Desirable Building Shape To Withstand Wind Load In Cyclonic Region

Mr. Yogesh Patil¹, Prof. Dr. A. B. Pujari² ¹Dept of Civil Engineering ²Associate Professor, Dept of Civil Engineering

Abstract- In the last two decades, the development of skyscrapers taller than 150 metres has increased dramatically and at an almost exponential pace. In the Middle East and Asia, a substantial number of these structures have been completed, and many more are either planned or under construction. The structural and geotechnical design of "super-tall" structures above 300 metres in height create new difficulties for engineers. Wind analysis is essential for tall structures. Wind is a dynamic phenomenon with random variation, therefore a graph of wind velocity vs time will often be obtained. The topic's objective is to examine the behaviour of tall buildings exposed to along-wind stresses. Each highrise structure is one-of-a-kind and influenced by a variety of circumstances that impact the design decisions. Before constructing tall buildings, it is recommended that an alternative design process be used by developing a new computational workbench for designing wind-resistant highrise structures. The conclusion is that the structure with a square form is more effective and less impacted by wind load owing to its smooth surface, which creates less friction between the wind load and the surface itself as a result of wind excitation.

I. INTRODUCTION

In India, in recent decades, the application of wind engineering to civil engineering structures has become popular and the state-of-the-art has improved considerably, Wind engineering requires a multifaceted approach to provide solutions to various wind sensitive problems. It involves various fields such as

(1) Fluid dynamics (I) Probability and statistics and (iii) Structural dynamics. Wind, in general, has two main effects on tall buildings: First, it exerts forces and moments on the structure and its cladding, and second, it distributes air in and around the building, mainly termed as wind pressure. Wind pressures on buildings are influenced by the building geometry, angle of wind incidence, surroundings and wind flow characteristics. There are many situations where available database, codes/standards and analytical methods cannot be used to estimates the wind pressure coefficients and wind loads on the claddings and supporting system of buildings, for example, the aerodynamic shape of the building is uncommon.

Wind load/pressure information (I) does not account the aerodynamic effect of the actual shape of the structure since they are based on box like buildings and (ii) do not allow for any detailed directional effects and assume that the design wind speed will always occur from the aerodynamically severe wind direction.

High-rise buildings are generally wind sensitive structures. Their dynamic response dominates the total response, which affects the structural design with regard to both structural safety and serviceability. In addition to this, because of their height, cladding loads are substantial. The wind flow around the high-rise buildings also affects the comfort of pedestrians in the

Structure of wind

• Wind is randomly varying dynamic phenomenon and a trace of velocity verses time for wind will be typically as The wind velocity V can be seen as a mean plus a fluctuating component responsible for creating 'gustiness. Within the earth's boundary layer, both components not only vary with height, but also depend upon the approach terrain and topography.

Effects of wind on structures

• A mean wind force acts on a building. This mean wind force is derived from the mean wind speed and the fluctuating wind force produced by the fluctuating flow field The effect of the fluctuating wind force on the building or part there of depends not only on the characteristics of the fluctuating wind force but also on the size and vibration characteristics of the building or part thereof. Therefore, in order to estimate the design wind load, it is necessary to evaluate the characteristics of fluctuating wind forces and the dynamic characteristics of the building.

Need for the present study

- From various experimental investigations, it is observed that plan shape and dimensions of buildings significantly affects the wind pressure distributions on different faces of the buildings.
- This study shows that certain shapes are prone to wind phenomena which can generate high dynamic loads and govern the design.
- This study will ignite an interest on the use of aerodynamic shapes and the consideration of building shape in terms of wind performance, early in design process.
- This study will explore the sensitivity of various shapes to the static and dynamic properties of structure.
- It would be useful in showing the importance of gust effectiveness factor method to make the tall structures susceptible even in the heavy storms.

Scope of the present study

- The scope of the present work included the study of the wind load estimation on tall buildings for the structural design purpose with the analytical approach given by Davenport's gust factor approach as well as equivalent static method in IS 875: part 3 1987 and the analysis of the buildings had been done by using ETABS 2013 software and the performance was analyzed by varying the shape of structure.
- Height of the building considered was 150 m/50 storied
- Different shapes of the building studied were:
- Square
- Rectangular
- C shape
- T shape
- L shape
- Hollow Rectangular

Objectives of the present study

- To study the behavior of tall structures when subjected to along wind loads.
- To study the effect of shape of the building in plan on the behavior of the structure.
- To determine the effect of wind load on various parameters like storey drifts, lateral displacements in the building.
- To define the most efficient shape for high rise buildings which can provide sound wind loading by observing the comparative studies.
- To show the importance of gust factor method for safe design of high rise buildings against wind loadings.

