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Abstract- Adoption of digital information tools in the
construction sector provides fertile ground for the birth and
growth of companies that specialize in applications of
technologies to design and construction. While some of the
technologies are new, many implement ideas proposed in
construction research decades ago that were impractical
without a sound digital building information foundation.
Building Information Modelling (BIM) itself can be traced to a
landmark paper from 1975; ideas for artificially intelligent
design and code checking tools date from the mid-1980s; and
construction robots have laboured in research labs for
decades. Yet only within the past five years has venture capital
actively sought startup companies in the ‘Construction Tech’
sector. Following a set of digital construction innovations
through their known past and their uncertain present, we
review their increasingly optimistic future, all through the lens
of their dependence on digital information. The review
identifies new challenges, yielding a set of research topics
with the potential to unlock a range of future applications that
apply artificial intelligence.
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I. INTRODUCTION

Researchers in architecture, engineering and
construction have long dreamed of applying information
technology, robotics and other new technologies to design and
construction. Yet invariably, their conceptual understandings
of what could be done, and hence their visionary views of the
future of construction, far outstripped the practical, technical,
commercial, cultural and/or organizational constraints that had
to be overcome for their fulfilment. Eastman, for example,
conceived of a computerised Building Design System (BDS)
with all the functionality of what we now know as Building
Information Modelling (BIM) (Eastman, 1975). The basic
BIM functions took 25 years to reach the market, and some –
such as Eastman's prediction that “Later, one can conceive of a
BDS supporting automated building code checking in city hall
or the architect's office” – have yet to be realized in full.
Indeed, Gholizadeh et al. (2018) found that, as late as 2017, of
the 14 BIM functions whose adoption they investigated, only

three were in widespread use. Similarly, Warszawski and
Sangrey (1985) wrote that “Implementing robotics in
construction may follow several paths. One approach will
involve an evolution of robotic and computer technology into
existing procedures. The second approach will be more
dramatic with the combination of robotics and CAD-CAM
providing the basis for entirely new building systems—the
construction of the future.” Construction robotic machines of
the first type are only now beginning to become practical and
economical, and none have achieved the revolutionary change
they contemplated in their second mode. For many researchers
with foresight and a good conceptual grasp of potential
implementations, automation in construction has at times
proved to be a frustratingly difficult goal from the point of
view of implementation in industry. Within the last five years,
however, there has been a steady influx of new, innovative
companies specializing in application of a variety of
information and automation technologies, developed in other
industries, to construction. These startup companies are
supported by venture capitalists, academic research and public
and private incubator programs, together with which they form
an ecosystem commonly called ‘Construction Tech’ (echoing
the name ‘High Tech’ used for the information and automation
technology industry). In the US, the amount of venture capital
invested in Construction Tech annually is reported to have
grown from circa $250 m in 2013 to well over $1,000 m in
2018 (Andersen and Forr, 2018). Most of the new companies
owe their newfound practicality not only to the maturation of
their core technologies, but equally to the comprehensive
building information available in BIM environments.

II. BODY OF PAPER

Following the research and development (R&D)
history of three broad areas of technological innovation in
construction, we trace their paths to the present day. Our goal
is not to extrapolate into the future, but to identify key
research challenges for continued development – to identify
the essential R in R&D. The areas selected for review
represent three of the four applications types listed in the
introduction: (1) software tools for design and planning within
BIM environments; (2) BIM-to-field tools; and (4) field-to-
BIM tools, which are beginning to enable digital twins for
construction.
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2.1. Automated design and code-compliance checking
Automating design and code-compliance checking for
building construction has been a goal of research and
commercial development since the ideas were floated in
Eastman's landmark 1975 paper envisaging BIM (Eastman,
1975). In the absence of BIM, researchers proposed stand-
alone expert systems (Hayes-Roth et al.,

Fig. 1. Image captured with 360 cameras at left and a

1983), and later, systems that used CAD drawings to
represent the buildings. The former, such as HI-RISE for
preliminary structural design of tall buildings (Maher and
Fenves, 1985), SPEX for sizing structural cross-sections
(Garrett and Fenves, 1987) and EIDOCC for design of
reinforced concrete columns (Sacks and Buyukozturk, 1987),
used symbolic AI methods.

