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Abstract- Gradually traditional machine learning algorithms 

are being replaced with deep learning as it exhibits strong 

advantages in the feature extraction, thus been widely used in 

the field of computer vision and among others. The usability of 

computer vision is everywhere, whereas deep learning 

revolutionized the concept of artificial intelligence including 

computer vision. Deep Learning has pushed the limits of what 

was possible in the domain of Digital Image Processing. 

However, that is not to say that the traditional computer vision 

techniques which had been undergoing progressive 

development in years prior to the rise of DL have become 

obsolete. This paper first reviews the main ideas of deep 

learning, and displays several related frequently-used 

algorithms for computer vision. Afterwards, the current 

research status of computer vision field is demonstrated in this 

paper, particularly the main applications of deep learning in 

the research field. Various types of deep learning algorithms 

have been described.  In this paper, our focus is on CV. 

Author  provides a critical review of recent achievements in 

terms of techniques and applications.  The summarizations, 

knowledge accumulations, and creations could benefit 

researchers in the academia and participators in the CV 

industries. 
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I. INTRODUCTION 

 

 In recent years, deep learning [2] has become popular 

in the field of machine learning and computer vision. In the 

field of object detection [3], text classification [4], image 

classification [5], face verification [6], gender classification 

[7], scene-classification [8], digits and traffic signs recognition 

[9], etc., many deep learning models achieve high 

performance by using large architectures with numerous 

features. Some of the available deep learning models are; 

AlexNet model [5],  VGG S model [10], Berkeley-trained 

model [11], Places-CNN model [8], Fully Convolutional 

Semantic Segmentation Model (FCN-Xs) [12], CNN Models 

for Salient Object Subitizing [13], Places CNDS models on 

scene recognition [14], Models for age and gender 

classification [15], GoogLeNet model [16], etc. All these 

models tried to optimize issues like preventing from over-

fitting, connection of nodes between adjacent layers, large 

learning capacity, etc. The factors need to be taken care of 

while working with deep learning network, such as availability 

of large training sets, powerful GPU for training and testing, 

better model regularization strategies, the amount of training 

time that we can tolerate etc.[1]. 

 

Deep learning is the sub-fields of machine learning, 

where learning happens with high-level data using hierarchical 

structures. Using advanced machine learning algorithms it 

improves chip programming abilities on low cost computing 

hardware. In recent years lot of research has been done to 

improve deep learning algorithms. It is found that deep 

learning algorithms are superior to numerous other state-of-

the- art schemes. Despite of several successful attempts, deep 

learning still remains nascent  field. Keeping it in mind, this 

paper surveys the recent advances in deep learning and the 

application of these algorithms in the field of computer vision 

[26]. 

 

Since being reignited by [31], compared to traditional 

methods due  to substantially better performance DL has 

dominated the domain. Several questions  about the existence  

of traditional Computer Vision (CV) techniques   have been 

brought up in the community in recent years [30], which this 

paper intends to address [29]. The DL developments in past 

decades are rather rapid. In [28] the authors studied the 

literature and made the comparison and their respective 

performance on different CV problems , including image 

classification, object detection, image retrieval, semantic 

segmentation, and human pose estimation. After studying 

several models such as CNN, RBM, Autoencoder, and Sparse 

Coding, they found that performance of CNN was best for 

CV.  At that time several problems were there in practical 

application due to the limitation of precisions and model sizes. 

They included (a)  there is not enough literature on 

performance of architectures; (b) training with limited data; 

(c) hard to achieve real-time applications; (d) need more 

powerful models [27]. 
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The rest of the paper is organized as follows: Section II, 

provides an overview of the existing work in deep learning 

related to computer vision, Section III presents the potential 

applications of these techniques. Finally, Section IV gives the 

concluding remarks [26]. 

