
IJSART - Volume 9 Issue 4 – APRIL 2023 ISSN [ONLINE]: 2395-1052

Page | 94 www.ijsart.com

A Framework for Detecting SQL Injection Attack

using Recurrent Neural Networks

S.Saranya.J1 , M.Barath Kumaran2, V.Gowtham3, J.Mukthar Shakir4,S.Senthamizhan5

Department of Computer Science and Engineering and Technology,
1 Head of the Department , RAAK College of Engineering and Technology, Pondicherry, Pin-605010,India

2,3,4,5 Student , RAAK College of Engineering and Technology, Pondicherry, Pin-605010,India

Abstract- OWASP has identified SQL Injection as the primary

security threat among the top 10. SQL Injection attacks can

have severe consequences, such as data breaches and website

failure. To address this issue, an adaptive deep forest-based

approach has been developed to identify complex SQL

Injection attacks. The deep forest structure is optimized, and

the input for each layer comprises the raw feature vector and

the average of prior outputs to combat the problem of

degrading features with increased layers. The AdaBoost

algorithm-based deep forest model leverages error rates to

update the feature weights on each layer. This model

automatically adjusts the tree model structure and manages

multi-dimensional, fine-grained features, effectively avoiding

overfitting issues. The proposed system aims to achieve

improved results by implementing Recurrent Neural Networks

(RNN).

Keywords: SQL injection attack, website analysis, OWASP

Top 10 , AdaBoost algorithm and Recurrent Neural

Networks.

I. INTRODUCTION

 The OWASP has identified SQL Injection as the top security

threat among the ten that exist. A SQL injection attack is

executed by injecting a SQL query into the application

through the input data from the client. A successful exploit of

SQL injection can result in sensitive data breaches, alteration

of database data, and execution of administration operations

on the database. SQL injection is often observed when a user

is requested to provide input, such as a username or user id,

and instead of providing this, the user submits an SQL

statement which is then executed on the database. SQL

injection attacks typically fall under three categories: In-band

SQLi, Inferential SQLi (Blind), and Out-of-band SQLi. The

In-band SQLi is the most common type of SQLi attack, where

the attacker uses the same communication channel to launch

attacks and gather results. Boolean, a sub-variation of In-band

SQLi, prompts the application to return a result based on

whether the query submitted is true or false. Several machine

learning techniques have been employed for the detection of

code injection attacks. The most used machine learning

methods and preprocessing stages were identified. A

classification-based approach using an ensemble algorithm

was proposed to detect the level of SQL injection attacks in

web applications. This method can identify new attacks based

on their irregular matching characteristics, and it is more

difficult to bypass.

II. EXISTING WORK

 The current system implements an adaptive deep

forest-based approach to detect complex SQL injection

attacks. The structure of the deep forest is first optimized by

concatenating the raw feature vector and average of previous

outputs in each layer. However, the original features of deep

forests tend to degrade with the increasing number of layers,

which is addressed in this model. The AdaBoost algorithm is

utilized based on the deep forest model to update the weights

of features on each layer using error rate. This results in an

adaptive deep forest model (ADF) that improves feature

performance by transforming features based on multi-grained

scanning, followed by layer-by-layer characterization learning

using a cascade structure. Compared to deep neural networks,

the ADF offers advantages in hyper-parameter settings and

performance. AdaBoost, a Boosting technique used as an

Ensemble Method in Machine Learning, re-assigns weights to

each instance, with higher weights assigned to incorrectly

classified instances. A forest may be less interpretable than a

single decision tree, as it may require significant memory for

storage due to the need for retaining information from several

hundred individual trees.

