
IJSART - Volume 9 Issue 6 – JUNE 2023 ISSN [ONLINE]: 2395-1052

Page | 117 www.ijsart.com

Exploring The Benefits And Features of React Query

In Modern Web Development

Ashish Kumar Pareek1, Ms. Sunita Kumar2, Mr. Anil Dhankar3

1Dept of MCA
2Assistant professor, Dept of Business and Administration

1, 2 Rajasthan Institute of Engineering and Technology Jaipur, Jaipur.

Abstract- A potent data-fetching and caching library for React

apps is React Query. With seamless integration into the

component lifecycle of React, it offers a declarative method

for managing distant data. This study attempts to examine the

advantages and characteristics of React Query while

highlighting how it affects contemporary web development.

We'll go through React Query's main ideas, features, and use

cases as well as why it's better than other data-fetching

methods. In this study, we seek to shed light on how React

Query might improve the functionality, upkeep, and user

experience of web apps. React Query's capability to handle

optimistic updates is another noteworthy aspect. When making

mutations, you might optimistically update the user interface

by presuming that the request will be granted. Should there be

a failure, for a seamless user experience, React Query will

automatically restore the UI to its former state. A built-in

feature of React Query is support for data synchronization

between components. Web sockets or server-sent events can be

used to subscribe to data changes and get real-time updates.

Building real-time applications or collaborative experiences is

made easier by this functionality.

I. INTRODUCTION

 React applications' data fetching and state

management are improved with the robust and adaptable

React Query library. It offers a straightforward and clear

method for dealing with asynchronous tasks like sending API

requests and processing the returned data. You can quickly

collect, cache, and synchronise data from a variety of sources,

such as RESTful APIs, GraphQL endpoints, or even local

storage, with the help of React Query. It allows you to

concentrate on creating user interfaces that are responsive and

effective by abstracting away the difficulties of managing

loading states, error handling, caching, and data

synchronisation. React Query's caching system is one of its

essential components. It automatically refreshes data that has

been fetched and keeps it in an intelligent cache, reducing the

need for extra network calls and improving performance. The

cache is capable of handling invalidations and refeaching in

response to timers, mutations, or other triggers. Additionally,

React Query has a collection of hooks that make it simple to

handle data dependencies and communicate with the cache.

Among other things, you can manage paginated data with the

'useInfiniteQuery' hook, manipulate data with the

'useMutation' hook, and fetch data and subscribe to changes

with the 'useQuery' hook. These hooks offer a tidy and simple

data management API that integrates perfectly with your

React components. React applications can benefit from using

React Query to perform sophisticated data fetching and state

management scenarios. It is a popular option among

developers for creating effective and user-friendly applications

due to its intuitive API, caching capabilities, and built-in

support for real-time changes.

II. REACT QUERY'S CORE IDEAS

 - Querying data

A complete solution for searching and managing data

in React apps is offered by React Query. The process of

obtaining data from API endpoints is made simpler, and

loading states, error handling, caching, and data

synchronisation are all handled without any hitches. The steps

you generally take while using React Query for data querying

are as follows:

1. A query key is an identifier that is specific to a

certain query and is used to control the cached data

that is related to that query. It could be an object, an

array, or a string.

2. You may control the query state within your

components and fetch data by using the 'useQuery'

hook from the React Query library. This hook accepts

two arguments: a data-fetching function and the

query key.

3. The actual API call to retrieve the data is made by the

data-fetching function. It could be a Promise-

returning function or an async function. To

communicate with the API, you can use any HTTP

client library (such as "fetch" or "axios") inside of

this method.

4. Handling Loading States React Query offers the

'isLoading' property, which lets you know if the

IJSART - Volume 9 Issue 6 – JUNE 2023 ISSN [ONLINE]: 2395-1052

Page | 118 www.ijsart.com

query is presently retrieving data. While the data is

being fetched, you can use this property to display

loading indicators or present alternative content.

5. The 'useQuery' hook also has a 'error' property that

denotes any errors that happened when collecting the

data. Errors can be dealt with by displaying error

warnings or by putting error recovery procedures into

practise.

