
IJSART - Volume 9 Issue 4 – APRIL 2023 ISSN [ONLINE]: 2395-1052

Page | 266 www.ijsart.com

Android Malware Detection Using Extreme Gradient
Boosting Algorithm

A.Meena1, R.Karishma2, B.Gayathri3, K.B.Hemapriya4

1Assistant Professor, Dept of Electronics and Communication Engineering
2, 3, 4Dept of Electronics and Communication Engineering

1, 2, 3, 4 K.L.N. College of Engineering, Pottapalayam, Sivagangai – 630612, Tamil Nadu, India

Abstract- With the rise of Android devices, protecting against
the surge of malicious applications has become a critical
concern for device security, making Android malware
detection an essential safeguard against potential security
threats like malware, viruses, and hacking attempts.
Traditional machine learning algorithms, such as logistic
regression, have been utilized for Android malware detection.
However, this algorithm may not be sufficient in detecting
complex and diverse malware types.To address this issue, the
utilization of the XGBoost algorithm, a renowned gradient
boosting decision tree algorithm, is proposed for Android
malware detection.An experiment will be conducted on a
dataset comprising of more than 20,000 Android applications,
containing both benign and malware samples. The efficacy of
the XGBoost algorithm in accurately detecting Android
malware will be demonstrated through the experiment.The
proposed algorithm can assist in the early detection and
prevention of Android malware, ensuring the security of
Android devices is crucial to protect the privacy and data of
users and to prevent any unauthorized access or malicious
activity on the device.

Keywords- XGBoost Classifier, Logistic Regression,
Permission Dataset, Malware analysis.

I. INTRODUCTION

Android malware has become a significant concern
for device security with the increasing use of Android devices
worldwide. The complexity and diversity of malicious
applications pose a significant challenge to traditional
malware detection methods. Machine learning algorithms have
been widely adopted in Android malware detection due to
their ability to analyze large amounts of data and identify
patterns.

Malware, short for malicious software, is any
program or code designed to harm, disrupt, or exploit a
computer system, network, or device without the user's
knowledge or consent. Malware is often used by
cybercriminals for various purposes, including stealing

sensitive information, compromising systems, conducting
espionage, or causing damage.

There are several types of malwares, including:

 Viruses: A virus is a self-replicating program that
infects other files on a computer and spreads from
one system to another. Viruses often attach
themselves to legitimate files or programs and can
cause damage to the infected system.

 Trojans: A Trojan is a type of malware that disguises
itself as a legitimate program or software and tricks
the user into installing it. Once installed, a Trojan can
steal data, modify files, or provide unauthorized
access to the system.

 Ransomware: Ransomware is a type of malware that
encrypts files on a computer or network and demands
payment from the victim to restore access to the data.
Ransomware attacks can be devastating for
individuals and organizations, and often result in
significant financial losses.

 Worms: A worm is a self-replicating program that
spreads from one computer to another over a
network, often causing damage or disruption to the
infected systems. Worms can spread quickly and can
be difficult to detect and remove.

 Spyware: Spyware is a type of malware that collects
information about a user's browsing habits,
keystrokes, or personal data and sends it to a remote
server without the user's knowledge or consent.
Spyware can be used for targeted advertising or
identity theft.

In Section I, the introduction for our experiment is
discussed. The rest of the paper is organized as follows.
Section II provides a review of related work in Android
malware detection. Section III describes the dataset used in
our experiment, the methodology employed for the evaluation
of the proposed algorithm and the metrics used to evaluate the
performance of the classifiers are given. Section IV presents
the results of the experiment and compares the performance of
the XGBoost algorithm with logistic regression. Section V

IJSART - Volume 9 Issue 4 – APRIL 2023 ISSN [ONLINE]: 2395-1052

Page | 267 www.ijsart.com

concludes the paper and discusses the implications of our
future ideas.

II. RELATED WORKS

Logistic regression is a statistical algorithm that is
commonly used for binary classification tasks, such as
malware detection.logistic regression for malware detection,
gather a dataset of Android applications that have been
labelled as either benign or malicious. The features of each
application are then extracted, such as the number of
permissions requested by the application or the frequency of
certain API calls. Logistic regression is trained on the dataset
of labelled applications. The algorithm calculates a linear
combination of the input features and applies a sigmoid
function to the result to obtain a probability.