II. LITERATURE REVIEW

1. J.A. Amin and A.K. Ahuja¹

Has studied wind-induced pressures on buildings of various geometries. The experimental investigation of wind pressure distributions on models of typical plan shape buildings over an extended range of wind incidence angles of 0 to 180° at an interval of 15. Two L-shaped and two T-shaped models of same plan area and height but having the different dimensions were tested in a closed circuit wind tunnel under boundary layer flow. The models were made from Perspex sheets at a geometrical scale of 1:300. Fluctuating values of wind pressures are measured at pressure points on all the sides of the models and mean, maximum, minimum values of pressure coefficients were evaluated from pressure records. It is observed that plan shape and dimensions of models significantly affects the wind pressure distributions on different faces of the models. The location and magnitude of the measured peak pressure coefficient vary considerably with wind direction. The influence of shifting the upstream block from edge of the downstream block

2. Sarita Singla, Taranjeet Kaur, Megha Kalra and Sanket Sharma²

 Has studied Behaviour of R.C.C. tall buildings having different shapes Subjected to Wind Load. This paper presents the results of analytical studies on various shapes of buildings. In this study a 35 storeyed building of different shapes- Square, Hexagonal and Octagonal, having equal plan area and equal stiffness of the columns has been analysed. Based upon the study, it is concluded that shape of the structure plays an important role in resisting wind loads. Octagonal shaped building performed the best followed by shaped and square shaped building.

3. P. Harikrishna, A. Abraham, S. Arunachalam, S. Selvi Rajan, G. Ramesh Babu and N. Lakshmanan³

• Has studied Pressure measurement studies on a model of a tall building with different plan shapes along the height. This paper describes the experimental details of a wind tunnel study conducted on a 1:300 scale model of a 327 m tall building with different plan shapes along the height. Pressures have been measured on the model at 5 different levels and for various wind angles. Based on the evaluated mean force and torsion coefficients, critical wind angles have been identified.

III. METHODOLOGY

- The methodology worked out to achieve the abovementioned objectives is as follows:
- Extensive literature survey by referring books, technical papers or research papers carried out to understand basic concept of topic.
- Identification of need of research.
- Formulation of stages in analytical work which is to be carried out.
- Data collection.
- 50 storey building is considered for the analysis.
- The model has prepared on ETABS for the various shapes of the buildings.
- Manual calculation of wind loads for the building according to IS 875(part3)-1987 has done by using the various parameters of the wind.
- Application of calculated wind loads on the modeled buildings is to be done.
- In similar way, another buildings is to be modeled of various shapes and by using Gust factor method, the wind loads is to calculated and applied to the modeled buildings.
- Comparative studies done for axial loads on column, storey shear, lateral story displacement, story drift, wind intensity for the various shapes of buildings and determination of structurally efficient shape of building is to be done.
- Interpretation of results and conclusion.

Problem statement

Name of	Value	Unit
parameter		
No. of storey	50	Nos.
Bottom storey	3	m
height		
Storey height	3	m
Soil type	Medium	
Wind zone	Ι	
Design wind speed	33	m/sec
Shape of buildings	Rectangular,	
	square, c shape, L	
	shape, hollow	
	rectangular, T	
	shape	
Plan area	2500	m2
Grid size	5x5	m
Thickness of slab	125	mm
Size of beam	300 X 600	mm
Size of column	1000 X 1000	mm

Material		
properties		
Grade of concrete	M40	N/mm ²
Grade of steel	Fe500	N/mm ²
Dead load		
intensities		
FF on floors	1.75	kN/m ²
FF on roof	2	kN/m ²
Live load		
intensities		
LL on floors	2	kN/m ²
LL on roof	1	kN/m ²

Building models

Models

- Model 1: Square shape building used for linear analysis
- Model 2: Rectangular shape building used for linear analysis
- Model 3: C shape building used for linear analysis
- Model 4: T shape building used for linear analysis
- Model 5: Hollow rectangular used for linear analysis
- Model 6: L shape used for linear analysis

Fig no: T shape plan view

Fig: Rectangle shape plan view

Fig no: square shape plan view

Fig: Hollow shape plan view

Fig: L shape plan view

Fig: C shape plan view

IV. RESULT AND DISCUSSION

Introduction

This chapter contains the results taken from software after application of loads to the models. After running the models, software shows the table of results. This chapter is divided into three parts i.e. results from linear analysis, and results which shows the effects of shape of buildings. It also contains graphical representation of the comparison of results of various shapes of buildings methods.