6. The return value of the hook's 'data' property contains

the fetched data. To render UI elements or carry out

other activities, you can gain access to this property

and use the data in your components.

7. Based on the query key, React Query automatically

caches the data that has been fetched. React Query

returns the cached data without performing a new

API request on successive renderings if the data is

still valid and available in the cache. Additionally, it

offers cache management choices including

automated refetching and cache invalidation.

8. React Query gives users more control over how

queries are executed. These choices include creating

query dependencies, configuring background data

polling, setting cache time limitations, and managing

data synchronisation.

Developers may simplify the process of searching

data, remove boilerplate code, and improve the efficiency and

responsiveness of their React applications by utilising React

Query's 'useQuery' hook and its related capabilities.

 - Mutating data

You can use the 'useMutation' hook offered by the

library when using React Query to mutate data (conduct

operations that modify or produce data). The 'useMutation'

hook streamlines the process of sending API queries to

manage loading states, failures, and cache changes while

handling data creation and updates. An overview of how to

modify data with React Query is provided below:

1. You must import the 'useMutation' hook from

the'react-query' package in order to use it. To make

API calls, you might additionally need to import any

required HTTP client libraries (like "axios" or

"fetch").

2. You must specify the mutation function that will be

in charge of sending the API request for the data

modification. It is possible for this method to be

asynchronous or to return a Promise. It must have the

reasoning necessary to carry out the intended

mutation procedure.

3. Inside your component, call the 'useMutation' hook

and supply the mutation function as an argument. The

hook gives back an array with the modified data, a

method to start the mutation, and several properties

describing the mutation's status, such as "isLoading,"

"isError," and "error."

4. To cause the mutation, utilise the function that the

'useMutation' hook returns. This will carry out the

API call to mutate the data as well as the mutation

function.

5. React Query offers attributes like 'isLoading' and

'isError' to identify the current status of the mutation.

While the mutation is happening, you can utilise

these attributes to show loading indications or error

warnings.

6. React Query automatically updates the cache to

reflect the modified data following a successful

mutation. This makes sure that successive API

requests don't need to be made in order to request the

updated data in response to queries. The cache update

behaviour can be customised to suit your unique

requirements.

7. React Query further supports optimistic updates,

allowing you to update the user interface right away

with the anticipated outcome of the modification

even before the API request has been fully processed.

React Query immediately restores the UI to its prior

state if the request is unsuccessful. This makes using

the system easier.

8. React Query offers other customization options for

the mutation behavior, including the ability to specify

mutation dependencies, handle error retries, and

configure cache updates. With the help of these

parameters, you may tailor the mutation procedure to

the needs of your application.

You may quickly perform data changes using the

'useMutation' hook and the features provided by React Query,

handle loading and error states, and guarantee efficient cache

updates, improving the data management capabilities of your

React apps.

 - Query caching

The main component of React Query is query

caching, which improves efficiency and reduces the number of

unnecessary API requests. In order to allow subsequent

queries to access the data without establishing further network

connections, it automatically arranges and stores the

previously retrieved data in a cache. The query caching

features of React Query are described as follows:

IJSART - Volume 9 Issue 6 – JUNE 2023 ISSN [ONLINE]: 2395-1052

Page | 119 www.ijsart.com

1. Data cache React Query maintains an insightful

cache in order to save the data gathered from API

endpoints. Before conducting a query, React Query

checks to see if the requested data is already in the

cache using the 'useQuery' hook.

2. The query key is a special identifier for a certain

query. It serves as an input to the 'useQuery' hook

and is used to identify and retrieve the pertinent data

from the cache. The query key can be any string,

array, or object that specifically identifies the query.

3. If the data for a particular query key is in the cache

and hasn't expired, React Query counts that as a

cache hit. In this case, the data is returned from the

cache without triggering a new API request.4. Cache

Miss: React Query sees it as a cache miss if the data

for a query key is either missing from the cache or

has expired. It starts a network request to get the

information from the endpoint of the API.

4. Whenever a query obtains new data from the API,

React Query automatically updates the cache with the

information retrieved. So that subsequent searches

using the same key can access the cached data, it ties

the data to the relevant query key.