 

II. EXISTING WORK IN DEEP LEARNING RELATED 

TO COMPUTER VISION 

 

A. Bits and Pieces together 

 

In this section, we will discuss some of the existing 

researches which are conducted using deep convolutional 

neural network. Dan et al. [9] presented Multi-column Deep 

Neural Network (MCDNN) which was used for handwritten 

digits and traffic signs recognition. In MNIST dataset Wan et 

al. [17] used DropConnect method which achieved current 

best error rate (21%) in digit recognition.   In Liu et al. [6] 

proposed idea  ofAU-aware Deep Networks (AUDN) by 

creating a deep architecture  to recognize facial expression. 

Restricted Boltzmann Machines (RBMs) was used for  high 

level features extraction from each AU-aware Receptive 

Fields (AURF). Krizhevsky et al. [5] presented a new CNN 

architecture which achieved top-1 and top-5 error rates of 

37.5% and 17.0% respectively on the test data.  In the work of 

Lee et al. [18] constructed a model for scaling  with realistic 

image sizes. This model could translate invariant and supports 

efficient bottom-up and top-down probabilistic inference as 

well. Dey et al. [19] constructed deep learning model using 

“Berkeley-trained” model, [11]  for classification of texture 

based garment design. Using this technique they achieved 

73.54% accuracy in Clothing Attribute dataset. Zhoub et al. 

[8] presented the idea extracting the difference between the 

density and diversity of image datasets. In Zeiler et al. [20] 

gave a visualization technique to understand the function of 

intermediate feature layers. Here, authors addressed large 

CNN model to improve classification performance. Authors 

obtained 86.5% and 74.2% accuracy in Caltech-101 and 

Caltech-256 datasets respectively.  In  the work of Simon et al. 

[21] put forward a model which learn part of the model in an 

unsupervised fashion, which could select  generic parts for 

fine-grained and generic image classification. By using CNN, 

authors found out neural activation patterns. On the CUB200-

2011 and Caltech-256 datasets, this method achieved 81.0% 

and 84.1% accuracies. Xia et al. [22] gave an idea of DRAE to 

learn discriminating reconstructions in an auto encoder. The 

main focus was  on automatically removing outliers from 

noisy data, as outliers were not well reconstructed and would 

produce more discriminative errors. In the study of Luus et al. 

[23] achieved 93.48% and 90.26% accuracies by optimizing  

Deep Convolutional Neural Network (DCNN) hyper 

parameters using a heuristic approach. Using deep learning, 

Xua et al. [24] proposed a feature fusion based image retrieval 

technique, where colors, texture and shape represent the 

features. Levi et al. [15] proposed a DCNN architecture for 

gender and age estimation. By using Deep Belief Nets (DBN), 

Helou et al. [25] proposed a new Convolutional Deep Belief 

Network (CDBN).However, none of the researches has been 

conducted to perform comprehensive analysis among these 

approaches which may help to select an appropriate model for 

a specific application. Therefore, it is essential to gather a 

comprehensive knowledge of these models[1]. 

 

B.  Research Status Of Computer Vision 

 

The deep learning in the field of computer vision is 

the earliest attempt among many areas [34].  While designing 

visual algorithms we have to perform in most cases the four 

processes  such as  image pre-processing, feature extraction 

[35], feature selection [36], prediction and recognition [33].  

In case of traditional algorithms the first three processes have 

to be designed manually which is very time consuming and 

cumbersome work [37].  

 

Computer vision started late in China[38]. People 

acquired images and then analyse them with the help of 

machines and at the final stage get results as output. Machines 

outperformed the human vision  in most of the cases [39]. 

 

Recently, many researchers working how to perform  

feature extraction from video and detect the moving target 

[40]. In the videos and realistic scenes, 3D modelling is 

performed using the algorithms composed of stereoscopic 

vision theory. How to make 3D modelling have better 

synchronization and possess higher degree of reduction, are 

the main topic of stereoscopic research recently. 

 

Now a days automatic driving technology which is a 

new field emerging as essential technology for the 

development of the future automobile industry and  there is 

intense competition between technology companies working 

in automatic driving technology. In the field of automatic 

driving technology computer vision methods are also being 

used widely [41], including vehicle positioning [42], object 

detecting, object tracking and path planning [43] [32]. 

