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Abstract- In recent years, the emergence and rapid evolution 

of deepfake technology have sparked significant interest and 

concern across various sectors. Deepfakes, a portmanteau of 

"deep learning" and "fake," refer to synthetic media created 

using sophisticated machine learning algorithms, particularly 

deep neural networks. These AI-generated manipulations 

superimpose or replace existing content in images, videos, 

audio, or text, often resulting in highly realistic but fabricated 

representations. 

 

This paper aims to conduct a thorough examination 

of recent research efforts in the field of deep fake content 

detection, focusing specifically on methodologies grounded in 

deep learning. Numerous studies have delved into 

understanding the creation of deepfakes, introducing various 

deep learning-based approaches to identify manipulated 

videos or images. Our study offers a comprehensive review 

encompassing the creation and detection methods of 

deepfakes, providing an analysis of diverse technologies and 

their applications in the realm of deepfake detection. This 

extensive exploration serves as a valuable resource for 

researchers seeking insights into the evolving landscape of 

deepfake detection using deep learning methodologies. 
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I. INTRODUCTION 

 

 The emergence of deepfake technology has raised 

significant concerns due to its capability to produce highly 

realistic fake videos and images, replacing one person's face or 

voice with another's. This manipulation of media content, 

previously only achievable through expert knowledge, has 

become more accessible through tools like DeepfakeLab, 

enabling even novice users to create convincing fake videos. 

The potential widespread dissemination of these deepfakes on 

social media platforms poses serious risks, particularly in 

spreading misinformation and perpetuating political deception. 

 

Generative models, notably generative adversarial 

networks (GANs), have revolutionized the creation of lifelike 

digital images, allowing for the manipulation of existing 

images with remarkable ease. The accessibility of these tools 

for deepfake creation heightens concerns about the potential 

proliferation of deceptive images and videos across social 

media platforms, potentially misleading the general public. 

 

As the circulation of fake videos and images 

continues to escalate on social media, there is an urgent need 

to develop effective means of detecting and mitigating their 

impact. Organizations such as DARPA, Facebook, and Google 

have taken strides in researching methods to identify and curb 

the spread of deepfakes [1] [2]. Consequently, various deep 

learning approaches, including Long Short-Term Memory 

(LSTM), Recurrent Neural Networks (RNNs), and other 

techniques, have emerged to detect fake videos and images 

[3][4][5][6]. Notably, deep neural networks have 

demonstrated potential in identifying fabricated news and 

rumors disseminated through social media channels. 

 

 
Fig 1: DeepFake image generation example 

 

This research paper aims to delve into the exploration 

of detecting deepfakes using specific deep learning methods 

such as Recurrent Neural Networks (RNNs), Convolutional 

Neural Networks (CNNs), and Long Short-Term Memory 

(LSTM). 

 

II. DEEP FAKE GENERATION 

 

Deep learning techniques have advanced 

considerably, enabling the manipulation and recreation of 

highly accurate facial features. Among the popular methods 

used for this purpose are Generative Adversarial Networks 

(GANs) and  Autoencoders. These methods excel in learning 

how to generate faces in specific poses without requiring 

complex modeling or extensive manual input. 

 

A. Generative Adversarial Networks 
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GANs belong to a category of generative models 

aiming to estimate the probability distribution of a given 

dataset . They excel in generating synthetic data closely 

matching the original dataset. Unlike other generative models 

like Generative Stochastic Networks and Boltzmann Machines 

that use computationally expensive Markov chains to sample 

data, GANs can represent complex models and produce 

samples efficiently in a single step once trained. 

 

The architecture of GANs comprises two primary 

components: the generator (G) and the discriminator. The 

generator attempts to produce data resembling the training set, 

while the discriminator distinguishes between real training set 

data and fake data generated by the generator. Both parts 

undergo alternating training steps, intending to improve the 

generator's ability to create realistic samples. The generator, 

which initially faces a weak discriminator to allow for 

learning, gradually optimizes its parameters to produce more 

lifelike data. 