5. React Query lets you specify the criteria for a query's

cache expiration. The data can have a time-to-live

(TTL) value after which it is regarded stale and a

fresh API call is required. You can create special

cache invalidation strategies based on the demands of

your application.

With the help of React Query's query caching feature,

you can streamline data retrieval and improve the performance

of your application while minimising needless API requests.

React Query's advanced cache management ensures that the

UI shows the most recent data while efficiently using network

resources.

 - Pagination and infinite scrolling

In online applications, pagination and infinite

scrolling are often used strategies for effectively displaying

vast collections of data. It is simpler to include pagination and

endless scrolling into your React applications because to React

Query's built-in support for these capabilities. Here's an

overview of how React handles pagination and infinite

scrolling:

Pagination:

1. When server-side pagination is used, the API returns

a portion of the entire data depending on given page

numbers or offsets in order to offer paginated data.

2. When utilising React Query, you have the option of

include pagination parameters in the query key (such

as page number, page size, or offset). This guarantees

that every paginated query is distinct and can be

managed independently in the cache.

3. You can include the pagination parameters in your

data-fetching function and use API queries to get the

associated paginated data.

4. React Query stores the paginated data that has been

retrieved in cache on the basis of the query key. Each

time a new page is accessed, the cache is refreshed,

and any ensuing queries can make use of the cached

information rather than making more API calls.

5. By iterating through the obtained data and displaying

it in a list or table, you may render the paginated data

in your user interface. You can also give users UI

tools to help them navigate between pages, including

next/previous buttons or page numbers.

 - Optimistic updates

React Query's optimistic updates are a potent feature

that let you update the user interface with the anticipated

outcome of a mutation operation even before the server

answers. An intuitive and responsive user experience is

offered by this upbeat rendering. Here's a rundown of how

React's optimistic updates function.

1. Carrying out a mutation Use the 'useMutation' hook

that React Query offers to start a mutation. The

mutation function that is passed as an input to this

hook is in charge of sending the API request to

change or add data.

2. You can update the user interface (UI) optimistically

with the predicted outcome of the mutation before

sending the actual mutation request to the server.

This implies that you make the anticipated

modifications to the appropriate UI elements as if the

mutation had succeeded.

3. Following the optimistic update, you can manually

update the cache with the fresh information that

reflects the anticipated outcome of the mutation. To

directly update the cache, React Query offers

functions like "queryClient.setQueryData()" or

"queryClient.setQueriesData()."

4. After the optimistic update is finished, the server can

receive the mutation request. The data and settings

included in this request will often match those in the

optimistic update.

5. React Query automatically updates the cache and

user interface based on the actual outcome of the

mutation when the server answers to the mutation

request. React Query reconciles the modifications if

IJSART - Volume 9 Issue 6 – JUNE 2023 ISSN [ONLINE]: 2395-1052

Page | 120 www.ijsart.com

the server response deviates from the optimistic

update by restoring the UI and cache to reflect the

server answer.

6. React Query handles errors by rolling back the user

interface and cache to the prior state, ensuring that

the user sees the correct outcome of the failed

mutation.

Utilizing optimistic updates allows you to give users

immediate feedback and a seamless UI experience. Users

rapidly notice the anticipated changes, which cuts down on

perceived latency and gives users a sense of responsiveness.

Data integrity is maintained by React Query's cache

management and reconciliation algorithms, which update the

user interface and cache in response to server responses.

 - Server-side rendering (SSR) support

Server-side rendering (SSR) is supported by React

Query to provide easy interaction with SSR environments or

frameworks. SSR enables the server to render React

components while transmitting the whole rendered HTML to

the client, enhancing both performance and SEO. An overview

of React Query's SSR support is provided below:

1. React Query's 'getQueryClient' function allows you to

generate a new QueryClient instance when rendering

React components on the server. As a result, each

SSR request will have an own, isolated QueryClient.

2. You can pre-fetch the required data using the

QueryClient instance before rendering the React

components on the server. You can fetch the

necessary data and fill the server cache by executing

the 'prefetchQuery' or 'prefetchInfiniteQuery'

functions with the appropriate query keys and

arguments.