Once logistic regression has been trained, it can be
used to classify new Android applications as benign or
malicious. The algorithm calculates the probability of an
application being benign or malicious based on its features and
the learned parameters. If the probability is greater than a
threshold (usually 0.5), the application is classified as
malicious; otherwise, it is classified as benign.Logistic
regression has several advantages for malware detection in
Android applications. For example, it is a relatively simple
algorithm that is easy to implement and interpret. It can handle
both categorical and continuous features, making it versatile
for different types of data. Logistic regression is also robust to
noise and outliers in the data, making it suitable for real-world
malware detection applications.However, logistic regression
also has some limitations. It assumes a linear relationship
between the input features and the output probability, which
may not be the case in practice. Additionally, logistic
regression can be sensitive to imbalanced datasets, where there
are significantly more examples of one class than the other.
Overall, logistic regression is an effective algorithm for
detecting malware in Android applications. Its simplicity,
versatility, and robustness make it a popular choice in practice.
Logistic Regression are effective algorithms for malware
detection in Android applications, its limitations make it less
suitable for certain types of data and tasks. XGBoost, on the
other hand, is a powerful and flexible algorithm that can
achieve high performance in a wide range of classification
tasks, making it a popular choice for malware detection in
practice.

III. METHODOLOGY

This section consists of two subsections. In Section
III-A, the dataset preparation and data preprocessing are
discussed. The proposed classification approaches are detailed

in Section III-B. The detailed flow diagram is shown in Figure
1. In Section III-C, the metrics used to measure the
performance of classification algorithms are given.

A. DATA PREPROCESSING AND PREPARATION

First, we need to create a dataset of Android
applications. The dataset should contain both malware and
benign applications, and it should be large enough to be
representative of the population of Android applications. The
dataset used in this process is imported from Canadian
Institute for Cybersecurity. It contains 12,999malware apps
and 10,000 benign apps. The goal of data preprocessing is to
prepare the data for use in the algorithm, which typically
involves cleaning the data, transforming it, and selecting
features.

Feature engineering involves feature extraction and
feature selection. Feature extraction is the process of selecting
and transforming raw data into a set of relevant features, that
can be used as input for machine learning classification
algorithm. Here, PCA is a technique that reduces the
dimensionality of a dataset by transforming the original
features into a set of orthogonal components. The components
are sorted by their variance, and the top components are
selected as the most important features.PCA can be used to
extract the most important features from the original feature
set. These features can then be used to train the XGBoost
model.Split the preprocessed dataset into training and testing
sets. Typically, a 70/30 or 80/20 split is used, with the larger
portion being the training set.

Figure 1. Flow diagram for android malware detection

B. PROPOSED CLASSIFIER

IJSART - Volume 9 Issue 4 – APRIL 2023 ISSN [ONLINE]: 2395-1052

Page | 268 www.ijsart.com

The Android operating system is vulnerable to
malware attacks due to its open-source nature and the large
number of apps available on the Google Play Store. Malware
authors often disguise their malicious apps as legitimate ones
and trick users into installing them. Traditional signature-
based antivirus solutions are ineffective against such attacks.
Machine learning-based malware detection techniques can be
used to detect malware that has not been seen before.

XGBoost is a popular gradient boosting algorithm
that has been used in various machine learning applications,
including Android malware detection. It is a type of gradient
boosting decision tree algorithm that can handle large datasets
and capture complex relationships between input features and
output classes, making it particularly useful in detecting new
and previously unknown malware variants.

In the context of Android malware detection,
XGBoost works by training a model on a dataset of Android
applications, where each application is represented by a set of
features such as permissions requested, system calls, and code
structure. The model learns to classify applications as either
malicious or benign based on the patterns and relationships
between the features and their corresponding labels.

In Figure 2, The detailed block diagram for XGBoost
Classifier is given. The XGBoost algorithm works by building
an ensemble of decision trees, where each tree is trained to
minimize the error of the previous tree. In each iteration, the
algorithm calculates the gradient of the loss function with
respect to the predicted output, and uses this gradient to update
the model parameters. By iteratively improving the model,
XGBoost can learn to capture complex relationships between
features and malware, and can adapt to new and previously
unseen malware variants.

The formula for XGBoost is as follows:

y = Σf(x)

In this formula, y represents the predicted class label
(e.g., malicious or benign), x represents the input features
(e.g., system calls, API calls, permissions), and f(x) represents
the decision function of the model, which is a combination of
multiple decision trees.

The decision function is calculated as follows:

f(x) = wq(x) + Σ Tj(x)

In this equation, w is the weight of the decision tree,
q(x) is the root node prediction of the decision tree, and Tj(x)

represents the contribution of the jth decision tree to the
prediction of the sample x. The contribution of each decision
tree is a sum of the values of the leaf nodes that the sample
falls into.