 

Building upon the basic GAN architecture, 

Conditional GANs incorporate additional conditions, such as 

labels or images, into both the generator and discriminator. 

These conditions provide supplementary information related 

to the data samples. The generator uses these conditions, 

combined with random noise, to produce data, while the 

discriminator classifies the data by considering these 

conditions to determine if the generated sample matches. 

 

Several deepfake techniques beyond GANs have 

made significant strides in creating realistic synthetic 

content.FakeApp, widely used for swapping faces in videos, 

operates on an autoencoder-decoder structure. This method 

extracts latent features from human face images and 

reproduces them, producing highly realistic fake videos. 

 

VGGFace, an extension of GAN architecture, 

enhances realism by adding adversarial and perceptual loss 

layers. These layers capture latent facial features, like eye 

movements, enhancing the believability of generated images 

[7]. 

 

 
Fig 2: CGAN Architecture 

CycleGAN is another powerful technique that uses 

GAN architecture to transfer characteristics from one image to 

another without needing paired examples. By employing cycle 

loss functions, it can learn latent features and perform image-

to-image conversion efficiently [8]. 

 

These various deepfake generation methods 

showcase the evolution of techniques beyond GANs, each 

offering unique capabilities to create sophisticated and 

realistic fake images and videos. 

 

B. Autoencoders 

 

Deepfake autoencoders serve as a significant method 

for creating high-quality face swaps [9]. Originally designed 

to efficiently encode data, autoencoders consist of two neural 

networks: an encoder and a decoder.  

 

The encoder learns a condensed representation, 

known as the latent space, of the input data, while the decoder 

reconstructs the original input based on this encoding. This 

process is valuable for unsupervised dimensionality reduction.  

 

To transform the basic autoencoder into a generative 

model, variational autoencoders (VAEs) are employed. VAEs 

retain the encoder-decoder structure but alter the output. The 

encoder maps input data into a distribution in the latent space 

instead of an exact representation. Subsequently, the decoder 

takes a sample from this latent space distribution and 

reconstructs the original data. This shift to a data distribution 

in the latent space allows for more controlled variation in 

latent space variables, enabling the generation of diverse data. 

 

From a source, the faces of the target are detected, 

from which facial landmarks are further extracted. The 

landmarks are used to align the faces to a standard 

configuration. The aligned faces are then cropped and fed to 

an autoencoder to synthesize the faces of the donor with the 

same facial expressions as the original target’s faces. 

 

The encoders from both networks share weights, 

allowing them to encode data into the same latent space. 

Meanwhile, the decoders are trained to generate their 

respective faces. The manipulation occurs by encoding the 

source face image and decoding it into the target face image. 

 

 
Fig 3: Autencoders architecture 

https://github.com/rcmalli/keras-vggface
https://junyanz.github.io/CycleGAN/
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III. DEEP FAKE DETECTION 

 

Academic research in the realm of deepfake detection 

has proposed various deep learning methodologies, notably 

including Convolutional Neural Networks (CNN), Recurrent 

Neural Networks (RNN), and Long Short-Term Memory 

(LSTM). CNNs are extensively used for spatial feature 

extraction, enabling detailed analysis of individual frames to 

identify potential manipulations. On the other hand, RNNs, 

especially LSTM models, specialize in temporal analysis by 

recognizing patterns across sequential frames. This temporal 

scrutiny aids in identifying inconsistencies and aberrations that 

are indicative of deepfake alterations. These diverse deep-

learning techniques play a pivotal role in scrutinizing both 

spatial and temporal aspects of visual content, contributing 

significantly to the ongoing efforts in detecting and addressing 

deepfake content. 

 

A. Convolution Neural Network 

 

In the context of deepfake detection, Convolutional 

Neural Networks (CNNs) serve to analyze and discern 

patterns within facial features and expressions extracted from 

frames or images in videos. Employing CNNs for this purpose 

enables a binary classification output, indicating whether the 

input content is a deepfake or authentic. This process involves 

training CNN models on diverse datasets to effectively learn 

and differentiate between manipulated and genuine visual 

content based on facial characteristics and patterns. 