IJSART - Volume 9 Issue 4 – APRIL 2023 ISSN [ONLINE]: 2395-1052

Page | 95 www.ijsart.com

III. PROPOSED SYSTEM

 A recurrent neural network (RNN) is a class of

artificial neural networks where connections between nodes

can create a cycle, allowing output from some nodes to affect

subsequent input to the same nodes. Recurrent Neural

Networks enable you to model time-dependent and sequential

data problems, like stock exchange prediction, artificial

intelligence and text generation. Models under the Recurrent

Neural Network are: Long Short Term Memory (LSTM)

Gated Recurrent Unit (GRU) Long Short Term Memory

(LSTM) is a kind of recurrent neural network (RNN) design

applied in the deep learning field. LSTM has a feedback

connection that is unrelated to standard feed forward neural

networks. It cannot only process some data points but also

entire sequences of information. The LSTM unit consists of a

cell, an input gate, an output gate and a forget gate. The cell

recollects values over arbitrary time breaks and therefore the

three gates control the data flow into and out of the cell.

LSTM networks are compatible for categorizing, handling and

producing guess supported statistical data, subsequently there

are often delays of unidentified period between main events

during time sequences. LSTMs were established to overcome

the discharging and disappearing gradient problems which will

be come across when training traditional RNNs. The LSTM

unit contains a memory cell that has three gates described

below: Input gate (i): The input gate computes the sum of

input that is allowed to pass through it and is calculated by i =

σ (xt Ui + st-1 Wi) The sigmoid function plots the input value

between [0, 1] and this value is multiplied by the weight

vector (Ui). This helps the gate manage the quantity of input

that is transferred through the input gate. Forget gate (f): The

forget gate helps the network to choose what and how much

information from the earlier level to transfer to the succeeding

level. The sigmoid function maps the value of this function

between 0 and 1. It is given by: f = σ (xt Uf + st-1 Wf) If no

input wants to be transferred to the next level, the previous

memory is multiplied with the zero vector, which creates the

input value zero. Likewise, if the memory at st-1 needs to pass

to the next level it is multiplied by 1 vector. If only some part

of the input is to be passed, then the resultant vector is

multiplied with the input vector. Output gate (o): The output

gate, describes the output passed at each step of the network. It

is given by: o = σ (xt Uo + st-1 Wo) BiLSTM means

bidirectional LSTM, which means the signal transmits

backward as well as forward in time. Gaterecurrent unit GRU

is a type of deep learning algorithm that is enhanced from the

LSTM algorithm to minimize the complication of the

algorithm by using update gate and reset gate. The update gate

is used to regulate hidden state volume to be forwarded to the

next state. The reset gate is used to define the consequence of

the previous hidden state information.

Update Gate (z): It determines how much of the past

information needs to be passed along into the future. It is

similar to the Output Gate in an LSTM recurrent unit. z = σ (xt

Uz + st-1 Wz) Reset Gate (r): It defines how much of the past

information to forget. It is similar to the combination of the

Input Gate and the Forget Gate in an LSTM recurrent unit. r =

σ (xt Ui + st-1 Wr) BiGRU means Bidirectional GRU’s are a

kind of bidirectional recurrent neural networks that allow for

the use of information from both previous time steps and later

time steps to make predictions about the current state.

PYTHON

 Python is a general-purpose interpreted, interactive,

object-oriented, and high-level programming language. An

interpreted language, Python has a design philosophy that

emphasizes code readability (notably using whitespace

indentation to delimit code blocks rather than curly brackets or

keywords), and a syntax that allows programmers to express

concepts in fewer lines of code than might be used in

languages such as C++ or Java. It provides constructs that

enable clear programming on both small and large scales.

Python interpreters are available for many operating systems.

C Python, the reference implementation of Python, is open

source software and has a community-based development

model, as do nearly all of its variant implementations. C

Python is managed by the non-profit Python Software

Foundation. Python features a dynamic type system and

automatic memory management. It supports multiple

programming paradigms, including object-oriented,

imperative, functional and procedural, and has a large and

comprehensive standard library.

Advantages

 RNN can process inputs of any length.

 An RNN model is modelled to remember each

information throughout the time which is very helpful in

any time series predictor.

 Even if the input size is larger, the model size does not

increase.

