
IJSART - Volume 9 Issue 12 – DECEMBER 2023 ISSN [ONLINE]: 2395-1052

Page | 213 www.ijsart.com

Design And Verification of An AMBA-APB Protocol

Based System In SOC Using UVM With Python

Regression Script

Mr. Gurubasava Shivanand Honnu1, Dr. Bhagya P2

1, 2 Associate Professor, Dept of Electronics & Communication Engineering
1, 2 Don Bosco Institute of Technology, Bengaluru, Karnataka-560074.

Abstract- The Project introduces the verification of the

Advanced Microcontroller Bus Architecture (AMBA) which

includes Advanced Peripheral Bus (APB) protocol in System

on Chip (SOC) Design. As per we know that Verilog is

outdated technology and System Verilog (SV) is come to

existence, in Present SV architecture has many issues with

efficiency and reusability and also taking huge time to Verify

the Design Effectively. As a result, UVM support and promises

all the requirements like high reusability, library files and

reducing the verification time.

The Designed AMBA-APB protocol will be verified

using UVM architecture and verify with N number of valid test

cases which create the same N number of log files which

includes the UVM verbosity and severity, this helps the

verification engineer about the statues of the design for

manufacture. When the log files are huge that even takes lot of

time to check, So the project also includes the feature of

Python Regression Script.

The Python Regression Script utilize all the log files

and takes a copy of all the important key results and make the

excel data sheet and prepare the bar chat by its own, which

helps for an effective analysis of the Design status, So the

Verification time reduces drastically.

Keywords- Universal Verification Methodology (UVM).

Design Under Test (DUT) , graphical user interface (GUI) ,

System on Chip (SOC). Advanced Peripheral Bus (APB)

Advanced Microcontroller Bus Architecture (AMBA)

I. INTRODUCTION

 A communication protocol is a set of rules and

conventions that govern how data is transmitted and received

between devices in a System on Chip (SOC). These protocols

define the format, timing, sequencing, and error handling

procedures necessary for successful data exchange.

Communication protocols are essential for enabling devices

from different manufacturers and with different functions to

communicate and collaborate effectively.

Purpose of Communication Protocols: Communication

protocols serve several essential purposes:

 Data Exchange: They enable devices to exchange

data, whether it's text, images, audio, or any other

form of information.

 Error Handling: Protocols include mechanisms for

detecting and correcting errors that may occur during

transmission.

 Efficiency: They optimize data transfer for speed,

bandwidth utilization, and minimal overhead.

 Interoperability: Communication protocols allow

devices from various vendors and technologies to

communicate seamlessly.

In this project we are using AMBA-APB Protocol as

a communication media between the devices. Advanced

Microcontroller Bus Architecture (AMBA) is the belongs to

ARM Developer. In this AMBA, we have various

communication protocol used inside the chip and we are using

Advanced Peripheral Bus (APB) as a communication

protocol in this project. APB Design is needed to test or verify

before chip manufacturing. So, we are using Universal

Verification Methodology (UVM).

The UVM is the updated verification tool to verify

this APB protocol DUT (Design Under Test). After verifying

the DUT, we will get huge test case (DUT check results) and

these test cases data is organized and have a key note in the

Microsoft Excel file with Bar chat using Python Regression

Script.

Regression analysis is a powerful statistical technique

used to understand and model the relationship between a

dependent variable (often referred to as the "target" or

"outcome") and one or more independent variables (often

referred to as "predictors" or "features"). It is a fundamental

IJSART - Volume 9 Issue 12 – DECEMBER 2023 ISSN [ONLINE]: 2395-1052

Page | 214 www.ijsart.com

tool in data science and machine learning tasks such as

prediction, forecasting, and understanding the impact of

variables on an outcome.

Python, as a versatile and popular programming

language, offers a wide range of libraries and tools that make

it a natural choice for performing regression analysis. With

libraries like xlsxwriter, openpyxl, orderedDict, NumPy and

pandas, you can easily implement various regression models,

visualize results, and draw valuable insights from the data.

