
IJSART - Volume 9 Issue 10 – OCTOBER 2023 ISSN [ONLINE]: 2395-1052

Page | 97 www.ijsart.com

Load Balancing On Destruction Hybrid Wireless Network Using

DTRP For High Bandwidth Data Transmission In Mobile Sensor

Network

Raghavendiran N

Jayam College of Engineering and Technology

I. INTRODUCTION

1.1 AN OVERVIEW

 In the hybrid WSN, node of energy consumption is

important for every sensor node because it extends hybrid

WSN life. The Wireless sensor network is a collection of all

sensors which spread over huge geographic area. As sensors

are spread in large area and huge in number, the occurrences

of faults in the network are also find. Hence to find out the

fault node and to replace the fault node an algorithm is

proposed. This paper proposes different algorithm to increase

the lifetime of a hybrid wireless sensor networks when some

of the sensor nodes fail down using the algorithm can result in

some replacements of sensor nodes and used routing path.

Thus, the algorithm enhances the hybrid WSN lifetime and

reduces the change of the sensor nodes. A hybrid wireless

network combination of a mobile ad-hoc network and an

infrastructure wireless network and finally enhances the

capacity of a wide area wireless network. Routing protocol is

an important component that affects the strength of a wireless

network in data transmission. Routing path in hybrid wireless

networks combination of the cellular Transmission Mode

(BSTransmission Mode) in Ad-Hoc transmission mode and

infrastructure wireless networks the in mobile ad- hoc

networks.

1. Load Balancing Algorithm: It propose a load balancing

scheme called iCAR for cellular networks, which places ad

hoc relay nodes at strategic locations to relay traffic from

congested cells to noncongested ones.

2. Wireless Network with RRP algorithm: It consider the

Multistage Multiplane Clos-Network based switch by Chao et

a. It is designed IN five stages of switch modules with top-

level architecture same as to external input or output ports.

The first and final stages Clos are contain of input De-

Multiplexers and output multiplexers, having similar internal

structures and various wireless sensors. This algorithm

generates the grade number and routing table, a set of

acquaintance nodes and payload value each sensor node.

1.2 MODULES

 Server

 Client

 DTR

 Load Balncing

1.2.1 MODULE DESCRIPTION:

1. Sever

Server is the souce mechine. it is usused to send the

data from the admin. those datss datas are sending through

acknlodgemnt. Server can monitoring the client data through

routing path. Since BSes are connected with a wired

backbone, we assume that there are no bandwidth and power

constraints on transmissions between BSes. We use

intermediate nodes to denote relay nodes that function as

gateways connecting an infrastructure wireless network and a

mobile ad-hoc network.We assume every mobile node is dual-

mode; that is, it has ad-hoc network interface such as a WLAN

radio interface and infrastructure network interface. DTR aims

to shift the routing burden from the adhoc network to the

infrastructure network by taking advantage of widespread base

stations in a hybrid wireless network. Rather than using one

multi-hop path to forward a message to one BS, DTR uses at

most two hops to relay the segments of a message to different

BSes in a distributed manner, and relies on BSes to combine

the segments.

2. Client

Client is a destination mechine,to receive the server

data sequentially. It receives the data through router form of

packets. In this module, we develop it in Router. When a

source node wants to transmit a message stream to a

destination node, it divides the message stream into a number

of partial streams called segments and transmits each segment

to a neighbor node. Upon receiving a segment from the source

node, a neighbor node locally decides between direct

transmission and relay transmission based on the QoS

requirement of the application. The neighbor nodes forward

these segments in a distributed manner to nearby BSes.

Relying on the infrastructure network routing, the BSes further

transmit the segments to the BS where the destination node

IJSART - Volume 9 Issue 10 – OCTOBER 2023 ISSN [ONLINE]: 2395-1052

Page | 98 www.ijsart.com

resides. The final BS rearranges the segments into the original

order and forwards the segments to the destination. It uses the

cellular IP transmission method to send segments to the

destination if the destination moves to another BS during

segment transmission.

A long routing path will lead to high overhead, hot

spots and low reliability. Thus, DTR tries to limit the path

length. It uses one hop to forward the segments of a message

in a distributed manner and uses another hop to find high-

capacity forwarder for high performance routing.

3. DTR

DTR is a Distributed Three-hop Routing protocol, it

is used to splitting the data stream into segments and transmits

the segments in a distributed manner. It also reduces overhead

due to short path lengths and the elimination of route

discovery and maintenance. As a result, DTR limits the path

length of uplink routing to two hops in order to avoid the

problems of long-path multi-hop routing in the ad-hoc

networks. Specifically, in the uplink routing, a source node

initially divides its message stream into a number of segments,

then transmits the segments to its neighbor nodes. The

neighbor nodes forward segments to BSes, which will forward

the segments to the BS where the destination resides.Below,

we first explain how to define capacity, then introduce the way

for a node to collect the capacity information from its

neighbors, and finally present the details of the DTR routing

algorithm.