3. You must serialise the QueryClient cache after

prefetching the data. To serialise the cache into a

string format that can be given to the client along

with the initial server-rendered HTML, React Query

offers the 'dehydrate' function.

4. On the client side, you may utilise the serialised

cache string to rehydrate the QueryClient with the

prefetched data when the JavaScript bundle is loaded.

You can rehydrate the client-side QueryClient by

using the 'hydrate' function offered by React Query.

5. React Query automatically reuses the previously pre-

fetched data from the cache after the client

QueryClient is rehydrated. As a result, there is no

need for repeated API requests, and the switch from

server-rendered content to client-side interaction is

seamless.

6. React Query can make the required API queries on

the client-side using the same query keys and

arguments as on the server if the client needs to fetch

additional data that was not previously prefetched on

the server.

React Query makes effective data fetching and

caching strategies for server-rendered React apps possible by

enabling SSR. It guarantees that data is immediately

accessible during server rendering and transfers to client-side

interaction without making further API requests. The

integration of data fetching and caching in SSR contexts is

made simpler by React Query's serialisation and rehydration

techniques.

III. FEATURES

 - Devtools for React Query

A browser extension called React Query Devtools

offers a user interface for inspecting and troubleshooting

React Query in your application. The state and behaviour of

your queries, mutations, caches, and other React Query-related

features are all valuable insights provided by this tool. An

overview of React Query Devtools is given below:

1. Chrome and Firefox have browser extensions for

React Query Devtools. It is available for download

from the appropriate extension stores for each

browser.

2. Once React Query Devtools is installed, every React

application that makes use of React Query is instantly

recognised and integrated. To activate Devtools

capability, you don't need to change the code of your

application.

3. React Query in the Devtools Panel. Your browser's

developer tools get a new panel when you use

Devtools. You can get to it by launching the

developer tools (often by right-clicking on your

application and choosing "Inspect") and going to the

"React Query" tab.

4. The Devtools panel offers a thorough overview of all

queries that are currently active in your application.

Each query's specific details are shown, including the

query keys, last fetch time, query parameters, and

query status (loading, idle, or error).

5. Each query's data and other query-related details like

cache state, error notifications, and query options are

all available for inspection. This enables you to

determine whether the data is current and how

queries are interacting with the cache.

IJSART - Volume 9 Issue 6 – JUNE 2023 ISSN [ONLINE]: 2395-1052

Page | 121 www.ijsart.com

6. React Query Devtools keeps track of any

modifications made to your project. It shows the

mutation functions, their status, error warnings, and,

if they were applied, information on the optimistic

updates.

7. You can examine the information in the React Query

cache using the Devtools panel. The information kept

in the cache, including query results and any related

metadata, can be viewed. This is especially helpful

for analysing cached data and understanding cache

behaviour.

8. Time travel debugging in React Query Devtools

enables you to replay and rewind queries and

mutation interactions. This might be useful for

duplicating and troubleshooting specific data fetching

and cache management problems.

With the help of React Query Devtools, you can

monitor, examine, and troubleshoot React Query in your

application. It enables you to gain insight into React Query's

inner workings, solve problems, and improve data fetching

and caching techniques.

 - Automatic updating in the background

To streamline data collecting and guarantee that the

data in your application is current, React Query includes built-

in functionality like as automated caching and background

updates. Here is a summary of how React Query manages

background updates and automatic caching:

Inventive Caching:

1. React Query automatically examines the cache when

you run a query using the 'useQuery' hook to see if

the requested data is already present.

2. If the cache contains the data for the query key and it

is still considered to be fresh (depending on the cache

expiration settings), React Query provides the cached

data without initiating a new API request.

Performance is enhanced and needless network

queries are decreased as a result.

3. React Query initiates a network request to acquire the

data from the API endpoint if the data for the query

key is missing from the cache or has expired.

4. React Query automatically updates the cache with the

new data after successfully obtaining data from the

API. It links the data to the associated query key so

that further queries using the same key can access the

cached information.