Openpyxl support to generate the Bar chat from the specific

assigned data.

 AMBA-APB Communication Protocol

The (APB) Advanced Peripheral Bus forms an

integral part of the Advanced Microcontroller Bus

Architecture (AMBA) family and serves as a cost-effective

interface that has been optimized for low power consumption

and less complexity in interface. The APB is designed for

connect with peripherals that possess low bandwidth

requirements and less demand the high-performance

characteristic of a pipelined bus interface.

Notably, the APB follows an unpipelined protocol,

meaning that all signal transitions are synchronized with the

clock rising edge. This design choice facilitates the seamless

integration of APB peripherals into various design workflows.

It's important to note that each data transfer within the APB

framework consumes at least two clock cycles. The below Fig

1 shows the state diagram of AMBA-APB protocol. The

complete way of designing the DUT is based on this sate

diagram.

Fig. 1 State diagram of AMBA-APB Protocol

The finite state machine within the system functions according

to the following states:

1. IDLE: This represents the default and initial state of

the APB.

2. SETUP: When a data transfer is needed, the bus

transitions to the SETUP state, during which the

relevant select signal, denoted as PSELx, is activated.

It's noteworthy that the bus stays in the SETUP state

for just one clock cycle, invariably advancing to the

ACCESS state on the subsequent rising edge of the

clock.

3. ACCESS: In the ACCESS state, the enable signal,

known as PENABLE, is activated. During the

transition from the SETUP state to the ACCESS

state, it is imperative that the address, write, select,

and write data signals remain steady and unchanged.

Exiting the ACCESS state is governed by the

PREADY signal received from the slave device:

 If the slave device holds PREADY at a LOW level,

the peripheral bus will persist in the ACCESS state.

 Conversely, if the slave device drives PREADY to a

HIGH state, the ACCESS state concludes, and the

bus returns to the IDLE state if no further transfers

are necessary. Alternatively, if another transfer is

required, the bus directly transitions to the SETUP

state.

II. PROBLEM FORMULATION AND OBJECTIVE

The Updated technology has lot of efficiency,

reusability and less Processing time which is very important in

competitive world. UVM is the helps for Digital verification

and Python regression script helps to check the status of lakhs

of data in few seconds.

The main goal of this project is to reduce the

execution time or processing time of a VLSI Digital Circuit

verification using UVM and Python Regression Script.

III. PROPOSED METHODOLOGY

The basic idea behind the new approach is to use a

updated architecture that is UVM (Universal Verification

Methodology) and Python Based Code for Excel sheet and Bar

chat generation

UVM Testbench Architecture: Testbench or Verification

Environment is used to check the functional correctness of

the Design Under Test (DUT) by generating and driving a

predefined input sequence to a design, capturing the design

output and comparing with-respect-to expected output.

IJSART - Volume 9 Issue 12 – DECEMBER 2023 ISSN [ONLINE]: 2395-1052

Page | 215 www.ijsart.com

Verification environment is a group of class’s performing

specific operation. i.e, generating stimulus, driving,

monitoring, etc. and those classes will be named based on the

operation. The below Fig 2 shows the UVM testbench

architecture which helps the design verification to write the

code according to the architecture.

Fig. 2UVM Testbench Architecture

The Universal Verification Methodology (UVM) is a

widely adopted standard for creating robust and reusable

testbenches in the field of semiconductor design verification.

UVM provides a structured and standardized approach to

creating testbenches, making it easier to design, simulate, and

verify complex digital hardware designs. UVM testbench

architecture typically follows a hierarchical and modular

structure. Here's an overview of the key components and

layers in a UVM testbench architecture:

 Testbench Hierarchy:

Testbench: The top-level component that instantiates and

manages all other components in the testbench.

DUT (Device Under Test): The hardware design being

verified. The DUT is connected to the testbench through

interfaces or ports.