 

MesoNet, an influential CNN-based method, 

specializes in detecting Deepfake and Face2Face 

manipulations. It focuses on mid-level features, analyzing 

cropped faces from source videos, aiming to maintain high-

level feature accuracy even after manipulation. However, 

subsequent models like XceptionNet surpass MesoNet in 

performance by utilizing depth-wise separable convolutional 

layers with residual connections, albeit at the expense of 

longer training times and higher model overhead. 

 

EfficientNets, a newer family of CNN models, offers 

efficient resource scaling by balancing model width, depth, 

and resolution. These models, spanning sizes from B0 to B7, 

outperform counterparts with a comparable number of 

parameters and can be adapted effectively for Deepfake 

detection. 

 

An alternative approach, ForensicTransfer, deviates 

from CNN-based detection by employing an autoencoder 

architecture. This model learns facial feature representations 

and compares them to a cluster of real faces, distinguishing 

fake images based on the distance between their features and 

the real cluster. 

 

In practical deepfake detection systems, CNNs 

analyze facial features and expressions in frames extracted 

from videos, offering binary classification to identify whether 

the content is a deepfake or not. This involves utilizing 

convolutional layers, pooling layers, and fully connected 

layers. Pre-trained CNN models like VGG16, ResNet, or 

customized architectures can be fine-tuned for enhanced 

accuracy in deepfake detection tasks. 

 

B. Generative Models 

 

Generative models like Autoencoders and Generative 

Adversarial Networks (GANs) have been employed for 

deepfake detection using various techniques: 

 

B.1 Autoencoder-based approaches: 

 

Feature Extraction and Classification: Autoencoders have 

been used to extract facial features and classify them to detect 

deepfake content. These approaches employ encoders and 

decoders to compute face features and classify them using 

CNNs, achieving satisfactory accuracy and AUC values. 

 

Two-level Detection System: Some methods utilize sparse 

autoencoders and graph LSTM for feature extraction, followed 

by capsule networks for effective deepfake detection across 

different datasets. These systems demonstrate effectiveness in 

extracting features and detecting deepfakes. 

 

One-Class Anomaly Detection: Variational Autoencoders 

(VAE) have been employed for one-class anomaly detection, 

showing improved results compared to binary classification 

tasks. These approaches are trained on genuine face images to 

detect anomalies in fake face images. 

 

B.2 GAN-based approaches: 

 

Feature Comparison with Contrastive Loss: GAN-based 

models combined with contrastive loss functions have been 

used to detect fake images. These models compare features 

extracted from real and counterfeit images, achieving high 

performance even in images generated by different GAN 

architectures. 

 

Detection of GAN-Specific Fingerprints: Certain 

methodologies have focused on extracting GAN-specific 

fingerprints from images. These fingerprints represent 

convolutional traces left by GANs during image generation, 
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demonstrating high discriminative power across multiple 

GAN architectures. 

 

Frequency-Level Perturbation Detection: Detection models 

have been trained to detect frequency-level perturbation 

artifacts and image-level irregularities in generated images to 

enhance generalized detection capabilities. 

 

These approaches leverage generative models to 

identify patterns, irregularities, and distinct features within 

deepfake content, aiming to enhance the accuracy and 

generalization of deepfake detection systems. 

 

C. Recurrent Neural Networks: 

 

Deep learning models focused solely on spatial 

characteristics in images and videos often struggle to 

effectively capture changes in artifacts and inter-correlation 

among frames within a video sequence. While one strategy 

involves classifying each video frame independently and 

determining the most common class for overall video 

classification, this approach may not fully grasp the 

complexities leading to the creation of high-quality and 

realistic deepfakes. 

 

In contrast to spatial learning, temporal learning 

emerges as a promising strategy for comprehensively 

understanding the intrinsic aspects of face manipulation across 

sequential visual data. Temporal learning models, like 

recurrent neural networks (RNNs), address the limitations of 

single-frame classification and aim to establish a consensus 

for the overall video classification. 