 The weights can be shared across the time steps.

 RNN can use their internal memory for processing the

arbitrary series of inputs which is not the case with

feedforward neural networks.

IV. ALGORITHM

 Adaboost, also known as Adaptive Boosting, is a

popular algorithm used in machine learning for classification

problems. It works by combining multiple weak learners to

https://en.wikipedia.org/wiki/Interpreted_language
https://en.wikipedia.org/wiki/Interpreted_language
https://en.wikipedia.org/wiki/Readability
https://en.wikipedia.org/wiki/Readability
https://en.wikipedia.org/wiki/Whitespace_character
https://en.wikipedia.org/wiki/Whitespace_character
https://en.wikipedia.org/wiki/Code_block
https://en.wikipedia.org/wiki/Code_block
https://en.wikipedia.org/wiki/Source_lines_of_code
https://en.wikipedia.org/wiki/Source_lines_of_code
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/CPython
https://en.wikipedia.org/wiki/CPython
https://en.wikipedia.org/wiki/Reference_implementation
https://en.wikipedia.org/wiki/Reference_implementation
https://en.wikipedia.org/wiki/Open_source
https://en.wikipedia.org/wiki/Open_source
https://en.wikipedia.org/wiki/Open_source
https://en.wikipedia.org/wiki/Python_Software_Foundation
https://en.wikipedia.org/wiki/Python_Software_Foundation
https://en.wikipedia.org/wiki/Python_Software_Foundation
https://en.wikipedia.org/wiki/Python_Software_Foundation
https://en.wikipedia.org/wiki/Dynamic_type
https://en.wikipedia.org/wiki/Dynamic_type
https://en.wikipedia.org/wiki/Memory_management
https://en.wikipedia.org/wiki/Memory_management
https://en.wikipedia.org/wiki/Programming_paradigm
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Imperative_programming
https://en.wikipedia.org/wiki/Imperative_programming
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Procedural_programming
https://en.wikipedia.org/wiki/Standard_library

IJSART - Volume 9 Issue 4 – APRIL 2023 ISSN [ONLINE]: 2395-1052

Page | 96 www.ijsart.com

create a strong classifier, with each weak learner trained on a

subset of the data. Adaboost's main strength lies in its

versatility, as it can be used with a wide range of weak

learners, including decision trees, neural networks, and

support vector machines. This flexibility makes Adaboost a

popular choice for many different types of classification

problems. However, one of the biggest challenges with

Adaboost is its sensitivity to outliers, as they can significantly

impact the algorithm's performance. In contrast, recurrent

neural networks (RNNs) are a type of neural network that can

process input data in a sequential manner due to their feedback

loops. RNNs are particularly useful for tasks such as speech

recognition and natural language processing, where the order

of the input data is important. They can also remember the

context of previous inputs and use this information to make

better predictions, making them effective for tasks that involve

time series data or sequences. However, RNNs have their own

limitations, including the vanishing gradient problem, where

the gradients used to update the network's weights become

very small, making it difficult to train the network effectively.

In summary, Adaboost and recurrent neural networks are

powerful tools in the machine learning toolbox. While

Adaboost is versatile and can be used with many weak

learners, it is sensitive to outliers. On the other hand, RNNs

are useful for sequential data but face challenges with the

vanishing gradient problem. Understanding the strengths and

limitations of these algorithms can help us choose the right

one for the task at hand and improve our ability to create

accurate and effective models.