5. Occasionally, in order to force a new retrieve, you

may need to manually invalidate the cache. The

'queryClient.invalidateQueries' and

'queryClient.refetchQueries' functions in React Query

allow you to invalidate individual queries or force a

refetch of all the queries at once.

 - Precise command and customization

To better meet your specific requirements, React

Query provides granular customization and control options

that allow you to change how data retrieval, caching, and

modification operations behave. The various adjustments you

can make to React are listed below:

1. When using the 'useQuery' hook, you can change the

query behaviour by giving an options object as the

second argument. Among the choices that are

regularly picked are: enabled, determining whether

or not the query should be initially enabled. -------

- staleTime, Specifies how long (in milliseconds)

before a background refetch is started that the cached

data is still considered to be current. cacheTime,

Specifies the amount of time (in milliseconds) in

which the query result should remain in the cache

before being automatically garbage-collected.

2. React Query allows you to transform query keys

using the `queryKeySerializer` and

`queryKeyDeserializer` options. This enables you to

modify or serialize/deserialize query keys to suit your

specific data fetching needs.

3. When using the 'useMutation' hook, you can modify

the behaviour of mutations by choosing from options

like 'onMutate', 'onError', 'onSuccess', and 'onSettled'.

With the use of these parameters, you can specify

special side effects or logic before, during, or after a

mutation operation.

4. Rather than depending entirely on API endpoints,

React Query permits the deployment of custom query

methods. With custom query functions, you may

create your own logic for sending network queries

and handling results, giving you complete control

over the data-fetching process.

5. React Query enables the creation of several

QueryClient instances so that you can manage

various caches for various components of your

application. You can thus have granular control over

the isolation and cache settings.

6. React Query offers an adaptable cache architecture

that enables you to design personalised cache

adapters. By extending the 'BaseQueryCache' class

and developing your own cache logic, you can build

your own cache storage technique, such as using

localStorage or IndexedDB.

IJSART - Volume 9 Issue 6 – JUNE 2023 ISSN [ONLINE]: 2395-1052

Page | 122 www.ijsart.com

7. React Query provides options for modifying the

serialisation and deserialization of data kept in the

cache. To manage complicated data structures or data

that isn't JSON-serializable, you can define custom

serialisation functions using the'serialize' and

'deserialize' options.

8. React Query is highly extensible, allowing you to

build unique hooks and utilities to encapsulate

reusable query logic, put your own caching methods

into place, or deal with certain data fetching

scenarios.

The flexibility and control required to modify the

library to meet the needs of your particular application are

provided through React Query's customisation capabilities.

Utilising these customization tools will allow you to fine-tune

data fetching, caching, and mutation activities for performance

optimisation, system integration, and modifying React Query's

behaviour to meet the requirements of your application.

 - The ecosystem and plugin support for React Query

With a large selection of plugins and extensions,

React Query has a lively ecosystem that expands its

functionality and offers new capabilities. You can use these

plugins to increase React Query's capability, combine it with

external libraries, or add particular features that are necessary

for your application. Here is a summary of the ecosystem and

plugin support for React Query:

1. Official plugins created and maintained by the React

Query team are available through React Query.

Devtools, Persisting State, Infinite Query, and other

features and integrations are provided by these

plugins, among others. They are formally maintained

and updated frequently to guarantee compatibility

with the most recent React Query version.

2. By creating and disseminating numerous plugins, the

React Query community actively contributes to the

ecosystem. Authentication, internationalisation,

caching techniques, request interceptors, server-side

rendering (SSR) support, and other features are all

covered by these community-driven plugins. On the

React Query website or through community-driven

services like npm, you can access a list of community

plugins.

3. React Query is a Devtools addon that enables you to

examine and troubleshoot the state of your

application's queries, mutations, and caches. The

Devtools offer insightful information about query

lifecycles, cache management, and performance

enhancements. It is an effective tool for

troubleshooting and improving React Query usage.

4. React Query effortlessly interfaces with other well-

known frameworks and tools, allowing you to use

their features in conjunction with React Query. React

Query, for instance, offers official hooks with React

Router that make it simple to handle query state as

you move through various routes. To improve

compatibility and usability, it also offers integration

packages for TypeScript, Next.js, and other

frameworks.