	DISPLA					
	DIRECT	ΓION				
	RECT	SQUAR	С	Т	L	HOLL
	ANG	Е	SH	SH	SH	OW
	ULAR		APE	APE	APE	RECT
						ANGU
						LAR
Stor	373.50	291.7696	361.	340.	294.	358.93
y50	4		818	206	58	1
Stor	371.13	290.3204	359.	337.	293.	355.79
y49	1		652	362	041	4
Stor	368.60	288.7651	357.	334.	291.	352.65
y48	5		23	461	374	5
Stor	365.82	286.9987	354.	331.	289.	349.4
y47	2		549	4	462	
Stor	362.75	284.992	351.	328.	287.	345.94
y46	3		592	124	279	
Stor	359.38	282.74	348.	324.	284.	342.22
y45	9		35	612	823	4
Stor	355.73	280.2442	344.	320.	282.	338.23
y44	4		825	857	099	
Stor	351.79	277.5099	341.	316.	279.	333.95
y43	2		022	865	117	6
Stor	347.57	274.5439	336.	312.	275.	329.40
y42	2		948	642	886	8
Stor	343.08	271.3522	332.	308.	272.	324.59
y41	3		613	195	415	6
Stor	338.33	267.9433	328.	303.	268.	319.53
y40	3		025	532	713	
Stor	333.33	264.3215	323.	298.	264.	314.21
y39	1		192	66	786	9
Stor	328.08	260.4929	318.	293.	260.	308.67
y38	4		122	585	64	
Stor	322.59	256.4641	312.	288.	256.	302.89
y37	9		82	314	282	2
Stor	316.88	252.2387	307.	282.	251.	296.89
y36	3		294	852	716	2
Stor	310.94	247.8226	301.	277.	246.	290.67
y35	3		551	206	947	7

IJSART - Volume 9 Issue 1 – JANUARY 2023

ISSN [ONLINE]: 2395-1052

							_							
Stor	304.7	8 243.2193	295.	. 271	. 241	. 284.25		Stor	126.8	104.0697	123.	110.	92.6	103.272
y34	5		596	381	982	3		y12	05		188	029	31	
Stor	298.4	1 238.4356	5 289.	265	. 236	. 277.62		Stor	117.2	96.3662	113.	101.	84.3	93.718
y33	7		437	385	826	9		y11	61		925	654	37	
Stor	291.8	4 233.4766	i 283.	259	. 231	. 270.81		Stor	107.6	88.5609	104.	93.2	75.9	84.075
y32	6		08	223	485	3		y10	17		565	11	22	
Stor	285.0	7 228.3466	5 276.	252	. 225	. 263.81		Stor	97.87	80.65301	95.1	84.6	67.3	74.35
y31	8		533	902	965	2		y9	3		05	99	88	
	•	•	•			•	_	Stor	88.02	72.63738	85.5	76.1	58.7	64.557
	DISPL	ACEMENT	II	N	EQX			y8	6		42	12	45	
	DIREC	CTION						Stor	78.07	64.51061	75.8	67.4	50.0	54.722
	REC	SQUARE	С	Т	L	HOLLO		y7			7	45	13	
	TAN		SH	SH	SH	W		Stor	67.99	56.26413	66.0	58.6	41.2	44.892
	GUL		AP	AP	AP	RECTAN		y6	7		82	87	33	
	AR		Е	Е	Е	GULAR		Stor	57.78	47.88171	56.1	49.8	32.4	35.153
Stor	278.1	223.0524	269.	246.	220.	256.635		y5	5		56	19	78	
y30	22		802	429	272			Stor	47.39	39.32744	46.0	40.8	23.8	25.657
Stor	270.9	217.5975	262.	239.	214.	249.287		y4			49		75	
y29	83		893	811	412			Stor	36.72	30.52265	35.6	31.5	15.6	16.679
Stor	263.6	211.9887	255.	233.	208.	241.775		y3			72	51	62	
y28	68		814	054	389			Stor	25.57	21.29378	24.8	21.9	8.26	8.708
Stor	256.1	206.2286	248.	226.	202.	234.105		y2	3		47	12	9	
y27	83		57	163	208			Stor	13.52	11.28002	13.2	11.5	2.52	2.623
Stor	248.5	200.3214	241.	219.	195.	226.281		y1	7		22	63	4	
y26	34		165	144	871			Bas	0	0	0	0	0	0
Stor	240.7	194.2705	233.	212	189.	218.307		e						
y25	25		604		38									1
Stor	232.7	188.0786	225.	204.	182.	210.188								
y24	6		891	737	74					DISPLACE	EMEN	t in e	EQX	
Stor	224.6	181.7491	218.	197.	175.	201.926				DIREC	TION	(mm)	
y23	43		031	358	951								,	
Stor	216.3	175.2844	210.	189.	169.	193.527			± 30					
y22	79		026	868	017				E 10	ğ – – –				
Stor	207.9	168.6889	201.	182.	161.	184.996			CEN				5	tory50
y21	72		882	272	943				PLA	(TAN) ARE AR	APE A	×	S	tory25
Stor	199.4	161.9644	193.	174.	154.	176.34			DISI	RE 50° CSN X	St. St.		S	tory1
y20	27		604	573	732				_	c	HADES			
Stor	190.7	155.1167	185.	166.	147.	167.563				5	INAPES			
y19	51		196	779	389				Cros	h no- Displa	nomon	In V	Direct	ion
Stor	181.9	148.1493	176.	158.	139.	158.674			Gra	n no- Disbis	accillett	і ш л -	-Direct	1011
y18	49		665	896	92				The	have graph of	howe di	enlacer	nent in	X _direction
Stor	173.0	141.0673	168.	150.	132.	149.68		for sa	1 He a	oove graph S	nows ul Shane	spiacel T shan	⊔iciitiii ∟ ⊺ ₁1	A -uncenon
y17	27		016	93	33			rectan	uait "Nt milar h	uilding sou	are ch	i silap ane b	ч, L SI uilding	has lower
Stor	163.9	133.875	159.	142.	124.	140.585		display	guiai 0 Sement f	han the rector	nouler o	ape U hang ha	ulding	hy 13 20 %
y16	91		256	886	621			C shore	ле 10 40	% huilding o	ngulai S and Tai	hane bi	ulding 1	oy 13.20 %, hv 4.70 % ⊺
Stor	154.8	126.5759	150.	134.	116.	131.394		chane	$h_{\rm V} = 10.40$	% hollow row	uu 181	r hv 0	57 %	0y 1 .70 /0. L
y15	47		389	771	797			snape	0y 9.13	70, 110110w 1et	Jangula	1 UY 7.(57 70.	
Stor	145.6	119.175	141.	126.	108.	122.111			STO		T IN	FO	7	
v14			421	588	859				1010	KI DRIF. TCTION	1 111	ĽŲź	`	
Stor	136.2	111.6724	132.	118.	100.	112.737						т	т	LIOLI
v13	52		353	341	804	112.101			ANC					
,15	52		555	571	00-	I			ANG	UE	SH	SH	SH	UW

