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Abstract- Cloud Computing has revolutionized computing off
late with several domains and applications resorting to the
cloud architecture. However effective task scheduling and
load balancing is critical for cloud based servers. This is
typically a very challenging task keeping in mind the fact that
cloud workload is a parameter that depends on several other
parameters. Moreover, due to the enormity of the data and its
complexity, the use of machine learning or artificial
intelligence based techniques is important for cloud workload
estimation. Forecasting future workloads with high accuracy
is especially challenging due to the randomness of the cloud
workloads and also the non-deterministic nature of the
governing or affecting parameters. Hence, due to the size and
complexity of the data involved, finding regular patternsis a
challenging task at hand. The present work proposes a back
propagation based deep neural network architecture for cloud
workload forecasting. The experiment uses the NASA cloud
data set.The performance evaluation parameters have been
chosen as mean absolute percentage error (MAPE) and
regression. It has been found that the proposed system attains
lesser mean sguare percentage error compared to previously
existing technique [1].

Keywords- Cloud Workload Estimation, Deep Neura
Network (DNN), Principa Component Analysis (PCA),
Steepest Descent Approach, Mean Absolute Percentage Error
(MAPE).

I.INTRODUCTION

Cloud Computing has become one of the most sought
after technologies which plays a pivota role in severa
domains resorting to the high levels of data complexity,
complex computation or applications needing hybrid
platforms [1]-[2]. One of the most important aspects of cloud
systems management is the fact that cloud servers sporadically
face sudden surges in the number of requests often termed as
cloud workload. This workload, if unforeseen can result in
crash of the cloud server if alternate provisions are not made
to handle the cloud workload [3]-[5]. This in term needs the
estimate of cloud workloads in advance considering several
governing factors. This is majorly critica especiadly for
applications such as e-commerce and finance which may see
sudden surges in requests. Thus there is a clear necessity of
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cloud workload prediction using models which can estimate
cloud workloads with high accuracy. Statistical techniques are
not found to be as accurate as the contemporary artificial
intelligence and machine learning based approaches [6]. In
this paper, a back propagation based approach for estimating
cloud workload is proposed using deep learning architecture

(7.
Il. DEEP LEARNING

Deep learning has evolved as one of the most
effective machine learning techniques which has the capability
to handle extremely large and complex datasets [8]. It is
training neural networks which have multiple hidden layers as
compared to the single hidden layer neural network
architectures [9]-[10].

The architectural view of a deep neural network is
shown in figure 1. In this case, the outputs of each individual
hidden layer is fed as the input to the subsequent hidden layer.
The weight adaptation however can follow the training rule
decided for the neural architecture. There are various
configurations of hidden layers which can be the feed forward,
recurrent or back propagation etc.
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Fig.1 The Deep Neural Network Architecture
The figure above depicts the deep neural network

architecture with multiple hidden layers. The output of the
neural network however follows the following ANN rule:
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y: E?zixi.wi + BE (1)
Where,

X are theinputs

Y isthe output

W are the weights

© is the bias.

Training of ANN is of major importance before it can be used
to predict the outcome of the datainputs.

I11. ERROR FEEDBACK MECHNAISM

Back propagation is one of the most effective ways to
implement the deep neura networks with the following
conditions:

1) Time series behavior of the data
2) Multi-variate data sets
3) Highly uncorrelated nature of input vectors

The essence of the back propagation based approach
isthe fact that the errors of each iteration is fed as the input to
the next iteration. [11] —[13]. The error feedback mechanism
generaly is well suited to time series problems in which the
dependent variable is primarily a function of time aong with
associated variables. Mathematically,

Y=FrftVy....V,) )
Here,
Y isthe dependent variable
f stands for afunction of
tisthetime metric
V are the associated variables

nisthe number of variables

The back propagation based approach can be illustrated
graphically in figure 2.
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Fig.2 Error Feedback M echanism

In case of back propagation, the weights of a
subsequent iteration doesn’t only depend on the conditions of
that iteration but also on the weights and errors of the previous
iteration mathematically given by:

Wiis=F(WierV) (2

Here,
Wi+1 are the wei ghts of a subsequent iteration
W are the weights of the present iteration

€k isthe present iteration error
V isthe set of associated variables

In general, back propagation is able to minimize
errors faster than feed forward networks, however at the cost
of computational complexity at times. However, the trade off
between the computational complexity and the performance
can be clearly justified for large, complex and uncorrelated
datasets for cloud data sets [14]-[15].
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IV. GRADIENT DESCENT BASED TRAINING
The gradient descent algorithms (GDAS) generally exhibit:

1) Relatively lesser memory requirement
2) Relatively faster convergencerate

The essence of this approach is the updating of the
gradient vector g, in such as way that it reduces the errors with
respect to weights in the fastest manner. Mathematicaly, let
the gradient be represented by g and the descent search vector
by p, then

Po= —H0(3)

Where,

oz

9o denotes the gradient given by aw
The sub-script 0 represents the starting iteration

The negative sign indicates a reduction in the errors w.r.t.
weights

The tradeoff between the speed and accuracy is clearly given
by the following relations:

Wiia= Wy —ag,, a=

Bl

(4)

Here,

Wk+1isthe weight of the next iteration
Wk isthe weight of the present iteration

I isthe gradient vector
U isthe step size for weight adjustment in each iteration.

The above equation shows stability in errors with
monotonic decrease but needs higher number of iterations,
specifically more in deep learning architectures due to direct
computation of the Hessian Matrix of gradients. A faster
approach is given by:

T =2 T
Wiis= Wi— Uk Ikl ™k e 5)
In this case, the number of iterations reduce at the
cost of the stable monotonic reduction of the errors with

respect to weights.

Here,

Page | 52

ISSN [ONLINE]: 2395-1052

9%
Jx represents the Jacobian Matrix given by 8w’
T
/ Lrepresents the transpose of the Jacobian Matrix.
The speed of convergence is due to the indirect

computation of the Hessian Matrix by using the Jacobian
computation given by:

H=]," i (6)

And

E=]x e @
Here,
H isthe Hessian Matrix

Finally, the GDA with both speed and stability optimized is
given by:

_ T -1 T
Wies = W= [Jx Tt 1] T"e, (g
Here,
The differentiating factor is the combination co-
efficient p which optimizes the GDA by adjusting the weights
and thus the gradient.

K isthe sub-script representing the iteration number

The activation function used for the algorithm is the tan-sig
function mathematically defined as:

z .
14+e-2X 1 (9)

tansig(x) =

V. PRINCIPAL COMPONENT ANALYSIS

The Principal Component Analysisis an optimization
tool for the purpose of dimensiona reduction of the data set.
Consider adataset X having N samples. Out of the N sample,
M samples may be highly correlated and hence may render
low or little additional information to the training data.

M2 Ny (10)

Here,

M are the correlated samples
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N are the total samples
X isthe data set

If M samples are removed form the original data set,
then there will be dimensional reduction in the data given by:
Y=X-M (11)
Here,

Y is the dimensionally reduced data set for more effective
training.

VI.SYSTEM DESIGN
Thisinput parameters used are:[1]

1) No. of servers

2) No. of users

3) Responsetime

4) Deviation delay value

5) Cloud Storage value

6) Mean Deviation value

7) Job Queueing value

8) Number of Operational Nodes
9) No. of Requests

The flowchart illustrates the summary of the system
design.
The datais divided in the ration of 70:30 for training and t
esting data set bifurcation.
The fina performance metrics computed for system evaluation
are:

1) Mean Absol ute Percentage Error (MAPE)

100
M

E—E¢|

nars =SS,

Here E; and E;~ stand for the predicted and actual values
respectively.

The number of predicted samplesisindicated by M.
2) Regression
The extent of similarity between two variables is

given by the regression where the maximum valueis 1 and the
minimum is 0.
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Fig.3 Flowchart of Proposed System

VII.RESULTS

The results have been evaluated based on the following
parameters:

1. (MAPE)

2. Regression
3. MSEw.r.t. the number of epochs
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From the above figures, it can be concluded that the proposed
system attains the following results:

1) MAPE of 3.65%
2) Regression of 0.98 (overdl)
3) Number of iterationsis 17

A comparative accuracy analysis w.r.t. previous work is given
by:

Comparative Accuracy
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Fig.9 Comparative Accuracy Analysisw.r.t. Previous
Work [1]
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VIIl. CONCLUSION

It can be concluded from the previous discussions
that cloud workload estimation is critical for real time
applications which use the cloud architecture. However, the
cloud workload is sporadic and random in nature due to the
large number of governing uncorrelated variables. Hence
estimating cloud workloads with high accuracy is challenging.
In the proposed approach a back propagation based deep
learning model is proposed with a 1-10-1 configuration. The
adaptive gradient descent algorithm (GDA) is used to train the
neural network. It has been shown that the proposed work
attains a mean absolute percentage error of 3.65% compared
to a mean absolute percentage error of 10.26% of previous
work [1].Moreover, the regression is 0.98 at the number of
epochs being 17. Thus the proposed system is able to achieve
low errors, higher accuracy and reatively low number of
iterations.
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