 

C. Techniques 

 

Deep learning has shown great success in the field of 

Image and Video processing, Computer vision[5,9] and 

Bioinformatics to name a few. This leads to more research and 

development of several subfields of deep learning in the above 

mentioned fields. But prominently deep learning techniques 

are  generally divided into three categories namely 
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Convolutional Neural Networks(CNN), Restricted Boltzmann 

Machines(RBM) and Auto encoders. Moreover, Recurrent 

Neural Networks and Extreme Learning are also a few 

techniques frequently used in this field. For better clarity, the 

architectural descriptions along with layer information and 

detailed functionalities of these techniques are described in a 

nutshell [26]. 

 

Convolutional Neural Network (CNNs ) :  In case of 

convolutional neural network there is no need of complicated 

image pre-processing which we need to do for the algorithm in 

the past [86], and in CNN we can provide directly original 

image as an input. Because of this feature the CNN algorithm 

widely used for image processing and could become more and 

more popular in many scientific and technological fields at 

this stage. In CNN  there are four key ideas: local connections, 

shared weights, pooling and the use of many layers including 

convolutional layers and pooling layers [88]. 

 

 
Fig. 1. CNN framework 

 

Each neuron is only connected to a small area near 

the neuron and the neurons of the network are locally 

connected. In this way huge amount of computation is avoided 

that each neuron connects to all the images. Operation of the 

first layer convolution and activation function produce the 

feature graph, the dimension of thisfeature graph is 

significantly reduced compared to the original image of the 

first layer. Thus obtained feature map is inputted to the 

operation similar to polymerization which is applied in 

pooling layer, further reduce the dimension of the output 

image . Convolution and pooling are constantly crossed. 

Finally, result is obtained through the fully connected layer. 

The weights between each layer is adjusted using 

BP(backpropagation) algorithm [87]  in the training process. 

 

Image Understanding With Deep Convolutional Networks 

:Since the early 2000s, ConvNets achieved great success to 

the detection, segmentation and recognition of objects and 

regions in image processing. These were all supervised 

learning  tasks , such as traffic sign recognition, the 

segmentation of biological images particularly for connect 

omics, and the detection of faces, text, pedestrians and human 

bodies in natural images. ConvNetsalso achieved greatly in 

face recognition task. As images can be labelled at the pixel 

level, which will be very  helpfulin technology, including 

autonomous mobile robots and self-driving cars. Other 

applications gaining importance involve natural language 

processing and speech recognition. ConvNets are now gaining 

popularity in almost all recognition and detection tasks and 

outperform humansin  some tasks. ConvNets and recurrent net 

modules jointly demonstrated stunning performance  for the 

generation of image captions recently. ConvNets are easily 

amenable to efficient hardware implementations in chips or 

field-programmable gate arrays. A number of companies such 

as NVIDIA, Mobileye, Intel, Qualcomm and Samsung are 

developing ConvNet chips to enable real-time vision 

applications in smartphones, cameras, robots and self-driving 

cars (YannLeCun et al., 2015). The different CNN 

architectures include Deep Max-Pooling Convolutional Neural 

Networks, Very Deep Convolutional Neural Networks, 

Network In Network, Region-based Convolutional Neural, 

Fast R-CNN, Faster R-CNN, Mask R-CNN, Multi-Expert R-

CNN, Deep Residual Networks, Resnet in Resnet, ResNeXt 

and Capsule Networks[46]. 

 

2) Recurrent Neural Networks (RNNs) and the LSTM :RNNs 

[91] are applicable in the tasks like processing  sequential 

data, such as speech, text, videos, and time-series, where data 

at any given time/position depends on previously encountered 

data. At each time-stamp the model collects the input from the 

current time Xi and the hidden state from the previous step hi-

1, and outputs a target value and a new hidden state (Figure 2). 

RNNs are typically suffers with gradient vanishing or 

exploding problems in many real-world applications.   

 

 
Fig. 2. Architecture of a simple recurrent neural network 

 

These problems in RNN  could be avoided using 

algorithm such as Long Short Term Memory (LSTM) [90]. 