	LAR		AP	AP	AP	RECR	1 [Stor	2.858	2.608	2.77	3.45	2.9	2.915
	2		E	E	E	ANGU		v26	2.000		4	4		
			2	-	-	LAR	_	Stor	2 896	2 649	2.81	3.48	2.93	2 949
Stor	0.871	0.646	0.86	1.52	0.93	1 141		v25	2.070	2.019	1	6	9	2.919
v50	0.071	0.010	3	8	0.75		_	Stor	2.933	2.69	2.84	3 51	2.97	2.982
Stor	0.953	0.721	0.92	16	1.00	1 171		v24	2.700	2.0>	7	5	7	2.702
v49	0.755	0.721	8	1.0	3	1.1.7.1		Stor	2 97	2 73	2.88	3 54	3 01	3.015
Stor	1.077	0.848	1 04	1 70	1 11	1 248		v23	2.97	2.15	3	3	6	5.015
v48	1.077	0.010	3	2	7	1.210		Stor	3 006	2 769	2.91	3 57	3.05	3 048
Stor	1 214	0.985	1 17	1.82	1 25	1 361		v22	5.000	2.709	7	5.57	2.05 4	5.010
v47	1.211	0.905	7	1	1	1.501		Stor	3 041	2 809	2.95	3 59	3.09	3.08
Stor	1 354	1 1 2 3	1 31	1 94	1 39	1 49		v21	5.011	2.007	2.55	5	2	5.00
v46	1.551	1.125	3	8	1.57	1.12	_	Stor	3.075	2 848	2 98	3 61	2 3 1 2	3 1 1 1
Stor	1 488	1 255	1 44	2.07	1.52	1 623		v20	5.075	2.010	5	8	8	5.111
v45	1.100	1.200	3	6	6	1.025	_	Stor	3 108	2 886	3 01	3 63	316	3 1 3 9
Stor	1.613	1.377	1.56	2.20	1.65	1.747		v19	5.100	2.000	8	9	3	5.157
v44			6	1	4		_	Stor	3,139	2.922	3.04	3.65	3.19	3.164
Stor	1.728	1.489	1.67	2.32	1.77	1.86		v18	5.157	2.922	8	7	5	5.101
v43			9		2		_	Stor	3,168	2.956	3.07	3.67	3.22	3,186
Stor	1.833	1.591	1.78	2.42	1.87	1.962		v17	01100		6	2	4	01100
v42			1	9	8			Stor	3.194	2.987	3.10	3.68	3.24	3.205
Stor	1.929	1.683	1.87	2.53	1.97	2.053		v16			1	4	9	
v41			4		3			Stor	3.216	3.016	3.12	3.69	3.27	3.22
Stor	2.016	1.767	1.95	2.62	2.06	2.136		v15			3	1	2	
v40			9	3				Stor	3.236	3.042	3.14	3.69	3.29	3.234
Stor	2.096	1.844	2.03	2.70	2.14	2.212		v14			2	5	3	
y39			7	8				Stor	3.254	3.066	3.16	3.69	3.31	3.246
Stor	2.171	1.917	2.11	2.78	2.21	2.283		y13				6	3	
y38				7	5			Stor	3.271	3.09	3.17	3.69	3.33	3.257
Stor	2.243	1.986	2.17	2.86	2.28	2.351		y12			6	6	2	
y37			9	2	7			Stor	3.287	3.113	3.19	3.69	3.35	3.269
Stor	2.312	2.054	2.24	2.93	2.35	2.417		y11			2	4	3	
y36			6	3	7			Stor	3.305	3.138	3.21	3.69	3.37	3.281
Stor	2.379	2.119	2.31	3.00	2.42	2.481		y10				3	3	
y35			1	2	6			Stor	3.324	3.165	3.23	3.69	3.39	3.291
Stor	2.444	2.184	2.37	3.06	2.49	2.543		y9				4	2	
y34			3	7	2			Stor	3.348	3.196	3.25	3.69	3.40	3.295
Stor	2.507	2.247	2.43	3.12	2.55	2.602		y8			3	9	4	
y33			4	9	6			Stor	3.377	3.233	3.28	3.71	3.40	3.286
Stor	2.567	2.307	2.49	3.18	2.61	2.659		y7			2		3	
y32			3	8	6			Stor	3.415	3.279	3.32	3.73	3.37	3.252
Stor	2.624	2.365	2.54	3.24	2.67	2.711		y6				2	6	
y31			8	3	3			Stor	3.471	3.341	3.37	3.77	3.29	3.168
Stor	2.678	2.42	2.6	3.29	2.72	2.759		y5			5	3	9	
y30				4	5		ļ	Stor	3.561	3.436	3.46	3.85	3.13	2.994
Stor	2.728	2.472	2.64	3.34	2.77	2.803		y4			2			
y29		ļ	8		4		[Stor	3.716	3.599	3.61	3.99	2.79	2.669
Stor	2.774	2.52	2.69	3.38	2.81	2.843		y3			4	3	4	
y28			3	2	9			Stor	4.015	3.904	3.90	4.26	2.14	2.058
Stor	2.817	2.565	2.73	3.42	2.86	2.88		y2			1	9	8	
y27			5											