V. REQUIREMENT ANALYSIS

 In terms of hardware requirements, an Intel Core i3

processor is needed along with 8 GB of RAM and a 64 GB

hard disk. As for the software requirements, Google

Colaboratory serves as the integrated development

environment (IDE), while the operating system required is

Windows 10. The coding language utilized is Python 3.7.5,

and the libraries necessary for the project include Tensorflow

2.9.2 and Keras 2.2.4. These hardware and software

specifications are essential for the proper functioning and

execution of the project

VI. SYSTEM DESIGN.

 USE CASE DIAGRAM

 A use case diagram is a powerful tool for modeling

the dynamic behavior of a system. It captures the essence of a

system by illustrating the use cases, actors, and their

interrelationships. In essence, it represents the system's

functionality and the roles played by different actors in

executing various tasks, services, and functions. It provides a

high-level view of a system's functionality, enabling

stakeholders to visualize and understand how users interact

with the system. A use case diagram is an essential aspect of

software development as it helps to identify the user's needs

and requirements, thereby enabling developers to design and

implement systems that meet those needs.

 CLASS DIAGRAM

The class diagram provides a static representation of

an application, depicting the objects and their relationships

within the system. It defines the various classes in the system

and how they relate to each other. Each class is represented by

its objects, and it may also inherit from other classes. The

class diagram is utilized to visualize, document, and describe

different aspects of the system, and can even be used to

construct executable code. This type of diagram displays the

attributes, functions, classes, and relationships among the

objects, providing a comprehensive overview of the software

system.

IJSART - Volume 9 Issue 4 – APRIL 2023 ISSN [ONLINE]: 2395-1052

Page | 97 www.ijsart.com

COLLABORATION DIAGRAM

The collaboration diagram is a type of diagram used

in software design to visualize the relationships and

interactions between objects in a system. Unlike sequence

diagrams, which show the flow of messages between objects

over time, collaboration diagrams illustrate the static

architecture of objects in an object-oriented programming

system. Objects in the system are depicted as boxes, and their

features, such as attributes and methods, are shown within the

boxes. The relationships between objects are represented by

lines connecting the boxes. The collaboration diagram is also

referred to as a communication diagram, as it shows how

objects in a system communicate and collaborate with each

other.

VII. MODULES

PRE-PROCESSING

Pre-processing refers to the preparation and

transformation of raw data into a format that can be used to

train machine learning and deep learning models. This

involves cleaning and filtering out unwanted characters,

stemming, and converting the text into a numerical

representation using techniques like TF-IDF vectorization.

Proper pre-processing of data improves the accuracy and

effectiveness of machine learning models.

NORMALIZATION

Normalization is an essential data pre-processing step

in machine learning that involves transforming the values of

numerical columns into a standard scale. This is necessary to

ensure that each feature is treated equally and to avoid any

issues that may arise from varying scales. Standard Scaler and

MinMax Scaler are two widely used normalization techniques.

Standard Scaler scales the data to have a mean of zero and a

standard deviation of one, while MinMaxScaler scales the data

to a range between zero and one. By applying normalization to

the data, machine learning models can perform better and

produce more accurate results.

TF-IDF VECTORIZER

The Tfidf Vectorizer is a tool that creates a sparse

matrix of word occurrence frequencies, using an in-memory

vocabulary to map popular words to feature indices. In

machine/deep learning, the dataset is typically split into a

training set and a test set. The training set is used to refine the

model, while the test set is used to evaluate the model's

predictions on data that has not been seen before.

HYPERPARAMETER SETTINGS

.In the convolutional neural network, the activation

function selects the most significant feature from the

convolved features' word vectors. Different filters with

varying windows are combined by the activation function.

Nonlinear functions such as ReLU, sigmoid or tanh are used to

compress vector values within defined ranges. Commonly

used optimizers like SGD, Adagrad, and Adam are used to

reduce the model's error rate and improve accuracy. Dropout,

which reduces complexity between links in the fully

connected dense layer, is a user-defined variable with an input

range of 0 to 1. The number of epochs, or repetitions of a

training approach, is determined by the training data. Max

pooling is a pooling technique that selects the most prominent

feature from the filter-covered area of the feature map. The

output of the max-pooling layer includes the most prominent

features from the previous feature map.

LSTM AND GRU UNITS

 In LSTM and GRU networks, memory cells are

denoted by the number of units they have, which determines

their capacity to remember and compare information with

previous evidence. The information stored in these memory

cells is carried forward to the next time step for further

training.

