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Abstract- Credit card fraud detection is an important study in
the current era of mobile payment. Improving the performance
of a fraud detection model and keeping its stability are very
challenging because users’ payment behaviors and criminals’
fraud behaviors are often changing. In this article, we focus
on obtaining deep feature representations of legal and fraud
transactions from the aspect of the loss function of a deep
neural network. Our purpose is to obtain better separability
and discrimination of features so that it can improve the
performance of our fraud detection model and keep its
stability. We propose a new kind of loss function, full center
loss (FCL), which considers both distances and angles among
features and, thus, can comprehensively supervise the deep
representation learning. We conduct lots of experiments on
two big data sets of credit card transactions, one is private
and another is public, to demonstrate the detection
performance of our model by comparing FCL with other state-
of-the-art loss functions. The results illustrate that FCL
outperforms others. We also conduct experiments to show that
FCL can ensure a more stable model than others.

Keywords- Credit card fraud detection,
performance stability, representation learning.
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I.INTRODUCTION

Fraudsters and detectors of credit card fraud trans-
actions keep a dynamic game process for a long time.
Especidly in the current Internet times, transaction fraud
events take place more frequently than ever before and result
in substantial economic losses. The Nilson report delivered
comprehensive research about the situation of worldwide card
fraud. Thetotal financial losses from credit card fraud reached
$21.84 billion in 2015, increased to $24.71 billion in 2016,
and were over $27 hillion in 2017. What even worseis that the
global card fraud losses will keep increasing year by year and
possibly reach $31.67 billion in 2020 [1].

Therefore, an effective fraud detection system is

essential for banks and financial ingtitutions to detect or
monitor trans- actions online. Different fraud detection
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systems have the same target, which is to mine suspicious
transaction patterns from a
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201804, China .number of transaction logs so that they can be
used to detect or monitor an incoming transaction. It has been
demonstrated that machine learning is extremely effective for
mining these patterns, which can be viewed as a task of
supervised binary classification [2]-[7]. In other words,
abundant transaction records can be used to train a well-
performed classifier for identifying fraud transactions.
Although machine learning has achieved remarkable success
in detecting fraud transactions, the improvement of a fraud
detection system will never stop, and even a little
improvement can reduce huge financia losses. Machine-
learning-based credit card fraud detection is much more
challenging than traditiona binary classification tasks such as
image classification. There are two main reasons. class
imbalance in data sets and dynamic changes in behaviors of
users and fraudsters [2], [8]. On the one hand, there is an
extremely small number of fraud transaction records typically
available over al transaction records, and thus, this affects the
performance of a supervised classification approach seriously
[9]. Fortunately, many efforts have been made to handle this
problem, such as the sampling-based method [10] and cost-
based method [11]. On the other hand, fraudsters rack their
brains to explore new fraud strategies and make a fraud
transaction as similar to a genuine one in order to avoid being
found by a fraud detection system. Although fraudsters try to
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behave like the real cardholders, they have no way to know
the rea spending habit of cardholders, and they are eager to
transfer all money to other accounts. Hence, these different
transaction behaviors or psychological activities lead to
different features between fraud and genuine transaction data.
Fraud strategies are maybe changed, but the purpose of
fraudsters will never change. Therefore, it is very significant
to extract effective representations that can steadily distinguish
fraud transactions from genuine ones even whenfraud
strategies are often changed.

In this article, our objective is to build a credit card
fraud detection model based on deep representation learning
methods that can learn effective representations of transaction
behaviors. Simultaneously, we hope that our model can have
good stability. For the class imbalance problem, there are
many methods to handle it. This article pays more attention to
a better learning representation that can both enhance the
performance of fraud detection and keep the stability of
performance. As mentioned in the literature [12], a repre-
sentation learning method is to learn representations of the
data that can easily extract useful information when building
classifiers or other predictors. Representation learning has
been applied widely such as person reidentification [13] and
face recognition [14].

We present a deep neural network as our
representation learning model, mapping the original features
of transactions into deep representations for identifying fraud
transactions accurately. Intuitively, the learned deep
representations should maximize their intraclass compactness
and interclass sepa- rability simultaneously. We construct a
novel function full center loss (FCL) as the loss function of
our deep represen- tation learning model. FCL integrates two
different aspects of optimization objectives (or losses). The
first aspect is about the distance between deep representation
and class center, named distance center loss (DCL). DCL can
stress the intraclass compactness. The second aspect is an
optimized softmax loss (SL) with a maximum angle that can
promote the deep representations of samples from different
classes so that the interclass separability is improved. Since
the SL can change the angular distribution of learned
representations [15], we call our optimized SL as angle center
loss (ACL). To demonstrate a stronger feature leaning ability
of our model, we provide experimental results by comparing it
with state-of- the-art methods on different data sets. Our
contributions are summarized as follows.