Stor	4.54	4.432	4.40	4.75	0.94	0.909
y1			8	7	1	
Bas						
e						

Graph 3.2- Displacement In Y –Direction

The above graph shows displacement in Y –direction for square ,Rectangular ,C shape,T shape ,L shape, hollow rectangular building. square shape building has lower defirmation than the rectangular shape building by 0.70 %, C shape 16.39 % building and T shape building by 18.96 %, ,L shape by 11.57 % , hollow rectangular by 0.97 %

Graph no- Story Drift In X –Direction

The above graph shows story drift in X –direction for square ,Rectangular ,C shape,T shape ,L shape, hollow rectangular building. square shape building has lower story drift than the rectangular shape building by 25.83 %, C shape 25.14 % building and T shape building by 52.72 % L shape by 30.53 % , hollow rectangular 43.38 by %.

	BASE SH	BASE SHEAR IN EQX DIRECTION								
	RECTA	SQU	С	Т	L	HOLLO				
	NGULA	ARE	SHA	SHA	SHA	W				
	R		PE	PE	PE	RECTAN				
						GULAR				
Sto	2254.87	2959.	1649	1338	2432	2852.572				
ry5	2	197	.412	.254	.932					
0										

Sto	5024.01	6598.	3700	3006	5421	6381.84
ry4	5	948	.65	.204	.477	
9						
Sto	7649.77	10060	5645	4582	8237	9693.417
rv4	2	.02	.002	.175	.531	
8						
Sto	10103.1	13302	7460	6047	108/	12746 57
510 mu/	2	02	007	112	2 22	12740.57
1 y 4 7	2	.05	.007	.115	2.33	
1	10250.2	1 (200	0120	7204	1220	15507 77
Sto	12359.3	16290	9129	/384	1320	15507.77
ry4		.06	.818	.654	3.15	
6						
Sto	14402.2	19000	1063	8584	1529	17957.49
ry4	6	.7	9.76	.096	9.32	
5						
Sto	16227.2	21425	1198	9642	1712	20094.02
ry4		.53	7.02	.125	5.76	
4						
Sto	17841.5	23572	1317	1056	1869	21934.79
rv4	3	.49	6.99	3.54	4.28	
3	-					
Sto	1926/13	25465	1/22	1136	2003	23515 21
510 mu/	0	25405	3.81	1 07	2005	25515.21
1'y4 2	7	.5	5.61	1.07	2.83	
4	205247	07141	1514	1205	0110	24995 11
Sto	20524.7	2/141	1514	1205	2118	24885.11
ry4	7	.17	8.99	4.21	2.83	
1						
Sto	21658.3	28646	1597	1266	2219	26102.95
ry4	3	.6	9.07	7.21	4.28	
0						
Sto	22703.1	30031	1674	1322	2311	27228.21
ry3	9	.89	2.51	6.26	9.42	
9						
Sto	23695.2	31344	1746	1375	2400	28313.35
ry3	3	.93	6.15	6.2	5.6	
8						
Sto	24663.7	32625	1817	1427	2488	29396.77
rv3	9	.29	2.01	7.42	8.85	
7	-					
Sto	25 620 4			1 4 0 0	2570	30/08.6
5.0	25628.4	33899	1887	1480	2.376	10 + 20 11
rv3	25628.4	33899	1887 4 83	1480 3 46	2378 965	50498.0
ry3 6	25628.4	33899 .8	1887 4.83	1480 3.46	2378 9.65	30498.0
ry3 6	25628.4	33899	1887 4.83	1480 3.46	2378 9.65	31620.21
ry3 6 Sto	25628.4	33899 .8 35180	1887 4.83 1958	1480 3.46 1533	2378 9.65 2671	31620.31
ry3 6 Sto ry3	25628.4 26597.5 1	33899 .8 35180 .63	1887 4.83 1958 1.06	1480 3.46 1533 9.97	2378 9.65 2671 2	31620.31
ry3 6 Sto ry3 5	25628.4 26597.5 1	33899 .8 35180 .63	1887 4.83 1958 1.06	1480 3.46 1533 9.97	2378 9.65 2671 2	31620.31
ry3 6 Sto ry3 5 Sto	25628.4 26597.5 1 27569.1	33899 .8 35180 .63 36466	1887 4.83 1958 1.06 2028	1480 3.46 1533 9.97 1588	2378 9.65 2671 2 2764	31620.31 32748.1