The LSTM architecture (Figure 3) includes three gates (input 

gate, output gate, forget gate), which regulate the flow of 

information into and out from a memory cell, which stores 

values over arbitrary time intervals[89]. 
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Fig. 3. Architecture of a standard LSTM module. Courtesy of 

Karpathy 

 

3) Restricted Boltzmann Machines(RBMs): The contrastive 

divergence proposed by Hinton[47]helped in solving the 

training efficiency problem in RBM. The RBM earlier would 

use Stochastic gradient descent method requires a large 

number of sampling steps, still not makes the training 

efficiency of RBM high. Restricted Boltzmann Machines 

(RBM) are special type of Markov random field containing 

one layer of stochastic hidden units [50, 51]. In Hinton and 

Salakhutdinov (2011) for document processing presented a 

Deep Generative Model using Restricted Boltzmann Machines 

(RBM) [46]. (Hinton and Sejnowski) proposed Boltzmann 

Machine (BM) in 1986. Boltzmann Machine belongs to the 

type of feedback neural network is a random neural network. 

Boltzmann Machine made up of some visible units (visible 

variables, i.e. data samples) and some hidden units (hidden 

variables), there is connection between each visible unit to all 

the hidden units, the visible variables and hidden variables 

represent in binary form (0 or 1), 0 means the neuron is in 

suppressed state, and 1 means the neuron is in active state. 

(Sejnowski et al.) further presented restricted Boltzmann 

machine (RBM). Visible layer is used to trainthe  data, then 

the hidden layer produces the features of input data. The 

training of Restricted Boltzmann machine is faster than 

Autoencoder. In (Le Q V, 2011) proposed a more efficient 

optimization algorithm based on the stochastic gradient 

descent method. Contrastive divergence proposed by Hinton 

solved training efficiency problem in RBM [47]. 

 

4) Auto-encoder :In deep neural network AE is an approach 

applied with efficient data encoding and decoding for 

unsupervised feature learning. The main objective of auto 

encoder is to reduce noise in data and learn and representation 

(encoding) of data, typically for data dimensionality reduction, 

compression, fusion and many more. Auto encoder technique 

consists of two parts: the encoder and the decoder. Encoder 

maps the input samples usually in the lower dimensional 

features space with a constructive feature representation. This 

process is repeated until the desired feature dimensional space 

is reached. Whereas decoder performs reverse processing to  

regenerate actual features from lower dimensional features 

[45].  The learning algorithm is based on the implementation 

of the backpropagation. Auto encoders extend the idea of 

principal component analysis (PCA) [49]. In a deep AE, lower 

hidden layers are used for encoding and higher ones for 

decoding, and error back-propagation is used for training 

[50].[51][46] Following are the types of Auto-encoders: 

 

 De-noising Auto-encoder :Itis a modification on the 

autoencoder. To address the identity functions, these 

encoders corrupt the input and afterwards, reconstruct 

them. It is also called the stochastic version of the 

auto-encoders[53] . In early Auto-Encoders (AE), 

encoding layer had smaller dimensions than the input 

layer. In Stacked Denoising Auto-Encoders (SDAE), 

encoding layer is wider than the input layer[50][46]. 

 

 Sparse Auto-encoder :A sparse autoencoder is one of 

a range of types of autoencoder artificial neural 

networks that work on the principle of unsupervised 

machine learning. These auto-encoders have the 

learning methods that automatically extract the 

features from the unlabelled data. Here the word 

sparse indicates that hidden units are allowed to fire 

only for the certain type of inputs and not too 

frequently [53]. 

 

 Variational Auto-Encoder (VAE) : It is made up of an 

encoder, decoder and a loss function. VAEs  are used 

for the designing of the complex models of the data 

that too with large datasets. It is also known as high 

resolution network [53].  VAEs are built upon 

standard neural networks and can be trained with 

stochastic gradient descent (Doersch, 2016) [46]. 