1) A novel loss function, ACL, is proposed to improve
the separability of learned features. ACL is an
optimized SL function by addressing the problem of
maximum angl e separation.
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2) We construct a novel FCL by integrating ACL and
DCL. FCL ensures a stronger ability to mapping
original transaction features into much more
distinguishing deep representations since it fully
considers the distance and angle of features of
transactions.

3) We summarize the state-of-the-art loss functions used
in the deep representation learning methods and
compare them with ours over two big data sets. We
aso demon- strate that our model has better
performance stability.

The rest of this article is organized as follows. In
Section |1, we review the related work. Section |11 presents the
framework of our credit card fraud detection model. Section
IV describes our loss functions. Then, the details of our
experiments are shown in Section V. Section VI presents a
conclusion of this article and some future studies.

Il.RELATED WORK
A. Fraud Detection Modd

Credit card fraud detection is one of the most popular
topics in the fraud detection fields, especially with the
sustai nable growth of e-commerce transactions in recent years.
Generally, fraud detection is very chalenging because of two
major problems: class imbalance and data dynamic change [8].
The class imbal ance problem of credit card fraud detection has
been studied for a long time [16]. One of the most famous
methods is resampling [9]. Concretely, a training data set can
be balanced by removing some samples from the majority
class (i.e.,, undersampling [17]) or generating some samples
for the minority class (i.e., oversampling [10]). In addition,
ensemble methods [18], e.g., bagging, boosting, and stacking,
are al so often used to solve the class imbalance problem. Cost-
sensitive learning [19] is another way to ded with itthrough
assigning different misclassification error costs for different
classes, and a higher cost is assigned to a minority class
generally. Apart from the quantity imbalance, the spatia
distribution of instances from different classes is also an
important factor that influences the result of classifiers. For
example, the samples nearby the cross edge of majority and
minority are more important for a classifier since they are
harder to be identified accurately. Therefore, the Gaussian
mixture undersampling method [20] is proposed to sample
more informative instances and, thus, improve the
performance of classifiers.

The reason leading to the problem of transaction data
dynamic change is the changing and evolving of users’ trans-
action behaviors. The changes in consumption seasonality and
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fraud patterns lead to the deformation of the distribution of the
original transaction data. However, the commonly used fraud
detection methods, such as support vector machine (SVM)
[21], random forests (RF) [22], and convolutiona neural net-
works (CNNs) [4], generally assume that classes are balanced
and data distribution is unchanged. Literature [23] presents a
very comprehensive survey of methods of credit card fraud
detection from 1990 to 2017. Most of these methods focus on
combining different class imbalance processing methods to
improve the performance of aclassifier but do not consider the
data dynamic change problem.

A few studies consider the data dynamic change
problem as the concept drift [5], [24]. They mainly focus on
timely detecting the appearance of concept drift and
adaptively updating a classifier to fit for new concepts. As
discussed in Section |, there exist inherent difference features
between fraud and genuine transactions. Therefore, it is also
very significant to extract effective representations that can
steadily distinguish fraud transactions from genuine ones even
when fraud strategies are often changed. In this article, we
focus on design a good and stable fraud detection model based
on deep representation |earning methods [12].

B. Deep Supervised Representation Learning

A representation learning method is to learn another
kind of representation for the given data, and it makes this
new rep- resentation capture more useful information that can
be used to build a better classifier or predictor [12]. It has
achieved great success in many domains, especially in large-
scale visua classification with supervised learning settings to
extract discriminative features [25]. Due to the existence of
many public visua data sets, such as ImageNet [26], LFW
[27], and COCO [28], many studies about deep representation
learning are explored and applied in the visual domain.

The architecture of a deep neural network influences
the per- formance ceiling of the corresponding representation
model. As pointed out in [25], the capacity of CNNs can be
controlled by varying their depth and breadth. They also make
some strong and mostly correct assumptions about the nature
of images (namely, stationarity of statistics and locality of
pixel dependencies). Many efforts have been put into the study
of architectures of CNNs and achieved remarkable success,
such as ResNet [29], DenseNet [30], and BagNet [31]. Apart
from network architecture, the loss function is another key
factor because it directly determines what a representation
learning model can be achieved. The research about loss
functions of deep representation learning models has aso
attracted much attention. According to the number of instances
required in a loss calculation, loss functions can be roughly
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divided into three kinds: individua-sample-based SL
functions [32]-[35], sample-pair-based contrastive |oss
functions [36], [37], and sample-triplet-based triplet loss
functions [38]-[40]. The triplet loss [38] considers triplets of
samples (X, X+, X-), where (%o, X:) with the same label forms a
positive pair and (X, X ) with different labels forms a negative
pair. It isused to measure the difference of their distances or
similarities and encourages those learned representations with
the same label to be closer than those with different labels.
There are some variants of triplet loss [39], [40]. However,
mining hard triplets of samples is too time-consuming for
some tasks with large data sets and suffers from the problem
of dramatic data expansion. In order to deal with them, a
batch-hard-based triplet loss is introduced in [39]. It can
generate hard negative and hard positive sample pairs from
every training batch. In addition, [40] proposes atriplet center
loss that replaces x and x with the corresponding class center
and another noncorresponding class center. Thus, it can make
the learned representations closer to their corresponding class
center and further away from other class centers.