4. Load balncing

This is last module in this project for balancing the

load using conjestion control algorithm. these divides the huge

load between the base stations for send the data very fast and

efficient manner. We propose a congestion control algorithm

to avoid overloading BSes in uplink transmission and

downlink transmission, respectively. In order to reduce the

broadcasting overhead, a mobile node residing in the region of

a BS not close to the destination BS drops the query. The

nodes can determine their approximate relative positions to

BSes by sensing the signal strengths from different BSes.

Each node adds the strength of its received signal into its

beacon message that is periodically exchanged between

neighbor nodes so that the nodes can identify their relative

positions to each other. Only those mobile nodes that stay

farther than the query forwarder from the forwarder’s BS

forward the queries in the direction of the destination BS. In

this way, the query can be forwarded to the destination BS

faster.

1.3 OBJECTIVES

 DTR also has a congestion control algorithm to

balance the traffic load between the nearby BSes in

order to avoid traffic congestion at BSes.

 Using self-adaptive and distributed routing with high-

speed and short-path ad-hoc transmission, DTR

significantly increases the throughput capacity and

scalability of hybrid wireless networks

 This project proposed using ad-hoc relay stations to

dynamically relay traffic from one cell to another in

order to avoid traffic congestion in BSes.

 We use intermediate n- odes to denote relay nodes

that function as gateways connecting an

infrastructure wireless network and a mobile ad-hoc

network.

II. SYSTEM STUDY

2.1 EXISTING SYSTEM

A hybrid wireless network synergistically combines

an infrastructure wireless network and a mobile adhoc

network to leverage their advantages and overcome their

shortcomings, and finally increases the throughput capacity of

a wide-area wireless network. A routing protocol is a critical

component that affects the throughput capacity of a wireless

network in data transmission. Most current routing protocols

in hybrid wireless networks simply combine the cellular

transmission mode (i.e. BS transmission mode) in

infrastructure wireless networks and the ad-hoc transmission

mode in mobile ad-hoc networks.

The protocols use the multi-hop routing to forward a message

to the mobile gateway nodes that are closest to the BSes or

have the highest bandwidth to the BSes. The bandwidth of a

channel is the maximum throughput (i.e., transmission rate in

bits/s) that can be achieved. The mobile gateway nodes then

forward the messages to the BSes, functioning as bridges to

connect the ad-hoc network and the infrastructure network.

2.1.1 DRAWBACKS OF EXISTING SYSTEM

 Direct combination of the two transmission modes

inherits the following problems that are rooted in the

ad-hoc transmission mode.

 High overhead: Route discovery and maintenance

incur high overhead. The wireless random access

medium access control (MAC) required in mobile ad-

hoc networks, which utilizes control handshaking and

a back-off mechanism, further increases overhead.

 Hot spots: The mobile gateway nodes can easily

become hot spots. The RTS-CTS random access, in

IJSART - Volume 9 Issue 10 – OCTOBER 2023 ISSN [ONLINE]: 2395-1052

Page | 99 www.ijsart.com

which most traffic goes through the same gateway,

and the flooding employed in mobile ad-hoc routing

to discover routes may exacerbate the hot spot

problem. In addition, mobile nodes only use the

channel resources in their route direction, which may

generate hot spots while leave resources in other

directions under-utilized. Hot spots lead to low

transmission rates, severe network congestion, and

high data dropping rates.

 Low reliability: Dynamic and long routing paths lead

to unreliable routing. Noise interference and neighbor

interference during the multi-hop transmission

process cause a high data drop rate. Long routing

paths increase the probability of the occurrence of

path breakdown due to the highly dynamic nature of

wireless ad-hoc networks.

2.2 PROPOSED SYSTEM

Considering the widespread BSes, the mobile nodes

have a high probability of encountering a BS while moving.

Taking advantage of this feature, we propose a Distributed

Three-hop Data Routing protocol (DTR). In DTR a source

node divides a message stream into a number of segments.

Each segment is sent to a neighbor mobile node. Based on the

QoS requirement, these mobile relay nodes choose between

direct transmission or relay transmission to the BS. In relay

transmission, a segment is forwarded to another mobile node

with higher capacity to a BS than the current node. In direct

transmission, a segment is directly forwarded to a BS.

In the infrastructure, the segments are rearranged in

their original order and sent to the destination. The number of

routing hops in DTR is confined to three, including at most

two hops in the ad-hoc transmission mode and one hop in the

cellular transmission mode. To overcome the aforementioned

shortcomings, DTR tries to limit the number of hops. The first

hop forwarding distributes the segments of a message in

different directions to fully utilize the resources, and the

possible second hop forwarding ensures the high capacity of

the forwarder. DTR also has a congestion control algorithm to

balance the traffic load between the nearby BSes in order to

avoid traffic congestion at BSes.