These were typically rule-based systems that sought
to elicit expert knowledge, capture it in design software, and
apply it to automate or to review design. The need to input
building designs explicitly and completely for each analysis,
the limitations on knowledge elicitation, and the capacity of
the computing technology made these systems impractical for
commercial application. The advent of 2D CAD did not
improve matters much, because CAD's graphic representations
of design are fundamentally different to the semantic, object-
oriented representations required for processing rules. Initial
optimism that design standards themselves could be expressed
as rules and applied to evaluate building designs (e.g. Hakim
and Garrett, 1993) proved unfounded, as experiments revealed
the challenges posed by the lexical and logical complexity of
building code provisions (Kiliccote and Garrett, 1995). Later,
natural language processing (NLP) was applied to building
design codes and regulations, resulting in some progress, but

not in commercial application (Song et al., 2018; Zhang and
El-Gohary, 2017).

With the introduction and adoption of BIM,
automated design and code-checking became more practical.
Commercial model checking systems with limited but
valuable and viable functionality were developed (examples
include Solibri Model Checker, BIM Assure and SMART
review). While they are able to use BIM models, they require
users to normalize model data before use, and the repertoire of
code clauses they can check is limited to clauses that can be
expressed as symbolic IF-THEN rule sets (normalization is the
task of pre-processing a BIM model for symbolic code-
checking. Users manually add or edit objects, parameter
values and relationships to conform to the

view of the same scene in a BIM model at right

naming conventions and object typing required by the rule
sets)

2.2. Construction set out Setting out construction work on site
is laborious and error prone. The challenge is to interpret
design information within the context of partially completed
scenes and apply physical markings to surfaces with the
required precision. The state-of-the-art method is robotic total
station survey layout, in which an operator localizes the total
station using known points in the scene and then ‘shoots’ a
laser beam to locate layout points. This is followed by manual
mapping of more complete design information from the points
onto other surfaces using chalk-lines, laser plane projectors,
and other tools. The scale of direct effort and subsequent
rework in case of error have prompted R&D efforts to build
automated layout systems that deliver BIM information
directly to the field. Three types have been proposed:
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a) Augmented reality (AR) systems, in which an image of the
intended design is superimposed onto an image of the site
recorded with a camera (Chi et al., 2013; Wang et al., 2013;
Woodward et al., 2014). AR systems require special glasses or
masks, or a tablet computer or other device on which the
images are projected. Users must then translate that
information onto the work surface. These systems are
particularly useful for locating hidden system objects behind
finished surfaces for building or facility operation and
maintenance tasks (Lee and Akin, 2011; Sacks et al., 2018).

b) Robotic marking systems, in which a robot localizes itself
and then travels the work area applying paint or other marking
material directly onto the surface (Casale, 2013; Prouty,
2013). These are generally restricted to environments where
the floors are clean and clear, for marking and for travel, and
where the quantity of layout work is large enough to justify
their setup costs.

c) Robotic systems that project BIM information directly onto
the work surface. For example, Degani et al. (2019) developed
a prototype in which images from a BIM model are projected
directly onto a work surface. The apparatus consisted of a
laser range scanner, an angled adjustable projector, and a
camera. The system localizes itself using the LIDAR and the
BIM model using Simultaneous Localization andMapping
(SLAM) and projects images containing the information onto
the work surface. It calibrates the projection keystone
correction parameters using image analysis.

With the growing capabilities of laser scanning and
imaging technologies, improved accuracy of localization, and
sophisticated projection tools, this area appears to offer
opportunities for rapid development of new commercially
viable tools. The Lightyx system depicted in Fig. 1 is a good
example of a startup development path for Construction Tech
in which innovators with expertise from other industries apply
their knowledge of advanced technologies to solve
construction problems. It is also an example of an innovation
that fits entirely within current construction practice,
automating an isolated operation.

2.3. Automated project performance monitoring and control
The concept of automated project performance control
(APPC) was proposed as a way to provide managers with the
real-time feedback necessary for application of the
‘thermostat’ model of control (Navon, 2005). The idea was to
close the control loop by reporting leading performance
indicators, such as labour and equipment productivity by
monitoring the movements of workers and materials in real-
time (Navon and Sacks, 2007; Sacks et al., 2006). This line of
research might have presaged the new concept of