The weights of the decision trees and the predictions
of the root nodes are learned during the training phase of the
algorithm, using a gradient boosting framework that iteratively
adds decision trees to the model to reduce the training error.
The process starts with an initial decision tree, and at each
iteration, a new decision tree is added to the model to reduce
the error of the previous iteration. The weights and root node
predictions of each new decision tree is learned by optimizing
a differentiable loss function that measures the difference
between the predicted class labels and the actual class labels
of the training data.

To classify a new sample (e.g., an Android app), the
XGBoost algorithm applies the decision function to the app's
features and calculates the predicted probability of the app
belonging to each possible class (e.g., malicious or benign).

Figure 2. Block diagram for Extreme Gradient Boosting
algorithm

The app is then classified as belonging to the class with the
highest probability.

In addition to its ability to handle large datasets and
capture complex relationships, XGBoost also provides several
other benefits for Android malware detection. For example, it
can handle missing values and can automatically handle
feature selection, reducing the risk of overfitting and
improving the generalization performance of the model.

Overall, XGBoost is a powerful machine learning
algorithm for Android malware detection, and has been shown
to outperform traditional approaches like logistic regression.
By training XGBoost on large datasets of Android

IJSART - Volume 9 Issue 4 – APRIL 2023 ISSN [ONLINE]: 2395-1052

Page | 269 www.ijsart.com

applications and selecting appropriate features, researchers can
develop accurate and efficient methods for detecting Android
malware and improving the security of mobile devices.

C. PERFORMANCE MEASURE

The confusion matrix is frequently used to measure
the performance of machine learning approaches. An example
of a confusion matrix is shown in Table 1. Some of the
information indicated in Table 1 are as follows:

TP: It is the number of samples that are actually in the ‘‘+’’
class but classified with ‘‘+’’ as a result of the classification.
TN: It is the number of samples that are actually in the ‘‘−’’
class but classified with ‘‘−’’ as a result of the classification.
FP: It is the number of samples that are actually in the ‘‘−’’
class but classified with ‘‘+’’ as a result of the classification.
FN: It is the number of samples that are actually in the ‘‘+’’
class but classified with ‘‘−’’ as a result of the classification.
By using TP, TN, FP, and FN values, accuracy in Equation 1,
precision in Equation 2, and recall metrics in Equation 3 are
given.

accuracy = (1)

precision = (2)

recall = (3)

Comparison with the accuracy metric may not be
sufficient in experiments performed on unbalanced datasets.
For this reason, it is more accurate to compare with the f-
measure metric, which is the harmonic mean of precision and
recall values. Equation 4 contains the mathematical
representation of the f-measure metric. Considering the Table
1, two different values of precision, recall, and f-measure
metrics, consisting of (+) and (−) classes, emerge. For this
reason, classification algorithms are evaluated by averaging
the values obtained for both classes.

f − measure = (4)

IV. RESULTS AND DISCUSSION

In this Section IV, the results obtained from the
existing model and proposed model are detailed and
interpreted.

In Android Malware Detection, XGBoost and
Logistic Regression are commonly used machine learning
algorithms for classifying applications as either malicious or
benign. XGBoost is known for its high accuracy and
scalability, making it suitable for various classification tasks,
including malware detection. It is capable of handling large
datasets and nonlinear relationships between features.In our
experiment, XGBoost achieves an accuracy of about 95% with
our permission dataset.

The results obtained from the permission dataset are
discussed here. Table 2 contains the results from the Androzoo
dataset. The result obtained with the Logistic Regression
shows that the overall accuracy of about 90% and the
precision obtained for the test data is 0.912. According to
recall and f1-score obtained for Logistic Regression is 0.924
and 0.911. The result obtained with the Extreme Gradient
Boost algorithm shows that the overall accuracy of about 95%
and the precision obtained for the test data is 0.996. According
to recall and f1-score obtained for Extreme Gradient Boost
algorithm is 0.998 and 0.947.

Table 2. Results from the Androzoo dataset.

When compared to Logistic Regression, XGBoost
outperforms it in terms of accuracy, achieving the highest
accuracy score. However, Logistic Regression is known for its
computational efficiency as it requires fewer computations
than XGBoost. Despite this, XGBoost is also known for its
computational efficiency in the context of Android Malware
Detection.

XGBoost is particularly effective at capturing
nonlinear relationships between features and malware, making
it suitable for detecting new and previously unseen malware
variants. Logistic Regression, on the other hand, may struggle
to capture such relationships, as it assumes linear relationships
between features and output classes.