   

This involves inputting each video frame into an 

RNN to understand dependencies among facial traits in a 

sequence. The resulting temporal representation is then 

leveraged by a model for the final classification of the entire 

video. 

 

This approach enhances the effectiveness of 

identifying forgeries compared to relying solely on spatial 

features from video frames.Two commonly employed 

structures for temporal learning in sequences of data are Long-

Short Term Memory (LSTM) and Gated Recurrent Unit 

(GRU). 

 

C.1 Long-Short Term Memory (LSTM): 

 

In the landscape of deepfake detection, the Long 

Short-Term Memory (LSTM) architecture, a subset of 

Recurrent Neural Networks (RNNs), stands as a formidable 

tool for addressing the challenges posed by manipulated 

content in videos.  

 

LSTMs excel in handling the vanishing gradient 

problem and are specifically tailored to capture long-term 

dependencies within sequential data. Leveraging its temporal 

modeling capabilities, It plays a crucial role in scrutinizing 

video sequences for inconsistencies indicative of deepfakes. 

 

LSTMs contribute significantly to deepfake detection 

by effectively modeling dependencies across frames in a 

video, enabling the identification of temporal inconsistencies 

that are indicative of manipulated content. Unlike spatial 

models, which focus on individual frames, LSTMs take into 

account the temporal relationships between frames, allowing 

them to capture nuanced patterns that might be indicative of 

deepfakes. This temporal analysis is crucial for distinguishing 

between genuine and manipulated content, particularly in 

high-quality and realistic deepfake videos. 

 

Whether deployed as standalone models or integrated 

with other architectures, LSTMs enhance the overall 

robustness of deepfake detection frameworks. Their ability to 

capture long-term dependencies and discern temporal patterns 

makes them indispensable in the quest for identifying and 

mitigating the impact of falsified content.  

 

In essence, LSTMs provide a powerful temporal 

modeling approach that contributes significantly to the 

efficacy of deepfake detection systems, allowing them to 

navigate the challenges posed by increasingly sophisticated 

manipulations in video content. 

 

C.2 Gated Recurrent Unit (GRU): 

 

In the dynamic landscape of deepfake detection, the 

Gated Recurrent Unit (GRU) architecture, akin to LSTMs and 

a subset of RNNs, plays a pivotal role in fortifying the 

temporal analysis capabilities crucial for discerning 

manipulated content in videos.  

 

GRUs, characterized by their memory-like behavior 

and proficiency in addressing gradient challenges, become 

essential components in modeling temporal dependencies 

across frames. In the context of deepfake discovery, GRUs 

exhibit prowess in identifying nuanced patterns indicative of 

falsified content. 

 

During training, GRUs commonly employ binary 

cross-entropy loss for binary classification tasks, ensuring 

effective learning from labeled datasets of genuine and 
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deepfake videos. The evaluation process provides insights into 

its effectiveness in discerning manipulated content. 

 

GRU integrate the strengths of spatial feature 

learning from CNNs and temporal modeling from GRUs, 

deepfake detection systems equipped with GRUs demonstrate 

a comprehensive and synergistic approach to effectively 

differentiate between authentic and manipulated content in 

videos. 

Table 1:Deepfake Detection methods  summarized 

 

IV . DATASET 

 

The research on deepfake detection extensively 

employs various datasets designed specifically to detect 

manipulated content.  

 

A. Images Datasets: 

 

1. FFHQ (Flickr-Faces-HQ)::Contains 70,000 high-

quality face images generated by GANs, collected 

from the Flickr platform. Includes diverse accessories 

like eyeglasses and hats.[10] 

2. 100K-Faces:Comprises 100,000 unique human 

images generated using StyleGAN. [11] 

3. DFFD (Diverse Fake Face Dataset): Contains 

100,000 to 200,000 fake images generated by 

ProGAN and StyleGAN models, covering both male 

and female subjects aged 21 to 50.[12] 

4. CASIA-WebFace: Database with about 500,000 

images of 10,000 subjects, originally extracted from 

IMDB.[13] 