ry3 6 Sto ry3 5 Sto ry3	25628.4 26597.5 1 27569.1 7	33899 .8 35180 .63 36466 .04	1887 4.83 1958 1.06 2028 9.39	1480 3.46 1533 9.97 1588 5.18	2378 9.65 2671 2 2764 5.85	31620.31 32748.1
ry3 6 Sto ry3 5 Sto ry3 4	25628.4 26597.5 1 27569.1 7	33899 .8 35180 .63 36466 .04	1887 4.83 1958 1.06 2028 9.39	1480 3.46 1533 9.97 1588 5.18	2378 9.65 2671 2 2764 5.85	31620.31 32748.1
ry3 6 Sto ry3 5 Sto ry3 4 Sto	25628.4 26597.5 1 27569.1 7 28533.6	33899 .8 35180 .63 36466 .04 37743	1887 4.83 1958 1.06 2028 9.39 2099	1480 3.46 1533 9.97 1588 5.18 1643	2378 9.65 2671 2 2764 5.85 2857	31620.31 32748.1 33858.93
ry3 6 Sto ry3 5 Sto ry3 4 Sto ry3	25628.4 26597.5 1 27569.1 7 28533.6 5	33899 .8 35180 .63 36466 .04 37743 .65	1887 4.83 1958 1.06 2028 9.39 2099 2.63	1480 3.46 1533 9.97 1588 5.18 1643 1.68	2378 9.65 2671 2 2764 5.85 2857 2.14	31620.31 32748.1 33858.93

Sto	29477.0	38995	2168	1696	2946	34927.63
ry3	5	.22	0.45	9.1	9.01	
2						
Sto	30385.2	40201	2234	1748	3031	35933.37
ry3	2	.86	2.29	6.88	7.54	
1						
Sto	31247.2	41348	2296	1797	3110	36864.52
ry3	2	.69	9.99	6.76	6.31	
0						
Sto	49080.7	64984	3605	2826	4816	57066.83
ry2	3	.79	9.9	0.11	6.57	
Sto	49288.3	65261	3621	2839	4822	57134.23
ry1		.86	4.61	4.97	7.5	

Graph 3.4- Storey Drift In Y –Direction

The above graph shows storey drift in Y –direction for square ,Rectangular ,C shape,T shape , L shape, hollow rectangular building. square shape building has lower storey drift than the rectangular shape building by 2.02 %, C shape 54.90 % building and T shape building by 50.66 % , L shape by 49.44 % , hollow rectangular by 25.70 %.

Graph no- Base Shear In X –Direction

The above graph shows Base shear in X –direction for square ,Rectangular ,C shape,T shape, L shape, hollow rectangular building. square shape building has higher Base shear than the rectangular shape building by 0.94 %, C shape

27.53 % building and T shape building by 41.20 %, L shape by 6.43 %, hollow rectangular by 20.20 %.

	TIME	PERIOD (SH	EC)			
MO	RECT	SQUARE	С	Т	L	HOLLO
DE	ANG		SH	SH	SH	W
SH	ULA		AP	AP	AP	RECTA
AP	R		E	Е	Е	NGULA
Е						R
1	4.542	4.372	4.61	4.79	4.39	4.426
			5	7		
2	4.251	4.372	4.47	4.63	4.23	4.187
			2		3	
3	4.17	4.042	4.11	4.27	4.00	3.912
			9	6	4	
4	1.488	1.438	1.50	1.54	1.42	1.428
			3	8	1	
5	1.401	1.438	1.46	1.50	1.38	1.366
			4	8		
6	1.374	1.334	1.35	1.40	1.31	1.288
			8	5	6	
6	1.3/4	1.334	1.35 8	1.40 5	1.31 6	1.288

Graph 3.6- Base Shear In Y –Direction

The above graph shows Base shear in Y –direction for square ,Rectangular ,C shape,T shape, L shape, hollow rectangular building. square shape building has higher Base shear t than the rectangular shape building by 16.31 %, C shape 41.47 % building and T shape building by 44.47 %, L shape by 9.87 % , hollow rectangular by 5.78 %.