The contrastive loss [36] is to minimize the distances
of positive sample pairs and maximize the distances of
negative sample pairs if the distances are not larger than some
preset margin. Just like the triplet loss, the contrastive loss
also suffers from the problem of time-consuming of preparing
the sample pairs. Wen et al. [15] propose a center 10ss to deal
with this problem. The center loss learns a center for the deep
representations of every class and minimizes the distances
between the learned representations and their corresponding
class centers. Although the time complexity of preparing for
sample pairs can be reduced, the contrastive loss cannot
directly be applied to a classification task because it is only
able to supervise a modd to learn discriminative
representations. Hence, it is often combined with SL  as an
auxiliary objective to learn separable and discriminative
representations [15], [37].

The SL iswidely used in deep representation learning
methods due to its simplicity and effectiveness. However,
recent studies [32]-[34] illustrate that the conventional SL is
ineffective to reduce the intraclass variation. To handle this
problem, some studies [15], [37] directly combine the
contrastive loss with it. Other studies focus on enhancing its
discrimination ability. In addition, some studies are to design
different forms of angle margin between learned rep-
resentations and their target weights. For example, Liu et al.
[32] propose a large-margin SL (LMSL) in terms of angular
similarity. They multiply a preset constant m with the angle
between a sample’s feature vector and the weight vector of its
corresponding class for a potentidly larger angular
separability among those learned deep representations. They
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also propose an angular SL (ASL) [33] that puts more con-
straints on the weights from the last fully connected layer

N
Fig. 1. Process of building a credit card fraud detection model.

to directly optimize angles. This can learn those angularly
distributed representations with angular margin. Reference
[34] presents a large-margin cosine loss (LMCL) that directly
uses cosine margin of different classes. This can improve the
cosine-related discriminative information and can be imple-
mented easily. Recently, Deng et al. [35] propose an additive
angular margin loss (AAML) that adopts the arccosine func-
tion to caculate the angle between a learned representation
and the target weight so that it can optimize the geodesic
distance margin under an exact correspondence from angle to
arc in the normalized hypersphere.

During the process of training a model with SL, the
learned representation f i of a sample x; with label 0
(respectively 1) is pulled closer to its target weight W 4
(respectively W 4),* and vice versa The purpose of angle
margin is to ensurea smaller average angle between Fq
(respectively F,)? and W , (respectively W ;) through
increasing the punishment to the same angle compared with
the conventional SL. However, it has not been fully explored
how to enhance the separability of the learned representations
via SL. Therefore, for addressing this problem, this article
proposes anovel ACL. ACL is an improved SL function with
the maximum angular separation. It can make the learned
representations of different classes sep- arated in opposite
directions. Hence, it can directly obtain the optimal
separability of learned representations. More details are shown
in Section V.

1. CREDIT CARD FRAUD DETECTION MODEL

As shown in Fig. 1, building an effective credit card
fraud detection model consists of some essentia steps which
significantly influence the detection.

A. Feature Engineering

The first step is feature engineering that is aiming at
extracting informative features of users’ transaction behaviors.
The raw features, such as transaction time/date and transaction
amount, cannot well characterize the transaction behaviors of
cardholders and fraudsters. One of the commonly used
methods is to derive some new features using the transaction
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aggregation strategy [41]. The aggregation features are
derived through grouping the transactions according to a
selected time interval, card number, transaction type, and
merchant code. Then, the number of transactions and the total
amount spent on those transactions are calculated. After the
process of transaction aggregation strategy, a single
transaction with

1 W 0 (respectively W 1) is the weight of the class |abeled by
0 (respec- tively 1).

2 FO (respectively F1) is the set of the learned representations
corresponding to those samples with label O (respectively 1).
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Fig. 2. Our deep representation learning framework
consisting of two parts: the deep neura network layers (e.g.,
convolution neura network layers) and the FCL layers.
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raw features is transformed into a feature matrix with
more informative aggregation features. The transaction
aggregation strategy has been adopted in many studies [4],
[42]. Our previous work [42] aso shows that it can well
distinguish the transaction behaviors of cardholders and
fraudsters. In this article, we also use this strategy.