‘Construction 4.0’ or of digital twins for construction, but it
encountered technical and conceptual barriers: - From a
technical standpoint, there was no platform available to
integrate the necessary production process information for
comparison with monitored data. Researchers developed
sophisticated methods to extract information from
construction site documents and images (Al Qady and Kandil,
2010; Brilakis et al., 2005), but these were not linked to any
integrated data management system. - From a conceptual
standpoint, the thermostat model proved to be inappropriate
and ineffective for planning and controlling production in
construction, and it has been replaced over time with methods
based on pull production planning and control (Ballard, 2008;
Kenley and Sepp€anen, 2010). The notion of automating
monitoring work on site originated from the observation that
engineers in the field spent a lot of time collecting
performance data (McCullouch, 1992; McCullouch and
Lueprasert, 1994).A variety of technologies have been
proposed for data collection,

including computer vision (Brilakis and Haas, 2020), GPS,
laser scanning, radio-frequency ID tags and Bluetooth low
energy (Bekkelien et al., 2012; Costin et al., 2012). Yet except
for systems for monitoring heavy earthworks machinery, field-
to-BIM automation has not been adopted in the construction
market.

III. UNCERTAIN PRESENT: BIM, AI AND
CONSTRUCTION TECH

3.1. Automated design and code-compliance checking
Although the advent of BIM has made commercial code-
checking applications viable, their core technology has not
changed fundamentally from that envisaged in the 1980's.
They all use symbolic AI methods, primarily rule-inferencing,
which restricts their scope to relatively simple prescriptive
clauses (Bloch et al., 2019). The challenge posed by the large
numbers of applicable design and building codes, and the
frequency with which they are updated, has not been solved
(Nawari, 2017). The commercial applications still require
explicit representation of the building information (Dimyadi et
al., 2016), and the effort required for normalization limits their
use to isolated milestone points in design processes.

Breakthrough progress in code-checking will require
overcoming these barriers, and new approaches and
technologies will be needed. Among the most promising:
1. Semantic enrichment of BIM models, using AI methods to
automatically supplement models with explicit information
derived using algorithms trained to recognize and infer
predefined sets of target concepts within patterns of building
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data, may offer a way to remove the need for normalization
(Belsky et al., 2016). 2. Application of machine learning
algorithms to evaluate designs on the basis of the training data
of known results from human experts (Sacks et al., 2019). 3.
Graph representations of BIM models may offer the explicit
representations needed, in particular for making the
relationships between building objects and abstract concepts
explicit (Nahar, 2017). They are also more amenable to the
types of pattern recognition algorithms that may enable
semantic enrichment (Jin et al., 2018) and training of ML
algorithms. We note also that all of the companies offering
commercial BIM codechecking applications are startup
companies.

3.2. Construction set out BIM-to-field information delivery
has largely been solved with regard to delivering BIM
information to personnel via mobile computing devices. All
the major BIM platform companies offer solutions, most of
which originated with disruptive Construction Tech startup
companies whose solutions were acquired by the established
BIM companies (e.g. PlanGrid, Trimble Connect, Solibri).
Tools that present model information using augmented reality
are also available (such as Trimble's XR10 with Hololens 2;
Trimble, 2020), although these still suffer from practical
problems such as narrow fields of vision, indistinct display in
bright environments, encumbering workers, etc.Despite ten
years or more of industrial R&D, there are not yet
commercially viable solutions for setting out directly onto
work surfaces. One of the key challenges is to project or mark
information on irregular, intermediate as-built work surfaces
in the real world, because they do not correspond directly to
the ideal as-designed surfaces of finished products that exist in
the virtual world of BIM models. Ironically, this problem
might be overcome if the ‘field-to-BIM’ technologies were
able to build accurate, virtual digital twin representations of
site conditions. Yet this too remains a challenge, as we
describe next.

3.3. Automated project performance monitoring and control
This area is rife with solutions offered by both established
software and hardware vendors and startup companies.
Applications range from (i) inspection systems, allowing
inspectors access to data before, during and after the
inspection process and access to recording functionality to
collect site data, to (ii) control systems, that enable the control
of safety, site traffic, resource and storage utilisation, and
others, to (iii) planning and measuring systems, for site
logistics and layout planning, production monitoring, and
others. Some investment has gone into this space; yet all
applications are single track, functioning as information
islands. They use one or few data acquisition technologies and
interpret that as best they can into useful construction

management information (e.g. Siteaware, Disperse.io,
Holobuilder, Smartvid.io, Versatile Natures, Openspace.ai,
Genda, and others). The information they provide is not
always reliable and needs manual review and intervention,
which often invalidates their automation-borne benefits. Their
limited approach also limits what conclusions can be drawn.
Essentially, there is a need for complex event processing
(Buchmann and Koldehofe, 2009). This would entail the
merging of information from multiple monitored data sources
with already existing information about the as-is status of a
construction site and the production plan, to deduce accurate
information about what has been built, how, and what
resources were used and where merging/fusing data from
multiple sources to compile comprehensive information about
project status (in terms of both product and process status).
However, complex event processing is only possible on the
basis of well-integrated and reliable data, something we still
lack. Although data is available in apparent abundance, the
current lack of comprehensive, accurate and reliable linked
data and information naturally restricts the opportunities to
properly exploit the technologies.