 

 Contractive Auto-encoder (CAE) : These are robust 

networks as de-noising auto-encoders but the 

difference is that the contractive auto-encoders 

generate robustness in the networks through encoder 

function whereas de-noising auto-encoders work with 

the reconstruction process [53]. 

 

 Transforming Autoencoders : Deep Auto-Encoders 

(DAE) can be transformation-variant, i.e., the 

extracted features from multilayers of non-linear 

processing could be changed due to learner. 

Transforming Auto-Encoders (TAE) work with both 

input vector and target output vector to apply 

transformation-invariant property and lead the codes 

towards a desired way [50] [46] [44]. 
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5)  Extreme Learning :Extreme Learning is a feed-forward 

neural network used for regression and classification tasks 

proposed by Guang-Bin Huang. It consists of a solitary layer 

of masked nodes in which the weights which are assigned as 

inputs to the masked nodes are random and are never 

corrected. In one step, the weights between the masked nodes 

and outputs are learned, which leads to learning of a linear 

model. It doesn’t require gradient-based backpropagation to 

work. It uses Moore-Penrose generalized inverse to set its 

weights. These are better than networks trained by using back-

propagation because of their faster learning ability and a good 

generalization capability [26]. 

  

III. APPLICATIONS IN COMPUTER VISION 

 

In this section, we survey works that have leveraged 

deep learning methods to address key tasks in computer 

vision, such as object detection, face recognition, action and 

activity recognition, and human pose estimation etc. 

 

A. Classification 

 

The task of identifying what an image represents is 

called image classification.  The applications include 

identifying gender given an image of a person’s face, 

identifying the type of pet, tagging photos, and so on.   

 

B. Detection and Localization 

 

Object localization refers to identifying the location 

of one or more objects in an image and drawing abounding 

box around their extent. Object detection combines these two 

tasks and localizes and classifies one or more objects in an 

image. This has many real-world applications, especially in 

the automotive industry where self-driving cars detect objects 

through their camera sensors.  

 

C. (Semantic) Segmentation 

 

Image segmentation involves converting an image into a 

collection of regions of pixels that are represented by a mask 

or a labeled image. By dividing an image into segments, you 

can process only the important segments of the image instead 

of processing the entire image. It is useful for processing 

medical images and satellite imagery. 

 

D.  Similarity Learning 

 

Similarity learning is the process of learning how two 

images are similar.A score can be computed between two 

images based on the semantic meaning. There are several 

applications of this, from finding similar products to 

performing facial identification. 

 

E. Image Captioning 

 

Image Captioning is the process of generating a 

textual description for given images. It has been a very 

important and fundamental task in the Deep Learning domain. 

 

F. Generative Models 

 

Generative models generate images. In style transfer 

application to generate an image uses the content of that image 

and the style of other images. For an example, an image of a 

temple is generated using the style of a pencil sketch. 

Generative models help in for other purposes such as new 

training examples, super-resolution images, and so on [54]. 

 

G. Action and Activity Recognition 

 

Deep learning techniques have application in human 

activity recognition and works on this have been proposed in 

the literature in the last few years [57]. In [58] presented study 

on deep learning using  for complex event detection and 

recognition in video sequences. CNN-based approach used in 

[59]for activity recognition in beach volleyball, in [60] for 

event classification from large-scale video datasets and  in 

[61] used for activity recognition based on smartphone sensor 

data.  In [56], the study is presented on applicability of CNN 

as joint feature extraction and classification model for fine-

grained activities.  In [62], put forward   the idea for 

recognizing group activities in crowded scenes collected from 

the web using mixed appearance and motion features.   In [63]  

recognized complex event based on combination of 

heterogeneous features .  Study in [64], uses both the video 

and sensor data and employing a dual CNNs and Long Short-

Term Memory architecture to construct a multimodal 

multistream deep learning framework  which is used in 

egocentric activity recognition problem. Multimodal fusion 

with a combined CNN and LSTM approach is also proposed 

in [65]. Finally, in [66] input video sequences that also include 

depth information to DBNs for activity recognition. 