5. VGGFace2: Encompasses over three million face 

photos from over nine thousand subjects with 

comprehensive information such as ethnicity, age, 

and occupation.[14] 

 

B.Videos Datasets: 

 

1. The Eye-Blinking Dataset: Specifically designed for 

eye-blinking detection, consisting of 50 interviews 

per person with at least one eye blink. Each clip lasts 

approximately thirty seconds.[15] 

2. DeepfakeTIMIT: Comprises videos with swapped 

faces generated using GAN-based techniques, 

including lower and higher-quality models with 

different resolutions.[16] 

 

C.Other Notable Datasets: 

 

1. 8.HOHA-based dataset: Contains 600 videos 

randomly selected from the HOHA dataset and other 

deepfake videos from various video-hosting 

websites.[17] 

2. 9.Faceforensics and Faceforensics++: These datasets 

include manipulated videos using various face 

manipulation techniques like NeuralTextures, 

Face2Face, FaceSwap, and Deepfakes.[18][19] 

3. 10.DFDC (Deepfake Detection Challenge): A 

Facebook dataset with 5,000 videos from actors with 

manipulated face likenesses, categorized based on 

face swap quality.[20] 

4. 11.Celeb-DF: Features 5,639 high-quality videos of 

59 celebrities with diverse characteristics like 

ethnicity, age, and gender.[21] 

5. 12.DeeperForensics-1.0: A dataset containing 60,000 

videos of swapped faces collected from 100 actors, 

focusing on variations in expressions, poses, and 

lighting conditions.[22] 

6. 13.WildDeepfake: This dataset encompasses 7,314 

face sequences from real and deepfake videos 

extracted from various Internet sources to simulate 

real-world deepfake scenarios.[23] 

7. 14.Fake Face in the Wild (FFW): This consists of 

150 videos from YouTube that display digitally 

created fake content using GANs, CGI, and image 

tampering techniques.These datasets provide a wide 

array of manipulated and authentic content, enabling 

researchers to develop robust deepfake detection 

models by training and testing on diverse scenarios 

and manipulations.[24] 

 

 

 

https://github.com/NVlabs/stylegan
https://generated.photos/
https://github.com/NVlabs/ffhq-dataset
https://paperswithcode.com/dataset/casia-webface
https://www.tensorflow.org/datasets/catalog/vgg_face2
http://www.cs.albany.edu/%E2%88%BClsw/downloads.html
https://www.idiap.ch/en/dataset/deepfaketimit
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V. CHALLENGES 

 

The proliferation of deepfake content generated 

through various applications presents a significant challenge 

for academic researchers. The scarcity of high-quality datasets 

impedes the development of effective deep learning models, 

and existing methodologies struggle with scalability issues 

when transitioning from fragmented to larger datasets, leading 

to suboptimal performance. To address these challenges, there 

is a pressing need for the creation of scalable models capable 

of robustly handling diverse datasets. The future of deepfake 

detection hinges on developing models that exhibit both 

resilience and scalability, requiring innovative training 

approaches adaptable to varying data availability constraints. 

 

Furthermore, the rapid evolution of deepfake 

Generative Adversarial Network (GAN) models introduces an 

additional hurdle. The continuous development of GANs may 

produce previously unseen fake images and videos, eluding 

detection by existing deep learning models. Overcoming this 

challenge necessitates staying ahead of evolving deepfake 

techniques and consistently enhancing detection models to 

effectively address emerging threats. These challenges, 

encompassing dataset limitations, scalability issues, and the 

dynamic landscape of deepfake generation techniques, 

underline the urgency of developing adaptable and robust deep 

learning models to detect fake content effectively in an ever-

changing threat landscape. Researchers must collaboratively 

tackle these obstacles to pave the way for more effective, 

resilient, and scalable solutions in the ongoing battle against 

the proliferation of deepfake content. 

 

VI. CONCLUSION 

 

The field of deepfake detection confronts significant 

challenges despite advancements in deep learning techniques. 