IV. OPTIMISTIC FUTURE: THE HOUSE OF
CONSTRUCTION TECH

In theory, BIM models of buildings and infrastructure
are ideally suited to manipulation by smart software tools that
incorporate computer vision, rule-inferencing, machine
learning, case-based reasoning and other AI strategies. The
range of potential applications is wide, including – but by no
means limited to – smart tools for:

1. Design support and/or automation, topology
optimization, generative design.

2. Design review, checking compliance to standards and
codes.

3. Building performance simulations and engineering
analyses.

4. Construction planning, site layout design, supply
chain management.

5. Digital delivery of design and construction method
directly to workers on site.

6. Real-time measurement, assessment and
interpretation of project status.

7. Quality assurance and control.

Researchers of computing in the Architecture,
Engineering and Construction (AEC) industry across the
world have sought to realize such tools since the ideas behind
AI developed. In early efforts in the 1980's and 1990's, people
attempted to apply expert systems and case-based reasoning to
some of the tasks listed above. It soon became apparent that
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CAD technology was not suited to such applications because
its representation of building information was graphic and
symbolic, rather than object-oriented. This led to an intense
effort to solve the representation challenge, which resulted in
the BIM model authoring platforms that are now ubiquitous
across the industry, and in an open objectoriented schema for
representing buildings and infrastructure (the IFC data model)
(ISO, 2013).

With the information representation challenge
apparently solved, the stage appeared set for commercial
implementation of innovations, and a wave of technological
innovation began. As Andersen and Forr (2018) and other
reviewers (Azevedo, 2019; Blanco et al., 2017) of these
developments have noted, the majority of innovation financing
has been provided to startup companies. There are two main
reasons for this: corporate/organizational fragmentation within
the industry, and the need for expert knowledge and
experience with technologies adapted from other industrial
domains.

Hall et al. (2019) provide compelling evidence of innovations
that develop outside construction project organisations due to
fragmentation of the industry: vertical fragmentation
(professional and trade specialization), horizontal
fragmentation (multiple small firms competing with one
another), and longitudinal fragmentation (high turnover of
suppliers and clients from project to project). In this
environment, systemic innovations tend to disrupt existing
commercial or organizational boundaries and therefore require
wholly new vertically and longitudinally integrated
organisations, with high startup costs and significant risk
(Katila et al., 2018). Within this context, it is not surprising
that many Construction Tech innovators fail to overcome the
regulatory, commercial, cultural, organizational and
technological barriers (Chowdhury et al., 2019), despite
inventing and developing cutting edge technology applications
in the construction domain. Given these risks, almost all the
innovators adopt an incremental approach to change in the
construction industry, as their top priority is to achieve a
minimal viable product and being to generate income.

In addition to the fundamentals of entrepreneurship
(ideas, investment and implementation), all Construction Tech
innovators require at least three essential things: 1) a real
process need in the industry, 2) an application of a new
technology that fulfils the need, and 3) a workable business
model. These are the pillars of the ‘House of Construction
Tech’, which we propose as a model to explain the
components essential for success in the sector (shown in Fig.
3). Entrepreneurship provides the beams that support the roof,
which is the pinnacle of success – adoption in the construction

industry market. The BIM environment, in its broadest sense
as technology, process and people, sits at the base of the
house. BIM technology is the hardware and the software that
generate and store the information about a construction
project, including its physical aspects (a building's design) and
its process aspects (construction plans). BIM processes are the
information management aspects – standards, such as ISO
19650 (ISO, 2018) and IFC (ISO, 2013); organization and
project level BIM execution plans; level of detail (LOD)
definitions; etc. The people are those capable of implementing
the processes using the technology, including not only
employees of the innovator (designers, programmers, etc.), but
no less important, employees of the customers (architects,
engineers, and construction managers) skilled in working
within BIM environments.