 

H. Human Pose Estimation 

 

In this data is provided by motion capturing hardware  

such as images, image sequences, depth images, or skeleton 

data human pose estimation system determines the position of 

human joints using this data[71]. In [69] they proposed a 

model Deep Pose which is a holistic model that formulates the 

human pose estimation method as a joint regression problem 

and does not explicitly define the graphical model or part 

https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse
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detectors for the human pose estimation.  In [70], they trained 

the network using  the local part patches and background 

patches to train a CNN, to determine conditional probabilities 

of the part presence and spatial relationships. In[72] presented 

the ideato train multiple smaller CNNs to perform independent 

binary body-part classification, followed with a higher-level 

weak spatial model to remove strong outliers and to enforce 

global pose consistency. Finally, in [73], performed heat-map 

likelihood regression for each body part, followed with an 

implicit graphic model to further promote joint consistency 

using CNN. 

 

I. Datasets  

 

The applicability of deep learning approaches has 

been evaluated on numerous datasets, whose content varied 

greatly, according the application scenario. Regardless of the 

investigated case, the main application domain is (natural) 

images. A brief description of utilized datasets (traditional and 

new ones) for benchmarking purposes isprovided below. 

 

1) Grayscale Images : MNIST [74], NIST and perturbed 

NIST.   

2) RGB Natural Images : Caltech RGB image datasets [75],  

CIFAR datasets [76], COIL datasets [77] . 

3) Hyperspectral Images : SCIEN hyperspectral image data 

[78] and AVIRIS sensor based datasets [79].   

4) Facial Characteristics Images :Adience benchmark dataset 

[80].   

5) Medical Images :  Chest X-ray dataset [81]  Lymph Node 

Detection and Segmentation datasets [82].    

6) Video Streams : The WR datasets [83, 84] and YouTube-

8M [85][BB]. 

 

J. Semantic Segmentation 

 

CNN models are used for semantic segmentation 

tasks, as it is potent of handling the pixel-level predictions. 

Output masks having a 2-dimensional spatial spread are 

required by semantic segmentation. The process of semantic 

segmentation is as Detection based Segmentation, FCN-CRFs 

Based Segmentation and  Weakly supervised annotations [26].  

 

IV. CONCLUSION 

 

In this paper we have given a  survey of Deep 

learning and its recent development. The analysis of prevailing 

deep learning architectures is done by developing a categorical 

layout. Deep learning algorithms are divided into three 

categories: Convolutional Neural Network, Restricted 

Boltzmann Machines, Autoencoder. Apart from that, RNN 

and extreme learning are also quite popular. In this paper we 

mainly dealt with the recent advancement of CNN dependent 

strategies, since it is mostly used for images. CNNs have the 

unique capability of  feature learning, that is, of automatically 

learning features based on the given dataset. CNNs are also 

invariant to transformations, which is a great asset for certain 

computer vision applications. On the other hand, they heavily 

rely on the existence of labelled data, in contrast to 

DBNs/DBMs and SdAs, which can work in an unsupervised 

fashion. Of the models investigated, both CNNs and 

DBNs/DBMs are computationally demanding when it comes 

to training, whereas SdAs can be trained in real time under 

certain circumstances. Benchmark data sets are not available 

in every field. Transfer learning can be very useful in this 

case. But, the requirement of high computing makes it difficult 

to implement it on low computing devices especially handheld 

IoT devices.  Apart from this, the requirement of high memory 

also becomes an obstacle for handheld devices. In DL, the 

choice of hyper parameters (number of layers, learning rate, 

kernel size, stride size, pooling, etc) are very vital. A good 

choice of hyper parameters requires good skills and 

experience. As a closing note, in spite of the promising—in 

some cases impressive— results that have been documented in 

the literature, significant challenges do remain, especially as 

far as the theoretical groundwork that would clearly explain 

the ways to define the optimal selection of model type and 

structure for a given task or to profoundly comprehend the 

reasons for which a specific architecture or algorithm is 

effective in a given task or not. These are among the most 

important issues that will continue to attract the interest of the 

machine learning research community in the years to come. 
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