 

statistical model, multicollinearity presents a number of 

challenges, the most significant of which is that the least 

squares estimators of the coefficients of variables involved in 

linear relationships have greater variances. In the linear 

statistical form, multicollinearity is essentially a lack of 

sufficient records within the sample to permit correct 

estimation of the individual parameters. In the current study, 

based on the moore-penrose generalised inverse matrix, a 

proposal was made for an orthonormal ridge regression 

estimator for the parameter vector. 
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