B. Data Balancing

After feature engineering, a classifier can be trained
as abinary classification task. However, if the class imbaance
problem is not considered, the learned classifier will tend to
identify most of the fraud transactions as genuine ones. The
reason is that dmost al classifiers have a default assumption
of abaanced data set, and thus, the learned decision boundary
tends to bias toward the class with more samples. Hence,
dealing with the class imbalance problem has become an
indispensable step before training a fraud detection model. As
mentioned in Section I1-A, the most commonly used method
of handling the class imbaance problem is data sampling.
Especidly, the undersampling method can reduce the
redundancy of genuine transactions and speed up the model
training. Randomly undersampling is one of the most famous
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undersampling methods due to its simplicity and effectiveness.
However, these sampling methods do not consider the spatia
distribution of instances from different classes. The Gaussian
mixture undersampling method [20] can be applied to sample
more informative instances and, thus, improve the
performance of classifiers. However, if a data set has quite a
few fraud transactions compared with the legal ones, the
upsampling method, such as SMOTE [10], should be applied
to enrich the fraud transactions. In this article, we apply
different data balancing methods according to different data
sets that will beintroduced in Section V.

C. Fraud Detection Model Training

A fraud transaction detection model, as a hinary
classifier, can be trained with a relatively balanced data set
after handling the class unbalance problem. There are many
machine learning methods, such as SVM [21], RF [22], CNNs
[4], and recurrent neural networks (RNNSs) [6], that have been
successfully used to detect fraud transactions. Almost al of
them belong to representation learning. They am at
discovering better representations of inputs by learning
transformations of data that disentangle factors of variation in
data and retain most of the information [12]. Especialy, the
deep representation learning with deep neural networks has
achieved remarkable success in many domains in recent years
due to some advanced structures, such as ResNet [29],
DenseNet [30], and BagNet [31], and some effective loss
functions, such as AAML [35], center loss [15], and triplet
loss [38]. The latest neural network architectures make a deep
representation learning model not only deeper with much
more layers but also easier for model training. These advanced
architectures significantly enhance the ability of complex
nonlinear mapping of a deep repre- sentation learning model.
On the other hand, the ingeniously designed loss functions can
supervise the process of deep representation so that the fina
model can obtain an ideal result. As shown in Fig. 2, the fraud
transaction detection model adopted in this article is composed
of two parts: the deep neura network layers (e.g., convolution
neura network layers) for obtaining separable and
discriminative representations, and the fully center loss layer
for supervising the model training. The key of this articleisto
optimize the loss function so that the quality of those learned
deep features and the performance of fraud transaction
detection are enhanced. Our loss function is to supervise the
training of deep convolution neural network layers that project
the original feature space of transactions into a deep feature
space. The god is that the transactions from the same class
can be compact as fully as possible and the transactions from
different classes can be separated as fully as possible. For this
goal, we specialy design our FCL, combining two different
aspects of losses. ACL for addressing the separability of
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transactions from different classes and DCL for addressing the
compactness of transactions from the same
class.

IV.FULL CENTER LOSS (FCL)

ACL is an improved SL, which is specially designed
for our credit card fraud detection as a binary classification
problem. It can enhance the classification ability compared to
the softmax function. Meanwhile, the advantage of the
simplicity of the SL is still retained in ACL. DCL is originaly
proposed in [15] and is to measure the aggregation of deep
features of each class.

FCL can be formulated as follows:

Lt = {4 s Fmle ) (1)

where a is a hyperparameter to trade off these two
losses and m denotes the size of minibatch samples for
training our deep representation learning model. The detailed
explanation of every lossis shown in the following.

A. Angle Center Loss (ACL)

In general, the idea deep features should keep
intraclass compactness and interclass separability as much as
possible. Although the SL of the normal CNN mode is very
simple and performs well in many classification applications,
it is not too effective to generate discriminative features.
When using the original SL to solve a binary class problem,
the posterior probabilities of the learned deep representation f i
of an input sample x; with label 0 or 1 can be written as

i 7y
P-: = : . E Lt
F ' JF s f+h
o T
P1= 2“,_ T _:1“. T+ (3}

where (W o, bg) and (W 4, by) are weights and bias of
the softmax layer in CNN corresponding to class 0 and 1,
respec-tively. f i isthe output of the last fully connected layer.
po and p; are the posterior probabilities of f i belonging to
classes 0 and 1, respectively.

It has been verified that features learned by the
original SL have intrinsic angular distribution [33]. If an input

deep representation f i hasthelabel y; , then the original SL of
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deep representation f i can be reformulated as follows:
T L1 by

acziaLIEEER 1 Ay L By LB Sy

=—log T - 4)

where 3% denotes another class different from y; in the binary
classification.