 Test Sequences:

Test Sequence: Represents a specific verification scenario or

test case. It defines a sequence of transactions to be applied to

the DUT.

Sequencer: Manages the scheduling and execution of test

sequences. Multiple sequencers may be used for different

types of sequences.

Sequence Item: Represents a single transaction or data item to

be transferred to or from the DUT.

 Drivers and Monitors:

Driver: Sends transactions generated by the sequencer to the

DUT's input ports or interfaces.

Monitor: Observes transactions on the DUT's output ports or

interfaces and converts them into transaction objects for

analysis.

 Interfaces and Agents:

Interface: Represents a specific communication protocol or

bus interface between the testbench and the DUT. It defines

signal and data lines.

Agent: Combines a driver and a monitor for a specific

interface. Multiple agents may be used to interface with

different parts of the DUT.

 Scoreboard and Coverage:

Scoreboard: Compares the expected results (golden reference

model) with the actual results produced by the DUT. It checks

the correctness of the DUT's behavior.

Coverage Collector: Collects coverage data to ensure that

different parts of the design have been adequately exercised by

the test cases.

 Configuration and Control:

Test Configuration: Specifies the parameters and settings for a

test case, such as clock frequencies, test duration, and test

conditions.

Test Control: Coordinates the execution of different test cases

and manages the overall testbench control flow.

 Functional Coverage:

Coverage Models: Define coverage bins and points of interest

in the design. These helps track which parts of the design have

been tested.

Coverage Goals: Define specific coverage objectives that must

be met to consider a test case complete.

 Assertions and Checkers:

Assertions: Specify design constraints or requirements that

must hold true during simulation. Assertions are used to catch

design bugs.

Checkers: Monitor and verify that assertions are satisfied

during simulation.

 Logging and Reporting:

IJSART - Volume 9 Issue 12 – DECEMBER 2023 ISSN [ONLINE]: 2395-1052

Page | 216 www.ijsart.com

Logging: Records simulation activity, including important

events, messages, and warnings for debugging and analysis.

Reporting: Generates test results, coverage reports, and other

verification metrics.

 Testbenches Components:

These are the building blocks of the testbench and

can be customized and extended to suit the specific needs of

the verification project.

UVM encourages the use of object-oriented

programming principles, such as inheritance and

polymorphism, to create reusable and modular testbench

components. By structuring the verification environment in

this way, engineers can more effectively verify complex

hardware designs and achieve better reusability and

maintainability of their testbenches.

IV. RESULTS

In this section we will discuss the implementation

results of our proposed methodology. Here we will explain

each intermediate output of our proposed methodology, and

also the final results from verification tool and results of

python regression script.

 AMBA-APB Write and Read Transfer

APB write and read transfer test case results are

shown in Fig 4.3. In waveform we can see the random

sequence_item values of data and address [paddr = 1b, pwrite

= 816f9bee] this write operation happens only when pwrite =

1. After that read operation of same memory happen and DUT

stored value of address “1b” is “816f9bee” will sent to

monitor to check whether the received data is right or wrong

through scoreboard.

Fig. 3Simulation output of Write and Read Transfer.

 Python Regression Script

We import the necessary libraries which includes re,

os, OrderedDict, xlsxwriter, openpyxl and filedialog for File

open, compare each line, generate Excel file and generate Bar

chart using data. The Fig 4 shows the List of Library files

Python 3.11 (64-bit) software do follow works with respect to

code execution: -

 Firstly, python Code Open the File Dialog when it

starts executing, which is shown in Fig 4.

 User need to select the UVM log files. The user has

full freedom to select any number of files at once and

even in any file folder.

 Python code automatically read each file one by one

and start checking the error status of each file.

 In each file keys data is collected and make a note on

the excel sheet automatically and Microsoft excel

sheet has huge data base of all selected files, seed

values, error value and fatal values

 Another key role of the python code is to check the

error status of each file in data base and decide the

Pass and Fail of each file

 The code itself take the excel data and prepare the bar

chart which helps to analysis hundreds of test results

at ones which is shown in Fig 5.