5. You can build unique plugins and extensions for

React Query to further expand its functionality thanks

to the architecture of the software. You can develop

your own plugins to combine React Query with

certain APIs, put in place unique caching techniques,

include middleware for intercepting requests, or

produce tools for typical data fetching patterns. The

adaptable architecture of React Query makes it

simple to create and include unique plugins into your

application.

By leveraging the rich ecosystem of React Query

plugins and extensions, you can take advantage of the

community's collective efforts and have access to a number of

extra features and integrations.

IV. ADVANTAGES OF REACT QUERY

 - Simplified logic for data retrieval

React Query offers a clear and simple method for

handling data in your React applications, which makes data-

fetching logic simpler. React Query streamlines data-fetching

logic in the following ways:

1. An API with hooks under React Query, the logic for

data retrieval, mutation, and query client access is

encapsulated under hooks like "useQuery,"

"useMutation," and "useQueryClient." You may

acquire and manage data with little to no code thanks

to these hooks, which abstract away the difficulties of

manual data requesting and caching.

2. React Query employs the idea of a "query key" to

distinguish and keep track of queries. The key for the

query might be a text, an array, or a key-generating

function. When a query's dependencies change, React

Query automatically handles dependencies and

makes sure that it is refetched. By doing so, the

update logic is made simpler and the requirement for

manual query dependency tracking is removed.

IJSART - Volume 9 Issue 6 – JUNE 2023 ISSN [ONLINE]: 2395-1052

Page | 123 www.ijsart.com

3. By automatically caching query results, React Query

eliminates the need for human data management and

caching. React Query automatically stores the

outcome of a query's data retrieve in its cache. The

same data is sent in response to subsequent requests

from the cache, minimising the need for network

requests and streamlining the management of cached

data.

4. Data can be automatically re-fetched using React

Query based on a variety of triggers, such as when a

query becomes inactive or when the data is deemed

stale. The administration of data updates can be made

simpler by configuring the refetching behaviour

using options like "refetchInterval,"

"refetchOnWindowFocus," or "staleTime."

5. React Query has built-in mechanisms for addressing

errors. React Query updates the status of the query

and offers the error object in the query result when a

data fetching problem happens. Error handling logic

can be made simpler by using options like 'onError'

or by accessing the error property in the query result.

6. The 'useMutation' hook in React Query makes

mutation logic simpler. The complexity of handling

loading states, making mutation requests, and

updating cache data is abstracted away. The

'onMutate' option makes it simple to start mutations,

manage success and failed scenarios, and even carry

out optimistic updates.

7. Declarative loading states are made possible by React

Suspense, a React feature, which smoothly combines

with React Query. By allowing you to create backup

UIs and manage loading and error states in your

components with ease, this integration makes it easier

to handle loading states during data fetching.

React Query makes the data-requesting logic in your

React apps simpler by abstracting away the complexities of

data fetching, caching, error handling, and changes. Because

to its hooks-based API, built-in caching, and simple

configuration choices, handling data is made simpler and more

manageable while also reducing boilerplate code.

 - Application performance improvement

React Query provides a number of tools and

techniques to boost the efficiency of your application. You can

improve data fetching, caching, rendering, and network

queries by taking advantage of these capabilities. Here are

various ways React Query enhances the performance of

applications:

1. React Query automatically caches query results,

cutting down on the number of API queries that are

necessary. Your application reuses cached data,

reducing network traffic and speeding up response

times. React Query lessens reliance on the network

by providing data from the cache wherever available,

resulting in a quicker and more effective user

experience.

2. When using React Query, you can get some of the

data from the cache while getting the rest from the

API. This makes it possible for you to display any

available data right away, cutting down on perceived

loading times and improving user experience. React

Query seamlessly refreshes the user interface while

retrieving the missing data in the background.

3. React Query optimises query scheduling to avoid

needless duplication of queries that are similar or

overlap. It does automatic query deduplication and

batching, which lowers the volume of API requests.