DEMONSTRATION

 The LSTM and GRU models were built on Python

3.6.5 and Keras 2.0 API with Tensorflow backend on a

Windows 10 64-bit system. The pre-processing stage included

tokenizing, removing numbers and special characters, and

replacing upper case to lowercase. The LSTM and GRU

models were used to identify SQLi in a dataset split into 25%

testing and 75% training sets. The input was passed through

embedding, and the sigmoid optimizer was used to minimize

the model's loss during training. Different pooling windows

IJSART - Volume 9 Issue 4 – APRIL 2023 ISSN [ONLINE]: 2395-1052

Page | 98 www.ijsart.com

and feature maps sizes were tested, with the best performing

window size being 5. A dropout value of 0.1 was deemed

optimal for the model, which was also trained for 10 epochs

with a batch size of 64.

VIII. SYSTEM STUDY

FEASIBILITY STUDY

In the initial phase of a project, the feasibility of the

proposed plan is assessed, and a business proposal is

presented, including a rough outline of the project and cost

estimates. During the system analysis phase, it is necessary to

conduct a feasibility study of the proposed system to ensure

that it will not be a financial burden on the company. To

conduct a feasibility analysis, a clear understanding of the

system's major requirements is essential.

ECONOMICAL FEASIBILITY

The purpose of this investigation is to evaluate the

financial consequences that the system will have on the

company. The resources that can be allocated to the research

and development of the system are limited. As a result, it is

necessary to justify the expenses. As a result, the created

system is cost-effective, thanks to the usage of freely available

technologies. Only custom-made products required purchase.

TECHNICAL FEASIBILITY

The purpose of this study is to assess the technical

feasibility of the system, which refers to the technical needs of

the system. The system should not excessively consume the

available technical resources as this may put a strain on the

client. Therefore, the system must have a moderate

requirement, requiring only minimal or no changes for its

implementation.

SOCIAL FEASIBILITY

This study focuses on evaluating the user acceptance

of the system, which includes the training process to ensure

efficient use of the system. The user should not feel

intimidated by the system and must accept it as a useful tool.

The level of acceptance by the user is influenced by the

training methods employed to make the user familiar with the

system and build their confidence. Constructive feedback from

the user is valuable as they are the ultimate end-users of the

system.

IX. SYSTEM TEST

QUALITY ASSURANCE

Quality assurance is an essential step to ensure that

the software system fulfills all your requirements. It involves

verifying if all the previously agreed features have been

incorporated and if the program functions as intended. During

program testing, it is important to document all parameters

used as outlined in the technical specification document.