Fig. 4 Command Prompt, File Dialog and Files in folder

Fig. 5Python Final Report with Bar Chart

IJSART - Volume 9 Issue 12 – DECEMBER 2023 ISSN [ONLINE]: 2395-1052

Page | 217 www.ijsart.com

The above Fig 5 has complete information of 15

AMBA-APB log files. The Figure also shows the Pass

percentage and Fail percentage of the 15 log files.

Applications: The Universal Verification Methodology is a

standard verification methodology used in the semiconductor

industry to verify the complex digital designs. In this Project

there are mainly two different way of applications - one is

Chip manufacturing and other is Data Processing and analysis.

 In manufacture of APB based SOC chip.

 For interface with other Protocol like AHB, AXI and

even PCIe Protocol.

 UVM and even System Verilog log file analysis

using script.

 Helpful for other Protocol framework design.

V. CONCLUSION AND FUTURE SCOPE

The proposed UVM is a robust methodology for

verifying complex digital designs, and it can be effectively

used to verify the correct operation of the APB protocol in a

larger system context. UVM's structured approach and support

for reusable components make it a valuable tool for ensuring

the correctness and reliability of designs that incorporate the

APB protocol.

Python provides a versatile and powerful

environment for performing regression analysis on various

types of data. Depending on the nature of the problem and the

data, you can choose from a range of regression techniques

and libraries to build accurate models and draw meaningful

insights from your data. Proper data preprocessing, model

selection, and interpretation of results are key to successful

regression analysis in Python.

Finally, This Project helpful for future updated

version of APB protocol and even other protocol like AHB

Protocol (Advanced High-performance Bus), AXI Protocol

(Advanced eXtensible Interface) and other AMBA protocols

family.

VI. ACKNOWLEDGEMENT

I take this opportunity to convey my gratitude to all

those who have been kind enough to offer their advice and

provide assistance when needed which has led to the

successful completion of the Project work.

I consider my cardinal duty to express the deepest

sense of gratitude to my project guide Dr. BHAGYA P,

Associate Professor, Department of Electronics and

Communication Engineering, DBIT, for his skillful guidance,

constant supervision, timely suggestion and constructive

criticism in successful completion of my project in time.

I would also thank my parents for all support and

encouragement and blessings they gave me all the way that

kept me going, without which nothing would have been

possible. I also thank all the other faculty members of E&C

Department of DBIT and my friends for their help and support

REFERENCES

[1] Research and Implementation of an automatic

simulation tool - By Liu Tang, You Li, Hongwei Wang,

Huan Zhao, Luze Ma, Yuming Sun from Beijing Sunwise

Information Technology Ltd, China Published Paper on

2020 7Th international Conference on Dependable

Systems and Their application (DSA).

[2] Development of a Generic and a Reconfigurable

UVM-Based Verification Environment for SoC Buses -

By Alaa Hussien, Samar Mohamed, Mohamed Soliman,

Hager Mostafa, Khaled Salah, Mohamed Dessouky,

Hassan Mostafa Department of electronics and

communications, faculty of engineering, Ain Shams

University, Cairo, Egypt. Mentor Graphics, Cairo, Egypt.

Electronics and Communications Engineering

Department, Cairo University, Giza.

[3] Design of Generic Verification Procedure for IIC

Protocol in UVM – By Jaideep Varier EV, Prabakar.V,

Karthigha Balamurugan from Department of Electronics

and Communication Engineering Amrita School of

Engineering, Coimbatore Amrita Vishwa Vidyapeetham,

India

[4] Extraction of information from log files – By Filipe

Rigueira, Jorge Bernardino, Isabel Pedrosa from Coimbra

Business School | ISCAC, Portugal

[5] Predicting Student’s Final Graduation CGPA Using

Data Mining and Regression Methods: A Case Study of

Kano Informatics Institute – by Salim Jibrin Danbatta and

Asaf Varol