Through this optimisation, network overhead is

reduced and data fetching effectiveness is increased.

4. By activating features like "refetchInterval" or

"refetchIntervalInBackground" for queries, React

Query offers automated background updates. By

doing this, query data is kept current without

requiring manual user input. React Query keeps the

data in your application up to date without the need

for explicit refreshes by periodically obtaining new

data in the background.

5. Stale data from the cache is automatically trash

collected using React Query. The removal of

unwanted or out-of-date information improves cache

effectiveness and memory use. This guarantees that

your cache stays tidy and compact, enhancing

performance in general.

6. When mutations are carried out, React Query enables

optimistic updates. With optimistic updates, you may

immediately update the user interface (UI) with the

anticipated result of a mutation, giving users rapid

feedback. This method does away with the need to

wait for a server response, making the user interface

more quick and responsive.

7. You can monitor and analyse the state of queries,

modifications, and caches using a set of Devtools that

are included with React Query. You may analyse

query behaviours, find performance bottlenecks, and

use React Query more effectively thanks to these

tools. They offer insightful information on network

requests, cache hits, and other data to assist you in

optimising your application's performance.

IJSART - Volume 9 Issue 6 – JUNE 2023 ISSN [ONLINE]: 2395-1052

Page | 124 www.ijsart.com

You may greatly enhance the performance of your

application by utilising React Query's caching methods, clever

query scheduling, background updates, and other

performance-focused features. The optimisations made to

React Query are meant to improve data accessibility, decrease

network latency, and create a more responsive and fluid user

interface.

 - Fewer network requests and bandwidth requirements

Through its data management and caching features, React

Query reduces network queries and bandwidth utilisation. This

is how React Query does it:

1. React Query stores the results of queries in memory

using an automatic caching mechanism. React Query

determines whether the data is present in the cache

before executing a query. If so, the cached data is

delivered without sending a request to the network.

By removing the need for redundant API requests,

this caching approach lowers network traffic and

conserves bandwidth.

2. Query Result Stale Time: Using the'staleTime'

option, React Query enables you to specify a "stale

time" for query results. How long cached data is still

deemed current and valid is determined by the stale

time. React Query uses the cached data during this

time frame instead of making network requests. You

can minimise the number of network queries and

lower bandwidth utilisation by properly extending the

stale time.

3. With React Query, you may display a portion of the

cached data while retrieving more in the background.

As a result, the user will believe your application to

be loading faster because it can deliver results right

away. React Query refreshes the UI automatically

when the missing data is fetched asynchronously,

reducing the requirement for full network requests

and sparing bandwidth.

4. By intelligently batching and deduplicating similar or

overlapping queries, React Query optimises the

scheduling of network requests. React Query reduces

the number of real queries by combining many

components that simultaneously trigger the same

query into a single network request.

5. React Query offers parameters like "refetchInterval"

and "refetchIntervalInBackground" that facilitate

background updates. These settings allow you to set

up automatic background updates for queries on a

regular basis, keeping the information current without

the need for user input or human refreshes. React

Query minimises the need for explicit network calls

and lowers bandwidth usage by fetching updated data

in the background.

6. The Devtools for React Query include information on

network requests, cache hits, and other metrics. You

can use them to identify duplicate requests, analyse

the behaviour of queries, and improve cache

configurations. You may fine-tune your application

to reduce pointless network requests and maximise

bandwidth utilisation with better visibility into query

performance.

You can drastically lower the number of network

requests and bandwidth used by your application by utilising

React Query's caching, partial data loading, batched requests,

background updates, and observability features. The clever

data management and caching techniques used by React

Query help to enhance data retrieval and boost overall network

performance.

- Increased developer output

React Query offers a robust and user-friendly set of

tools and capabilities with the goal of increasing developer

productivity. The following details how React Query boosts

developer productivity:

1. React Query's declarative and hooks-based API

makes it easier to fetch and manage data. You can

quickly request data and conduct changes without

having to deal with complicated boilerplate code by

using hooks like "useQuery" and "useMutation."

Developers can concentrate on creating UI

components and logic by removing the complexities

of data fetching, caching, and error handling with the

help of React Query.