Graph no- Time Period

The above graph shows Time period in direction for square ,Rectangular ,C shape,T shape , L shape, hollow rectangular building. square shape building has lower Time period t than the rectangular shape building by 3.74 %, C shape 5.26 % building and T shape building by 8.85 % ,L shape by 0.41 % , hollow rectangular by 1.22 %..

	FREQUE	NCY in H	Z			
MO	RECTA	SQUA	С	Т	L	HOLLO
DE	NGULA	RE	SH	SH	SH	W
SH	R		AP	AP	AP	RECTA
AP			Е	Е	Е	NGUL
Ε						AR
1	0.22	0.229	0.21	0.20	0.22	0.226
			7	8	8	
2	0.235	0.229	0.22	0.21	0.23	0.239
			4	6	6	
3	0.24	0.247	0.24	0.23	0.25	0.256
			3	4		
4	0.672	0.695	0.66	0.64	0.70	0.7
			6	6	4	
5	0.714	0.695	0.68	0.66	0.72	0.732
			3	3	5	
6	0.728	0.75	0.73	0.71	0.76	0.776
			7	2		

FREQUENCY

Graph no- frequency

The above graph shows Frequency in direction for square ,Rectangular ,C sharpest shape, L shape, hollow rectangular building. square shape building has lower frequency t than the rectangular shape building by 3.93 %, C shape 5.24 % building and T shape building by 0.021 % ,L shape by 0.43 % , hollow rectangular by 1.31 %.

V. CONCLUSIONS

- displacement in X –direction for square ,Rectangular ,C shape, T shape ,L shape, hollow rectangular building. square shape building has lower displacement than the rectangular shape building by 13.20 %, C shape 10.40 % building and T shape building by 4.70 %. L shape by 9.13 %, hollow rectangular by 9.67 %.
- displacement in Y –direction for square ,Rectangular ,C shape, T shape ,L shape, hollow rectangular building. square shape building has lower deformation than the rectangular shape building by 0.70 %, C shape 16.39 % building and T shape building by 18.96 %, ,L shape by 11.57 % , hollow rectangular by 0.97 %
- story drift in X –direction for square, Rectangular ,C shape, T shape ,L shape, hollow rectangular building. square shape building has lower story drift than the rectangular shape building by 25.83 %, C shape 25.14 % building and T shape building by 52.72 % L shape by 30.53 % , hollow rectangular 43.38 by %.
- story drift in Y –direction for square, Rectangular, C shape, T shape , L shape, hollow rectangular building. square shape building has lower story drift than the rectangular shape building by 2.02 %, C shape 54.90 % building and T shape building by 50.66 %, L shape by 49.44 %, hollow rectangular by 25.70 %.
- Base shear in X –direction for square ,Rectangular ,C shape, T shape, L shape, hollow rectangular building. square shape building has higher Base shear than the rectangular shape building by 0.94 %, C shape 27.53 % building and T shape building by 41.20 %, L shape by 6.43 %, hollow rectangular by 20.20 %.
- Base shear in Y –direction for square ,Rectangular ,C shape, T shape, L shape, hollow rectangular building. square shape building has higher Base shear t than the rectangular shape building by 16.31 %, C shape 41.47 % building and T shape building by 44.47 %, L shape by 9.87 %, hollow rectangular by 5.78 %.
- Time period in direction for square ,Rectangular ,C shape, T shape , L shape, hollow rectangular

building. square shape building has lower Time period t than the rectangular shape building by 3.74 %, C shape 5.26 % building and T shape building by 8.85 % ,L shape by 0.41 % , hollow rectangular by 1.22 %..

- Frequency in direction for square ,Rectangular ,C shape, T shape, L shape, hollow rectangular building. square shape building has lower frequency t than the rectangular shape building by 3.93 %, C shape 5.24 % building and T shape building by 0.021 % ,L shape by 0.43 % , hollow rectangular by 1.31 %.
- The conclusion of this study has been summarized in following point:
- The shape of the tall buildings playing a major role in reducing the wind load effect in terms of different design parameters that should be taken into consideration before designing any building.
- If the building height increased, the lateral load comes from wind load will increased as well causing the increasing in wind pressure. This is will generate additional stress to the building members. In addition, the storey displacement increased so the structure will have less stability and stiffness.
- The square shape building is more effective and less affected by wind load because of smooth surface that create a less friction between the wind load and the surface itself due to the wind excitation.
- By changing the shape from triangular to circular shape, the storey displacement and drift will reduced by maximum percentage due to reducing the wind pressure affecting the building.
- The building shapes that highly influenced by wind load can be reduced the impact by taking the efficient structural system, lateral bracing and increasing the dimension of beam and columns to have enough stiffness as well as usually shear wall has been used in order to reduce wind load.
- This study is connected to the scholars studies through result getting from this report is matched with the journals and the result of literature review chapter. At the end, I hope my findings in this project are expanded the knowledge in this field as well as contributes to all of us in future and done in required manner.