We design two constraints for the orginal 8L to keep the
angular separability of instances from different classes. First,
following the modified 3L in [33]. we nommalize IV, . _
W = « Wy w = 1 and set the biases y by = o Byyu = 0
to maintain the angularboundary. This can guarantee that the
walie of SL just depends on the nomm vahlie of deep repre-
sentations f, apd the amples batween W, and f,. Therefors,
the modified SL of deep feature weetor f, can be wutten as

o fxae

P T

1
log = (5%

1 2o Joxieos t, —eos

whee 0 2 L f < m, f,  demotes the mgle betwem
vectos W , amd f, ., ad 8, demotes the amgle betwemn vectors WP
pand f;.

In order to minimize the value of Lpogiged 1. intuitively, two
optimizations should be taken into account. On the one hand
fy, should be decreased, amd # should be inces:ed. On T]:e
other hand, the value of, f; should be enlarged since we
have already constrained_ T _ 1. Considenng the fact that
the value mnge of f, iz closely mlated to the DCL, we
put more focus on the feasible optimization measure to make
&, smaller than &, as much as possible. Ideally. instances
from the same class are closzely distnbuted on both sides of
their comresponding W, . Hence, ¥ ;, can be regarded as the
angle center of each class instance, and thus, we name this
loss as ACL.

To obtain a stable classification perfonmance, the leamed
deep representations ofinstances from different classzes should
keep separability as fully as possible. Howewver, the modified
SL 15 only able to divectly nunirize the angles between f; and
its corresponding 7 ;. Therefore, we design another stronger
constraint, ie, and ¥ yr, are in opposite directions: F _
Wy FF'_,.-_. Finally, ACL with deep representation f; can
be refonmulated as

LA giiss _lﬂg —)x f.> oE g

Page | 743

I SSN [ONLINE]: 2395-1052

= — log

1

— e 1T W 1
From (6), it is easy to infer that with the decreasing of ACL,
the deep representation f ; will gradually get close to W, and
thus, the leamed representations from different classes wall
gradually be separated in the opposite directions since
and Wy, are always in the opposite directions.
Though we apply these stronger constraints to the ongmnal
SL, ACL still remains the supenonties of the ongmal SL.
Therefore, it can still be easily optimized with gradient com-

PUELOLINF LS MRS OGO AW G5 QLW IR WASLAE YA dugeianie s e s

r_'an still be easzily computed, just likke T_he one;mal SL

B. Distance Center Loss (DCL)

DCL iz mainly responsible for the separability of the leamed
deep representations from different classes. As for the com-
pactness of intraclass deep representations, we adoptthe center
loss [15] n Euchdean space, which can be measured by the
distance from an instance to its comespondng center. The
center loss of deep representation f;can be fonmulated as

follows: ;

pi=.%fi— 6% (7}

where ¢, denotesthe comesponding class center of f; with
As the ongnal center loss directly uses the Euchidean
distance, we name it as DCL. It has been proven that CINNs
supervisedby DCL are trainable and canbe optinized through

TABLEI
DIFFERENT METHODS FOR IMPROVING SL

Lo Functisns kv Formulis
W —WIfi+ iy, B0
LM | FANLE — W, T =it |
: Tl . — comrn? T
Tarze Margin Coine Laoss (LMCL) [ 3] wlcom Toomi By ¥ = ml]
Asklative An Murzin Loss (AAML) | 35] T com| B 4 m)l
\..l:_-';t',-m.. Lavs { ACL) !:L fl"-’-"‘"
classy, (-q 3 §
[
* e d.ornrer,
- a_cemrber

a8 _CEnteT, d_center, W

Fig. 3. Idea of our FCL that consists of ACL and DCL.
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the standard stochastic gradient descent (SGD) methed [15].
When training a medel the distance center of every class
1z computed bv averagme the lezmed desp representations

B Lo, ana i DunundTel, Spemes. 3 emial Lo L Sdenen un

perturbations caused by a few mislabeled samples. Thersfors,
followmg the defmition m article [13], the update equation of

dLp
7F F = {8}
_\L{:_ ';4‘1—.[.1 fe; —f: i
r I‘ LR,
e =¢,—7 Acdly = j) (10%
wher & -::\m:-.'ut'lm;.- = 1 if the condition is satisfied otherwise
dfcondition) 0. ¢, is the center of class j after updating, and

the hyperparameter 7 is limited in tamee O 1 .

Combmg ACL and DCL. the leaming ldetalls of our
proposed frand detection model can be summearized 2z
Alporithm 1. Fig. 3 shows the i#dea about FCL wisually.
a_center, and @ osnter, denot= the centers of classes § and
1 mm angel space, respectvely. o center, and & center, are
alwrays i two opposite directions for the best anple separation.
o center, and & center, denote the centers of claszes () and 1
in Euclidean space, respectively. When training a2 modsl, each
tramimmg sample and the related centers (distance center and
anpgle center) will be pulled closer pradusally.