DETECT BUGS AND FLAWS

Software testing is an essential aspect of software

development to ensure that the code meets the requirements

and functions as expected. It helps to detect errors,

vulnerabilities and bugs in the code during development, and

different types of testing can catch bugs that are only visible at

runtime. However, traditional software testing and machine

learning (ML) testing differ in how they function. While

traditional software testing is human-driven with programmers

providing input data and logic, the machine validates the logic

and checks for the desired behaviour of the system or

program. In contrast, ML testing involves programmers

inputting data and the desired behaviour to produce the logic

of the machine, which is then tested repeatedly to see if the

learned logic remains consistent. This ensures that the system

understands the logic and develops a model according to the

desired behaviour. A testing model summarises how to think

about test development, and several issues need to be

considered when writing model tests, including continuous

testing. Building continuous testing procedures into the model

testing strategy gives faster delivery and feedback to

developers. Different types of tests can be used, including pre-

train tests, post-train tests, minimum functionality tests,

invariant tests, and directional testing. Pre-train tests catch

bugs before running the model, while post-train tests deal with

job behaviour and check whether the model performs

correctly. Minimum functionality tests assess model

performance based on specific cases found in data, allowing

for the identification of critical instances where prediction

errors can have serious consequences. Invariant tests assess

whether the model prediction remains consistent despite

changes in the input data. Directional testing checks how

perturbations in the input change the model behaviour,

ensuring that the trained model performs correctly, and

changes in input affect the model prediction. Traditional ML

model development can have slow iteration cycles due to

manual and script-driven processes. However, automated ML

pipelines shorten the time between training models and

deploying them, resulting in faster iteration cycles. checks

how perturbations in the input change the model behaviour. If

the trained model performs correctly, the changes in input will

affect the model prediction. For example, if we had a model

that estimates the price of a house, taking into account square

footage, we would want to see that added space makes the

IJSART - Volume 9 Issue 4 – APRIL 2023 ISSN [ONLINE]: 2395-1052

Page | 99 www.ijsart.com

house prices go up. Traditional ML model development can

have slow iteration cycles, due to manual and script-driven

processes. With an automated ML pipeline, fast iteration

cycles shorten the time between training models and

deploying them.

ENHANCING MACHINE LEARNING WITH TESTING

An ML library is a useful resource for developers as

it provides readily available functions and routines to write

complex programs without the need to create all the code from

scratch. However, despite being well-tested, ML libraries for

modeling are not perfect and can benefit from additional

testing to ensure that the system operates as intended. Testing

plays a crucial role in enhancing the quality of ML models by

identifying errors and vulnerabilities, and ensuring that the

system functions correctly when integrating code from the

library. Test cases are employed to evaluate whether the

system meets the requirements and performs correctly. The

testing process is considered complete only when all the

functional and non-functional requirements of the product are

satisfied. During test case execution, five parameters are taken

into account. Regression testing is a type of testing that covers

previously tested software to ensure that it continues to

function correctly even after the introduction of changes in the

component or module. For example, if a dialer was tested

previously and later upgraded, regression testing would be

performed to ensure it still works as expected. Any issues that

arise during regression testing are known as regressions.

X. CONCLUSION

The current model proposed a novel adaptive deep

forest-based method to detect complex SQL injection attacks.

Initially, the structure of deep forest is optimized by

concatenating the input of each layer with the raw feature

vector and the average of previous outputs. This method

effectively addresses the issue of degradation in original

features with an increase in the number of layers.

Additionally, an AdaBoost algorithm-based deep forest model

is used, which updates the weights of features on each layer

using error rate during training. This approach assigns

different weights to different features based on their influence

on the final outcome, which allows for the automatic

adjustment of the tree model structure and the handling of

multi-dimensional fine-grained features, effectively avoiding

overfitting problems. To further improve the results, the

project aims to incorporate Recurrent Neural Networks (RNN)

in the future and compare its performance with existing

approaches. Overall, this proposed approach has shown

promising results for the detection of SQL injection attacks

REFERENCES

[1] https://owasp.org/www-

community/attacks/SQL_Injection

[2] https://www.w3schools.com/sql/sql_injection.asp

[3] https://www.imperva.com/learn/application-security/sql-

injection-sqli/

[4] Stanislav Abaimov et al., “A survey on the application of

deep learning for code injection detection”, Array 11

(2021) 100077.

[5] Omer Kasim, “An ensemble classification-based approach

to detect attack level of SQL injections”, Journal of

Information Security and Applications 59 (2021) 102852.

[6] Jianguo Zheng et al., “Pattern Mining and Detection of

Malicious SQL Queries on Anonymization Mechanism”,

IEEE Journal, 2021.

[7] Xin Xie et al., “SQL Injection Detection for Web

Applications Based on Elastic-Pooling CNN”, IEEE

Journal, 2019.

[8] QI LI et al., “A SQL Injection Detection Method Based

on Adaptive Deep Forest”, IEEE Journal, 2019.

[9] https://blog.testproject.io/2022/01/17/machine-learning-

testing-for-beginners-the-all-in-one-guide/#

[10] (1994-2010) Priya G.1 , Saravanan K.2 * and Renuka,

C.3