REFERENCES

[1] Swami BLP (1987) "study of wind speeds in India and their effects on typical structures", Ph.D. Thesis submitted to the I.I.T., Delhi

- [2] Yin Zhou and Ahsan Kareem (1999) "Gust loading factors for design applications" J. Struct. Div., ASCE, 93(ST3), 11-34.
- [3] Xinzhon Chen (2008) "Analysis of along-wind tall building response to transient non stationary winds". ASCE. 134 (5), 782-791.
- [4] B. Dean Kumar and B.L.P. Swami (2010) "Wind effects on tall building frames-influence of dynamic parameters" Indian Journal of Science and Technology Vol. 3 No. 5 (May 2010) ISSN: 0974- 6846
- [5] Singla Sarita, Kaur Taranjeet, Kalra Megha and Sharma Sanket (2012) "Behaviour of R.C.C. Tall Buildings Having Different Shapes Subjected to Wind Load" Proc. of Int. Conf. on Advances in Civil Engineering 2012.
- [6] Harry G. Poulos1, Dist. MASCE (2012) "Foundation Design for Tall Buildings". Conference Paper in Geotechnical Special Publication · May 2012
- [7] K. Vishnu Haritha, Dr.I. Yamini Srivalli (2013) "Effect of Wind on Tall Building Frames - Influence of Aspect Ratio". International Journal of Research in Civil Engineering, Architecture & Design Volume 1, Issue 1, July-September, 2013, pp. 01-06, © IASTER 2013 ISSN Online: 2347-2855, Print: 2347-8284
- [8] K. Rama Raju, M.I. Shereef, Nagesh R Iyer, S. Gopalakrishnan (2013) "analysis and design of rc tall building subjected to Wind and earthquake loads" The Eighth Asia-Pacific Conference on Wind Engineering, December 10–14, 2013, Chennai, India.
- [9] Ketan Bajaj, Jitesh T Chavda, Bhavik M Vyas (2013) "Seismic Behaviour of Buildings on Different Types of Soil", Proceedings of Indian Geotechnical Conference December 2013, Roorkee.
- [10] K. Bajaj, and J. T. Chavda (2013) "Seismic Behaviour of Buildings on Different Types of Soil". Proceedings of Indian Geotechnical Conference Roorkee, pp. 22-24, (2013)
- [11] Ilaria Venanzi, Diana Salciarini, Claudio Tamagnini (2014) "The Effect of Soil–Foundation–Structure Interaction on the Wind-Induced response of tall buildings". journal homepage: <u>Elsevier</u> I. Venanzi et al. Engineering Structures 79 (2014) 117–130
- [12] Wakchaure M. R., Gawali Sayali (2015) "Effects of Shape on Wind Forces of High-Rise Buildings Using Gust Factor Approach" International Journal of Science, Engineering and Technology Research (IJSETR), Volume 4, Issue 8, August 2015.
- [13] Mohammed Asim Ahmed, Moid Amir, Savita Komur, Vaijainath Halhalli (2015) "Effect of wind load on tall buildings in different terrain category" IJRET: International Journal of Research in Engineering and Technology.

- [14] R. Sawant and N. Bajad (2015) "A review on: The influence of soil conditions on the seismic forces in RC buildings", Int. Journal of Engineering Research and Application, 5(6), (Part - 5) pp.81-87, (2015)
- [15] Umamaheshwara.B, Nagarajan.P (2016) "Design Optimization and Analysis of Shear Wall in High Rise Buildings Using ETABS" International Journal for Research in Applied Science & Engineering Technology (IJRASET) www.ijraset.com Volume 4 Issue VIII, August 2016 IC Value: 13.98 ISSN: 2321-9653.
- [16] Susheel S M, Sanjith J, Vidyashree B S, Ranjith A (2016) "analysis of tall building in chikkamagaluru region" International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056 Volume: 03 Issue: 06, June-2016 ISSN: 2395-0072.
- [17] Jadhav A. A., Dr. Kulkarni S. K., Galatage A. A. (2016) "comparison of the effect of earthquake and wind loads on the performance of rc framed shear wall building with its different orientation" Vol-2 Issue-6 2016 IJARIIE-ISSN (O)-2395-4396
- [18] Prof. Syed Farroqh Anwar, Mr.Mohd Hashmath, Mohd Aslam Share Khan(2016) "Study On Soil Structure Interaction And Base Isolated System For Seismic Performance Of Structures Resting On Different Types Of Soils" Global Journal Of Engineering Science And Researches, ISSN 2348 – 8034 3(10): October 2016
- [19] Mr. Rahul Sawant1, Dr. M. N. Bajad (2016) "Effect of Soil-Structure Interaction on High Rise RC Building", IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-ISSN: 2278-1684, p-ISSN: 2320-334X, Volume 13, Issue 1 Ver. IV, PP 85-91 (Jan. - Feb. 2016)
- [20] Harry G. Poulos (2016) "Tall building foundations: design methods and applications", Innov. Infrastruct. Solut. (2016) 1:10 Springer International Publishing Switzerland 2016