C. Some State-of-the-Ari Loss Functions
In thiz section, we mtroduce some state-of-the-zrt loss

functions based on SL. They can mmprove the fezture leaming
ability of the representation lezming model compared with the

Algorithm 1 Deep Fepresentations Leammg With FCL

Require: Training data set of tramsactions X = | x}(i
{ L2...% )ad the leamed dep mpresentations F
{f } com=ponding to & . Initidlieed parmetes #
convolution-based desp representation learning layers. The
initigized parmetes W and {g (ff O=1) of mple center loas
md distmoe center loss. Hypeparmsten o 7 md the
lezming rate g, . The number of iterations ¢ iz initizlized

g

by 0.
Ensure: The leamed parmstex 8, W md o
1: repeat
2 =i+l
B T ™ T Foo.
3. Compute FCL Lz, ;=" i=14ds +0LE:
21l ol
4 Uompute the backpropasahon emor .o = &'+
ALl .
o
S T W VT L - u.._"l - e -
6 Ubdae ol o =& —UAGT 4 ;
7. Updse 8: 8 =8 —is ; E.,f‘ = R
QL8 1 e e g
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origmal SL. We compare them with owrs (mcluding ACL and

FCL) in our experiments, which iz shown i Table L

The LMSL ]32] multmhes 2 presst constant wm with the
mgle # betwem the lesmad mpresemtstion f, of 2 zample amd
the weight vector W of its corresponding class. Therefore
under the same f; amd W . more punishments are attached
to the representation lesming medel with LMSL than that
with SL. Therefors, potentizlly larger snpular separshility of
the leamed deep represemtations cam be achieved. However,
the influence from the nom velue of weight W7 is ignored
m LMSL, counteracting the work of parameter m.

The ASL [33] addresses the zbove-mentionsd problem of
LMSL and puts more constrzints on the weights to make
the SL directly optimize zngles for lezming angularly distrib-
uted representations with zn angular margm by normalizmg
oI . = 1. However, 2 complicated caleulation of ASL limits
the speed of model treming.

The LMCL [34] 15 ezsily mmplemented smee it directly adds
2 cosine margin between two different classes zo that it can
improve the cosme-related diseriminative mformetion. W7, i3
pomalized s =, %=1, md the leamed mpresentation f;
iz also fixad &= ® f; = = 5 for simplifying the calulation of cosine
similaity,. However, =f;® =1 is just ppproprate to
the data with a limited variety, such as the face images. For
credit card transaction data, because the genuine transactions
are diversiform, uniformizing them will increase the difficulty
of model learning.

The AAML [35] adds an additive angular margin
penalty m between f i and W i in order to simultaneously
enhance the intraclass compactness and interclass discrepancy.
Just as
LMCL, W,i isnormalizedas W,i 1, and the learned
representationfiisasofixedas fi  sin AAML. AAML can
be easily calculated by utilizing the arccosine function.

Inour ACL, W,i isasonormalizedas W,i 1, but
the deep representation f i is learned since it can influence the
performance of a softmax-based classifier. All of the above-
mentioned methods introduce a fix margin m to address the
angular separation. They introduce punishment to pull f i
closeto W,i and push fi away from W i . Therefore, fi

will get closer to W i with the increasing of the training
epoch. Therefore, the orientation of W i can be regarded as
the angular center of learned representations. The norm of

Wi has been fixed as 1 for better angular separation, but the
influence from the orientation of W i and W - has not been
fully excavated. Therefore, in our ACL, the orientations of W
J and W i are set oppositely for the largest angular separation
of fi from different classes. Based on this setting, the number
of parameters of ACL isonly half of that of SL.

V. EXPERIMENTS

A. Data Sets
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The first data set of credit card fraud detection is
from Kaggle [43] that is public and used in many studies. The
other one is our private transaction data set from a financial
company in China.

1) Data Set From Kaggle: This data set is composed of credit
card transactions of European cardholders in Septem- ber
2013. These transactions are generated in two days, and there
are 492 fraud transactions out of all 284 807 trans- actions. It
is obvious that this data set is very imbal- anced: the positive
class (fraud instances) only accounts for 0.172% of all
transactions. Every transaction has 30 features (Time, V 1, V
2, ..., 'V 28, Amount) in this data set. Except for Time and
Amount, al other features are numerical values that are
generated from the original features with a PCA trans-
formation. For the confidentiality issues, the origina features
and details about this data set are not provided. Because all
transactions in this data set cannot be associated with the
information of corresponding cardholders, it is unpractical to
aggregate features for acquiring more useful information.
Hence, this data set with original featuresis directly applied to
train and test models. In other words, the steps of feature
engineering and feature matrix in Fig. 1 are not used for this
data set.