2. React Query stores query results automatically,

negating the need for manual data caching. The need

for network requests is lessened since cached data is

kept in memory and reused by several components.

Because caching logic is handled transparently by

this automatic caching system, development time and

effort are reduced.

3. React Query enables optimistic updates for

mutations, enabling programmers to make UI

adjustments before waiting for a server response. By

instantly reflecting user actions and minimising

perceived delay, this feature offers a more

streamlined user experience. React Query handles

optimistic updates seamlessly, making it easier to

apply optimistic UI patterns.

4. The Devtools for React Query offer robust

observability tools that improve developer efficiency.

IJSART - Volume 9 Issue 6 – JUNE 2023 ISSN [ONLINE]: 2395-1052

Page | 125 www.ijsart.com

You may analyse and debug queries, mutations, and

caches using the Devtools, which gives you

knowledge about network requests, query lifecycles,

and cache management. This observability aids in

more efficient problem diagnosis, performance

optimisation, and debugging of data-related

difficulties.

5. React Query's smooth integration with other React

libraries and frameworks boosts developer efficiency.

There are official integrations with TypeScript,

Next.js, React Router, and other technologies. These

connections streamline the development process and

guarantee interoperability with widely used tools,

saving time on setup and integration.

6. React Query makes it simple to change and

personalise query behaviour by providing a clear,

straightforward API surface with appropriate

defaults. It offers choices for managing fetching

operations, error resolution, caching schemes, and

other things. Development duties are made simpler

by the well-documented API and configuration

choices, which also enable developers to customise

React Query to meet their unique requirements.

7. The community that supports and actively contributes

to React Query provides plugins, examples, and

documentation. The capability of React Query is

increased by these community-driven resources,

which also offer new features and integrations. The

speed of development and problem-solving processes

is accelerated by the availability of community

assistance and resources.

React Query equips developers to be more effective

and efficient when creating data-intensive applications by

offering streamlined data fetching, automated caching,

observability tools, smooth connections, and a helpful

community. React Query's developer-focused tools and

capabilities relieve developers of tedious tasks so they can

concentrate on creating reliable and effective user interfaces.

V. CONCLUSION

React Query is a powerful data-fetching library for

React applications that offers numerous features to improve

developer productivity, enhance application performance, and

ensure consistent data synchronization across components.

By providing automatic caching, seamless integration with

React components and state management libraries, and

simplified data-fetching logic, React Query simplifies the

process of fetching and managing data, allowing developers to

focus on building UI components and application logic. The

library's intuitive API, extensive documentation, and

supportive community contribute to developer productivity by

reducing development time and effort.

React Query's caching capabilities, query result stale

time configuration, and partial data loading help reduce

network requests and bandwidth usage. Automatic query

batching, deduplication, and background updates optimize

network efficiency and ensure data freshness. These

optimizations improve application performance by minimizing

unnecessary network requests and enhancing the user

experience.

The library's seamless integration with React

components and support for popular state management

libraries enable developers to combine the benefits of React

Query's data-fetching capabilities with their preferred state

management solutions. React Query's centralized query cache,

automatic query refetching, and invalidation mechanisms

ensure consistent data synchronization across components,

maintaining a unified and up-to-date data state throughout the

application. Reactive rendering and optimistic updates further

enhance the consistency of the user interface across

components.

Overall, React Query provides a comprehensive

solution for data fetching and management in React

applications. Its features and optimizations contribute to

improved developer productivity, enhanced application

performance, reduced network requests, and consistent data

synchronization, making it a valuable tool for building robust

and efficient React applications.

REFERENCES

[1] https://react-query.tanstack.com

[2] https://github.com/tannerlinsley/react-query

[3] https://www.npmjs.com/package/react-query

[4] https://www.smashingmagazine.com/2022/01/building-

real-app-react-query

https://react-query.tanstack.com/
https://github.com/tannerlinsley/react-query
https://www.npmjs.com/package/react-query
https://www.smashingmagazine.com/2022/01/building-real-app-react-query
https://www.smashingmagazine.com/2022/01/building-real-app-react-query