The escalating quality of deepfakes necessitates improved 

detection methods, with current approaches needing 

refinement for better accuracy and scalability. Facial 

manipulation techniques coupled with deep learning pose 

risks, requiring automated detection due to their complexity. 

Our study introduced promising models like Eff-YNet and 

ResNet 3D, yet future research needs to focus on more 

comprehensive models capable of handling diverse deepfake 

generation algorithms. 

 

Winning solutions from the Deepfake Detection 

Challenge offer varying architectures that can contribute to 

robust detection methods. Future directions should explore 

comprehensive models integrating audio, motion, temporal 

consistency, and emotion features to bolster detection 

capabilities. Leveraging semi-supervised learning techniques 

could effectively address the rapid evolution of deepfake 

generators and their spread on social networks. 

 

The future landscape calls for dynamic and robust 

approaches that can efficiently identify evolving patterns 

linked to complex fake content production. Merging fake news 

and deepfake investigations becomes increasingly relevant, 

emphasizing the need for comprehensive exploration in both 

domains. The continual evolution and amalgamation of 

diverse methodologies will be crucial in effectively combating 

the proliferation of deepfake content in the digital realm. 

                   

REFERENCES 

 

[1] Kwok, A.O. and Koh, S.G. (2020) Deepfake: A Social 

Construction of Technology Perspective. Current Issues 

in Tourism, 1-

5.https://doi.org/10.1080/13683500.2020.1738357 

[2] Westerlund, M. (2019) The Emergence of Deepfake 

Technology: A Review. Technology Innovation 

Management Review, 9, 40-

53.https://doi.org/10.22215/timreview/1282 

[3] Güera, D. and Delp, E.J. (2018) Deepfake Video 

Detection Using Recurrent Neural Networks. 2018 15th 

IEEE International Conference on Advanced Video and 

Signal Based Surveillance (AVSS), Auckland, 27-30 

November 2018, 1-

6.https://doi.org/10.1109/AVSS.2018.8639163 

[4] Li, Y. and Lyu, S. (2018) Exposing Deepfake Videos by 

Detecting Face Warping Artifacts. 

[5] Yang, X., Li, Y. and Lyu, S. (2019) Exposing Deep Fakes 

Using Inconsistent Head Poses. 2019 IEEE International 

Conference on Acoustics, Speech and Signal Processing 

(ICASSP), Brighton, 12-17 May 2019, 8261-

8265.https://doi.org/10.1109/ICASSP.2019.8683164 

[6] Marra, F., Gragnaniello, D., Cozzolino, D. and Verdoliva, 

L. (2018) Detection of Gan-Generated Fake Images over 

Social Networks. 2018 IEEE Conference on Multimedia 

Information Processing and Retrieval (MIPR), Miami, 10-

12 April 2018, 384-

389.https://doi.org/10.1109/MIPR.2018.00084 

[7] Keras-VGGFace: VGGFace Implementation with Keras 

Framework.https://github.com/rcmalli/keras-vggface 

[8] CycleGAN.https://junyanz.github.io/CycleGAN/ 

[9] B. Dolhansky, J. Bitton, B. Pflaum, J. Lu, R. Howes, M. 

Wang, and C. C. Ferrer, “The deepfake detection 

challenge dataset,” arXiv preprint arXiv:2006.07397, 

2020. 

[10] https://github.com/NVlabs/stylegan 

[11] 100,000 Faces Generated by AI, 2018. 

https://generated.photos/ 

[12] https://github.com/NVlabs/ffhq-dataset 

https://doi.org/10.1080/13683500.2020.1738357
https://doi.org/10.22215/timreview/1282
https://doi.org/10.1109/AVSS.2018.8639163
https://doi.org/10.1109/MIPR.2018.00084
https://github.com/rcmalli/keras-vggface
https://junyanz.github.io/CycleGAN/
https://github.com/NVlabs/stylegan
https://generated.photos/
https://github.com/NVlabs/ffhq-dataset


IJSART - Volume 9 Issue 12 – DECEMBER 2023                                                                           ISSN [ONLINE]: 2395-1052 
 