2) Our Private Data Set: This data set contains fraud and
genuine transactions labeled by professiona investigators of
the company. There are up to 3.5 million transactions in this
data set from April to Junein 2017. Table Il shows the details
of the transactions in each month, and the class imbal- ance
problem is aso very serious. The original features of

TABLE Il EXPERIMENT DATA SET

Fraud Kikz
1243035 T
1216299 2 -

L2714 T

BAIT: Ti=Tames
07704
20175
AOTT-T’

TABLE Il AGGREGATED FEATURE MATRIX

Featires Names
AvE Amours
Tl Amwsuni
L% FEE T

LY PO o ST o

Torm_LCTanpe VIR

each transaction include transaction time, transaction
amount, transaction type, merchant type, currency type, and
card type. Literature [8] underlines that features extracted
from a single transaction are much less informative or
sufficient to detect a fraud occurrence than the aggregate
features combined with historical transactions. Therefore, we
adopt some aggregation measures on origina features in our
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previous work [42]. The original features are aggregated with
different time intervals from 5 s to two months and extended
according to different feature types. Table Il shows the
example of the feature matrix after the original features are
aggregated. For more details about the feature aggregation,
one can refer to [42]. After the process of feature aggregation,
every transaction is transformed into an informative feature
matrix that represents more comprehensive information of this
transaction and the spending habits of the corresponding
cardholder. These infor- mative feature matrices are adopted
for model training and testing.

B. Models

To show the advantages of our fraud detection model
with FCL, the state-of-the-art loss functions in Table | are
compared with ours. The RF model is one of the most popular
models for detecting fraud transactions and is also compared
with the benchmark in this article.

Since the data set from Kaggle has no more than 0.3
million transactions with 30 usable features, we build an
artificia neural network with four fully connected layers for
learning effective representations. Because our private data set
has millions of transactions with informative feature matrices,
a more powerfu CNN is adopted to learn deep
representations. We use five convolution layers with max-
pooling and three fully connected layers following the last
convolution layer. More details about the parameters of these
neural network structures are shown in Table V.

For the implementation of different loss functions,
we utilize the online code repositories and modify them
according to the requirement of credit card fraud detection.
The best hyperparameters of each loss function are searched
by the grid search method.

TABLE IV KEY HYPERPARAMETERS OF EACH
MODEL FOR DIFFERENT DATA SETS
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Mol Kapule Datasel Finuneaal company Diaasel
Mindels
e _Rinm=y I _NmmEp
il \ i sheeps,
Ramndom Faorests s seepey M _skeepsy
Py with gl g with gl
it swearch
NN hused musdel with 3
womvalationmal Eivers am
U fully commecied Livers:
AN hosed moslel Coiv-1 w 1.9 %)
with ¥ Fully Top o o o
wiih b fully Com-2: | L o
ot laviers {5 3
Ml Networks FE=1:32 Mos PoolD: [ = 352
FC- 25064, M= w1 =g
FC- 321 Comy- 3 S| s
P MasPocd-2: [ = 52,
FC-1: 256,
FC-2: 12K,
FC-3: ded

TABLEV CONFUSION MATRIX

True Fraad Truee Tecmmimme
Tredicted Froud TF TF

redwied Genwine = I

C. Performance Measures

The conventional confusion matrix of binary
classificationis shown in Table V.

The commonly used performance measures are
accuracy, precision, and recall. However, they are not
enough for mea- suring model performance due to the class
imbalance problem. Fg score [44] is the weighted harmonic
mean of precision and recall that can measure model
performance comprehensively. B is commonly 1 (i.e., Fy) to
equally treat precision and recall. Area under precision-
recall curve (AUC_PR) [45] is another very appropriate
metric for evaluating model performance with imbalanced
data sets because of its susceptibility of classifiers to
imbalanced data sets

TP+ TH

acCuracy — ¥ (11
AL T LW TILL T L%
 Voues o
_ _Drdsion {12
TP —MEP
recall (13)
TP+ FN
i1+ F) % tecall * preCISiOn
Fy= : T (13)
edl +f° * precision B
r— 2@l *prcision .
= (12}
rcall +precison
D. Experiment |

The first experiment is conducted on the Kaggle data
set. Considering there are only 492 fraud transactions in the
data set that can lead to a big variance of the test results for
different models, we use the upsampling method SMOTE [10]
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to generate more fraud transactions according to the actual
transactions to balance the data set with ratio 1:1. Then, 70%
of transactions are randomly selected as the training set and
the rest as the test set. The best hyperparameters m, s, a, and y
in different loss functions are searched with the grid search
method.