Building information in a form that can be readily
manipulated by software is essential for almost all
Construction Tech innovations, and hence placement of the
BIM environment at the base of the house. All four application
types (design and management, BIM-to-field, field
automation, and field-to-BIM) are dependent on information
in one form or another. The maturation of BIM environments
and their broad adoption is the one key common denominator
supporting the growth of Construction Tech within the last
decade. Equally, however, BIM technology and processes still
have severe limitations that constrain the longpromised growth
and success of some of the Construction Tech applications.
Among the key limitations: inadequate interoperability of
information, difficulties in framing model data for machine
learning applications for design and management, and the
need for an intelligent digital twin platform to support
integration of field-to-BIM tools.

Fig. 2 – House of Conceptual Model.



IJSART - Volume 9 Issue 4 – APRIL 2023 ISSN [ONLINE]: 2395-1052

Page | 756 www.ijsart.com

four application types (design and management,
BIM-to-field, field automation, and field-to-BIM) are
dependent on information in one form or another. The
maturation of BIM environments and their broad adoption is
the one key common denominator supporting the growth of
Construction Tech within the last decade. Equally, however,
BIM technology and processes still have severe limitations
that constrain the longpromised growth and success of some of
the Construction Tech applications. Among the key
limitations: inadequate interoperability of information,
difficulties in framing model data for machine learning
applications for design and management, and the need for an
intelligent digital twin platform to support integration of field-
to-BIM tools. The House of Construction Tech must be
underpinned by a comprehensive understanding of the
theoretical aspects of design, of information and data science,
and of production in construction. Design theory encompasses
design cognition (Winograd and Flores, 1986), philosophy of
design (Galle, 2002), and design strategies such as top-down
knowledge-based design (Mitchell et al., 1990; Sacks et al.,
2003) and design optimization (Gero, 2012). Information and
data science include methods for representing building
information (Braid, 1973; Sacks et al., 2004; Turk et al., 1994)
and methods for artificially intelligent processing of data,
including machine learning and pattern recognition (Bishop,
2016; Efron and Hastie, 2016; Rogers and Girolami, 2017).
Production theory concerns our understanding of the products,
the processes and the operations in the context of construction
(Ballard, 2000; Koskela, 2000; Sacks, 2016).

The ‘House of Construction Tech’ can serve as a
‘checklist’ for construction startup companies, and as a
predictor of success or failure, by considering whether a
company has successfully incorporated the columns, base and
foundations. At the foundation level, for example, an AI tool
for automated construction scheduling using machine learning
cannot provide real value for construction managers if its
authors restrict their tool to master planning using the Critical
Path Method, ignoring the conceptualisation of production in
construction as flows of work, products and resources that
underpins essential more detailed layers of planning (Koskela,
2000). At the base level, applications that use 2D printed
drawings rather than BIM models as their main input will find
their scope severely limited. A company for whose innovation
these aspects are relevant and yet chooses to ignore them, is
unlikely to succeed in the long run. At the level of the
columns, innovators must identify business process need to
avoid the common trap of solutions looking for problems. For
example, proponents of a virtual reality telepresence
technology must identify the business process use case that
will underlie market demand for their solution before
developing the application.

V. CONCLUSIONS

A review of three specific areas of Construction
Tech, representing design and planning, BIM-to-field and
field-to-BIM applications, reveals that the broad adoption of
BIM environments in the construction industry is an
insufficient condition to enable effective exploitation of the
information they contain, or to leverage the potential of AI in
this context. The problem is that the information in models is
incomplete and inaccessible. Among the many technological
challenges facing Construction Tech entrepreneurs, we have
identified two specific research challenges that concern
development of foundational information processing methods
for digital building information models which, if solved,
would greatly facilitate development of smart BIM and AI
tools for design and construction. They are:

1. Combined, optimal use of topological rule inferencing and
machine learning modules for semantic enrichment. 2.
Encoding representations of building information in forms that
are amenable to machine learning

With regard to the nature of innovation in
Construction Tech, our review of the areas of application
supports researchers' predictions that technology innovation in
construction is more likely to stem from disruptive startup
companies than from the traditional project oriented
construction companies (e.g. Katila et al., 2018). The growth
of investment in Construction Tech startup companies
demonstrates that the market shares this view. The ‘House of
Construction Tech’ model may help investors and innovators
alike in evaluating the soundness of their startups' technology
and business strategies. Note that the model is applicable to
incremental innovation; a complete rethinking of the
construction business modelmay require rethinking of the
foundational technologies too. Naturally, we cannotclaim to
have identified all possible technologicalchallenges to
implementation of AI and BIM applications. There may be
others, and presumably new problems will arise even as
solutions to semantic enrichment and graph representations of
BIM models are developed and implemented. We are
confident, however, that these two are key to progress, and
thus deserving of the attention of researchers.
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