In terms of model interpretability, Logistic
Regression is a simpler model that is easy to interpret and
understand, while XGBoost is a more complex model that
may be harder to interpret but often achieves higher accuracy
scores.

IJSART - Volume 9 Issue 4 – APRIL 2023 ISSN [ONLINE]: 2395-1052

Page | 270 www.ijsart.com

V. CONCLUSION

In conclusion, the use of XGBoost algorithm in
Android malware detection has shown promising results in
accurately detecting malicious applications. Overall, the
XGBoost algorithm has proven to be a powerful tool in the
fight against Android malware, and continued research and
development in this area will undoubtedly lead to even more
accurate and effective detection techniques.

Future work can include incorporating dynamic
analysis, deep learning, explain-ability, adversarial attacks,
and real-time detection to enhance the effectiveness,
robustness and accuracy of the XGBoost algorithm.

REFERENCES

[1] Durmuş Özkan Şahin, Sedat Akleylek, And Erdal Kiliç,
“LinRegDroid: Detection of Android Malware Using
Multiple Linear Regression Models-Based Classifiers,”
Jan 2022

[2] N. Milosevic, A. Dehghantanha, and K.-K. R. Choo,
‘‘Machine learning aided Android malware
classification,’’ Comput. Electr. Eng., vol. 61, pp. 266–
274, Jul. 2017.

[3] L. Wei, W. Luo, J. Weng, Y. Zhong, X. Zhang, and Z.
Yan, ‘‘Machine learning-based malicious application
detection of Android,’’ IEEE Access, vol. 5, pp. 25591–
25601, 2017.

[4] F. Alswaina and K. Elleithy, ‘‘Android malware
permission-based multiclass classification using
extremely randomized trees,’’ IEEE Access, vol. 6, pp.
76217–76227, 2018.

[5] R. S. Arslan, İ. A. Doğru, and N. Barişçi, ‘‘Permission-
based malware detection system for Android using
machine learning techniques,’’ Int. J. Softw. Eng. Knowl.
Eng., vol. 29, no. 1, pp. 43–61, Jan. 2019.

[6] A. Feizollah, N. B. Anuar, R. Salleh, and A. W. A.
Wahab, ‘‘A review on feature selection in mobile
malware detection,’’ Digit. Invest., vol. 13, pp. 22–37,
Jun. 2015.

[7] J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-An, and H. Ye,
‘‘Significant permission identification for machine-
learning-based Android malware detection,’’ IEEE Trans.
Ind. Informat., vol. 14, no. 7, pp. 3216–3225, Jul. 2018.

[8] (2021). Global Market Share Held by the Leading
Smartphone Operating Systems in Sales to End Users
From 1st Quarter 2009 to 2nd Quarter 2018. Accessed:
Oct. 30, 2021. [Online]. Available: https://www.
statista.com/statistics/266136/global-market-share-held-
by-smartphoneoperating-systems/

[9] (2021). Malware Disguised as Minecraft Mods on Google
Play— Kaspersky Official Blog. Accessed: Oct. 30, 2021.
[Online].
Available:https://www.kaspersky.com/blog/minecraft-
mod-adware-google-playrevisited/40202/

[10]H. Wang, Z. Liu, J. Liang, N. Vallina-Rodriguez, Y. Guo,
L. Li, J. Tapiador, J. Cao, and G. Xu, ‘‘Beyond Google
Play: A large-scale comparative study of Chinese Android
app markets,’’ in Proc. Internet Meas. Conf., Oct. 2018,
pp. 293–307.

[11] (2021). Mobile Malware Report—Android Malware.
Accessed: Oct. 30, 2021. [Online].
Available:https://www.gdatasoftware.com/news/2019/07/
35228-mobile-malware-report-no-let-up-with-android-
malware

[12]A. Pektaş, M. Çavdar, and T. Acarman, ‘‘Android
malware classification by applying online machine
learning,’’ in Proc. Int. Symp. Comput. Inf. Sci. Cham,
Switzerland: Springer, 2016, pp. 72–80.

[13] (2019). Android Malware Dataset. Accessed: Oct. 15,
2019. [Online]. Available: http://amd.arguslab.org/

[14] (2021). APKPure Android Application Store. Accessed:
Oct. 30, 2021. [Online]. Available: https://apkpure.com

[15]C. Urcuqui-López and A. N. Cadavid, ‘‘Framework for
malware analysis in Android,’’ Sistemas Y Telemática,
vol. 14, no. 37, pp. 45–56, 2016.

[16] (2021). Access to Dataset. Accessed: Oct. 30, 2021.
[Online]. Available:
https://kaggle.com/xwolf12/datasetandroidpermissions