TABLE VI Perrorsasc ke of DiFFerent Monrs on Eaoals
Data &
e e T W PR
KT TE TS LLRIE!
=T TEES 1)
LATSL TLGET [
ol T T RTES
THICC uATE AT
AAML TS [UEEL
1 Moo | oan |
T e L LT

TABLE VI Prrromviarace o Data Ser Froa Froaucia

Comapanni

M ik [ TL_I'®
T 0.7 .77,
=1 T TT L1
LAMSL LU ) TR
351 TR T.Ia%
LRICT. = TR
AARL =TT LU
AT TLRITT TLRTT
FCLIACT AT | TATS RIS

Table VI shows the average results of F; and
AUC_PR. First, the performance of every neura network
model is better than RF because of the nonlinear characteristic
combination ability of a neural network. Second, our ACL
outperforms other loss functions, which means that the
maximum angle separation in our ACL is superior to others. In
addition, when combining ACL with DCL, the performance of
our models (i.e,, FCL) is continuously improved obviously,
which indicates the importance of intraclass compactness of
learned representations. This also shows that FCL can
strengthen the deep representation learning models to obtain
better represen- tations and improve fraud detection
performance.

E. Experiment |1

This experiment is conducted on our private data set
from a financiad company. This data set has abundant
transactions over three consecutive months, but the class
imbalance problem is still serious. Our previous work,
Gaussian mixture undersam-pling [20] method, can sample
informative instances to handle the class imbalance problem,
and thus, it is still adopted in this experiment. Since every
original feature of transactions has a concrete meaning, every
transaction can be transformed into an informative feature
matrix by the feature aggregation method [42]. This
experiment consists of two subexperiments. The first oneisto
verify the advantage of our ACL and FCL, and the
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Fig. 4. Accuracy values of modelsin training process.

Fig. 5. Changesin F1 values.
other one is used to demonstrate the performance stability of
the deep representation Iearniﬁrg model cé'rused+by our FCL. In
all experiNments, the best hyperparameters m, s, a, and y for
these loss functions are still searched by the grid search
method.

Fig. 6. Changesin PR_AUC values.
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In the first subexperiment, transactions from the first two
months form the training set, and transactions from the last
month form the testing set. This avoids the problem of data
leakage. Fig. 4 shows the smoothed accuracy change of
models when model training, and Table VII shows the resuilts.
Obviously, the deep representation learning models with our
ACL and DCL converge faster, and our ACL and FCL still
outperform other loss functions.

In the second subexperiment, transactions from the
first month are used as the training set that is denoted as T ,
and the rest samples are used as the testing set. Instead of
testing all samples of the testing set at one time, we divide
them into six groups (from T, to Tg) in chronologica order,
and each group contains samples from ten consecutive days.
We test these groups of data one by one to observe the
performance changes. Table VIII shows the results, and it is
obvious that ACL and FCL lead to the best performance in
comparison with others. Then, just as shown by the curves in
Figs. 5 and 6, the degrees of changes in our models’
performance

TAELEX
B Crance Wini Dy Test S5 Whae T B T T, T
T ]
Wethad (ETHRI BRI A Tafm. T -0, 30] T T,
7 T W wLrn T W
ST LTS AR ToTs > T T T TS | O
[SET L T THIT REN I TIST [ T
K LT i T T 0T INR]] 1.7 0T UL
TR Iz I 2L LAY T8 TR INEE ] TTea | Ty
AAMI AT LA T T [{EUL] [LEL) [INRI iEREES TETT
W LRI .97 AT | WATT [ T Wri? ] Wois TRy [ MR |
[ LT AT T 1 TLTET TR LT TEIT THR AT MR TLIRFT? WIHET

are the lowest. This means that our ACL and FCL make the
performance of models be the most stable.

To adequately show that our loss functions can lead
to more stable performance, we construct two more data sets
that includes training sets, T T, and T T; T,, and testing
sets, T, Tegand Tz Ts, respectively. We compare our ACL
and FCL with other methods on these two data sets, just like
we did earlier. Tables IX and X show the results. Obviously,
our loss functions lead to the least standard deviations, which
means that our models ensure a more stable performance. At
the same time, we can see that both F; and AUC_PR of our
models are the best compared to others. From Tables VII1-X,
it can be seen that when increasing the size of a training set,
the performance of atrained model is enhanced. For example,
from the results of T3 in Tables VIII-X, the values of F; and
AUC_PR of the corresponding models are al increased from
Table VIII-X.
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VI. CONCLUSION

In this article, a deep representation learning model is
proposed for credit card fraud detection that has the advantage
to achieve a good and stable performance. It consists of two
parts. a deep neura network and a specially optimized loss
function, FCL. FCL is able to supervise the deep represen-
tation learning model from both distance and angle so that the
yielded model can enhance the intraclass compactness and
interclass separation. Especialy, ACL can directly sep- arate
learned representations of different classes in opposite
directions. State-of-the-art loss functions are summarized and
compared with our ACL and FCL. The experimenta results
illustrate the advantages of our method.

Although our loss functions can ensure more stable
performance for fraud detection, there still is a space for
improvement. For example, the performance stability of the
fraud detection model should also be considered from the
perspective of concept drift [5], [24]. In the future, we plan to
consider the concept of drift problem from the aspect of loss
function.
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