Page | 238                                                                                                                                                                     www.ijsart.com 

 

[13] Yi, D., Lei, Z., Liao, S. and Li, S.Z. (2014) Learning Face 

Representation from Scratch. 

https://paperswithcode.com/dataset/casia-webface 

[14] https://doi.org/10.1109/FG.2018.00020https://www.tensor

flow.org/datasets/catalog/vgg_face2 

[15] http://www.cs.albany.edu/%E2%88%BClsw/downloads.h

tml 

[16] https://www.idiap.ch/en/dataset/deepfaketimit 

[17] D. G¨uera, E. J. Delp, Deepfake video detection using 

recurrent neural networks, in: 15th IEEE International 

Conference on Advanced Video and Signal Based 

Surveillance (AVSS), IEEE, 2018, pp. 1–6. 

[18] R. Andreas, C. Davide, V. Luisa, R. Christian, T. Justus, 

N. Matthias, Faceforensics: A large-scale video dataset 

for forgery detection in human faces, CoRR 

abs/1803.09179.  

[19] A. Rossler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, 

M. Nießner, Faceforensics++: Learning to detect 

manipulated facial images, in: Proceedings of the 

IEEE/CVF International Conference on Computer Vision, 

2019, pp. 1–11.  

[20] B. Dolhansky, R. Howes, B. Pflaum, N. Baram, C. 

Canton-Ferrer, The deepfake detection challenge (dfdc) 

preview dataset, ArXiv abs/1910.08854.  

[21] L. Yuezun, Y. Xin, S. Pu, Q. Honggang, L. Siwei, Celeb-

df: A largescale challenging dataset for deepfake 

forensics, in: Proceedings of the IEEE/CVF Conference 

on Computer Vision and Pattern Recognition, 2020, pp. 

3207–3216. 

[22] J. Liming, L. Ren, W. Wayne, Q. Chen, L. Chen Change, 

Deeperforensics1.0: A large-scale dataset for real-world 

face forgery detection, in: Proceedings of the IEEE/CVF 

Conference on Computer Vision and Pattern Recognition, 

2020, pp. 2889–2898. 

[23] B. Zi, M. Chang, J. Chen, X. Ma, Y.-G. Jiang, 

Wilddeepfake: A challenging real-world dataset for 

deepfake detection, in: Proceedings of the 28th ACM 

International Conference on Multimedia, 2020, pp. 2382–

2390.  

[24] A. Khodabakhsh, R. Ramachandra, K. Raja, P. Wasnik, 

C. Busch, Fake face detection methods: Can they be 

generalized?, in: 2018 international conference of the 

biometrics special interest group (BIOSIG), IEEE, 2018, 

pp. 1–6. 

[25] Deepfakes Detection Techniques Using Deep Learning: A 

Survey (scirp.org) 

[26] A Review of Deep Learning-based Approaches for 

Deepfake Content Detection (arxiv.org) 

[27] Detecting DeepFakes with Deep Learning (sjsu.edu) 

 

https://paperswithcode.com/dataset/casia-webface
https://doi.org/10.1109/FG.2018.00020
https://doi.org/10.1109/FG.2018.00020
https://www.tensorflow.org/datasets/catalog/vgg_face2
http://www.cs.albany.edu/%E2%88%BClsw/downloads.html
http://www.cs.albany.edu/%E2%88%BClsw/downloads.html
https://www.idiap.ch/en/dataset/deepfaketimit
https://www.scirp.org/journal/paperinformation?paperid=109149#:~:text=The%20model%20firsts%20use%20a,from%20the%20contest%20validation%20data
https://www.scirp.org/journal/paperinformation?paperid=109149#:~:text=The%20model%20firsts%20use%20a,from%20the%20contest%20validation%20data
https://arxiv.org/pdf/2202.06095.pdf
https://arxiv.org/pdf/2202.06095.pdf
https://scholarworks.sjsu.edu/cgi/viewcontent.cgi?article=1971&context=etd_projects