2.2.1 ADVANTAGES OF PROPOSED SYSTEM

 Using self-adaptive and distributed routing with high

speed and short-path ad-hoc transmission, DTR

significantly increases the throughput capacity and

scalability of hybrid wireless networks by

overcoming the three shortcomings of the previous

routing algorithms. It has the following features:

 Low overhead: It eliminates overhead caused by

route discovery and maintenance in the ad-hoc

transmission mode, especially in a dynamic

environment.

 Hot spot reduction: It alleviates traffic congestion at

mobile gateway nodes while makes full use of

channel resources through a distributed multi-path

relay.

 High reliability: Because of its small hop path length

with a short physical distance in each step, it

alleviates noise and neighbor interference and avoids

the adverse effect of route breakdown during data

transmission. Thus, it reduces the packet drop rate

and makes full use of spacial reuse, in which several

source and destination nodes can communicate

simultaneously without interference.

III. SYSTEM REQUIREMENTS

3.1 HARDWARE REQUIREMENTS

 System : Core i5

 Hard Disk : 500 GB

 Monitor : 17 LED

 Mouse : Optical

 Ram : 4GB

3.2 SOFTWARE REQUIREMENTS

 Operating system : Windows XP/7.

 Coding Language : C#.net

 Tool : Visual Studio

2010

IV. SOFTEWRE ANALYSIS

4.1. Net framework

The .NET Framework is many things, but it is

worthwhile listing its most important aspects. A Platform

designed from the start for writing Internet-aware and

Internet-enabled applications that embrace and adopt open

standards such as XML, HTTP, and SOAP.

A Platform that provides a number of very rich and

powerful application development technologies, such as

Windows Forms, used to build classic GUI applications, and

of course ASP.NET, used to build web applications.

A Platform with an extensive class library that

provides extensive support for date access (relational and

IJSART - Volume 9 Issue 10 – OCTOBER 2023 ISSN [ONLINE]: 2395-1052

Page | 100 www.ijsart.com

XML), director services, message queuing, and much more. A

platform that has a base class library that contains hundreds of

classes for performing common tasks such as file

manipulation, registry access, security, threading, and

searching of var char using regular expressions.

A platform that doesn’t forget its origins, and has

great interoperability support for existing components that you

or third parties have written, using COM or standard DLLs.

4.1.1 Interoperability

Because computer systems commonly require

interaction between newer and older applications, .NET

Framework provides means to access functionality

implemented in newer and older programs that execute outside

.NET environment. Access to COM components is provided

in System.Runtime.InteropServices andSystem.EnterpriseServ

ices namespaces of the framework; access to other

functionality is achieved using the P/Invoke feature.

4.1.2 Common Language Runtime engine

Common Language Runtime (CLR) serves as the

execution engine of .NET Framework. All .NET programs

execute under the supervision of CLR, guaranteeing certain

properties and behaviors in the areas of memory management,

security, and exception handling.

4.1.3 Language independence

.NET Framework introduces a Common Type System, or

CTS. CTS specification defines all

possible datatypes and programming constructs supported by

CLR and how they may or may not interact with each other

conforming to Common Language Infrastructure (CLI)

specification. Because of this feature, .NET Framework

supports the exchange of types and object instances between

libraries and applications written using any conforming .NET

language.

4.1.4Framework Class Library

Framework Class Library (FCL) is a library of

functionality available to all languages using .NET

Framework. FCL provides classes that encapsulate a number

of common functions, including file reading and

writing, graphicrendering, database interaction, XML docume

nt manipulation, and so on. It consists of classes, interfaces of

reusable types that integrates CLR.

4.1.5 Simplified deployment

.NET Framework includes design features and tools

which help manage the installation of computer software to

ensure that it does not interfere with previously installed

software, and that it conforms to security requirements.

4.2 Common Language Runtime (CLR)

The CLR is described as the “execution engine” of

.NET. It provides the environment within which programs run.

The most important features are

 Conversion from a low-level assembler-style

language, called Intermediate Language (IL), into

code native to the platform being executed on.

 Memory management, notably including garbage

collection.

 Checking and enforcing security restrictions on the

running code.

 Loading and executing programs, with version

control and other such features.

 The following features of the .NET framework are

also worth description:

4.21 Managed Code

The code that targets .NET, and which contains

certain extraInformation - “metadata” - to describe itself.

Whilst both managed and unmanaged code can run in the

runtime, only managed code contains the information that

allows the CLR to guarantee, for instance, safe execution and

interoperability.

4.2.2 Managed Data

With Managed Code comes Managed Data. CLR

provides memory allocation and Deal location facilities, and

garbage collection. Some .NET languages use Managed Data

by default, such as C#, Visual Basic.NET and JScript.NET,

whereas others, namely C++, do not. Targeting CLR can,

depending on the language you’re using, impose certain

constraints on the features available. As with managed and

unmanaged code, one can have both managed and unmanaged

data in .NET applications - data that doesn’t get garbage

collected but instead is looked after by unmanaged code.

4.2.3 Common Type System

 The CLR uses something called the Common Type

System (CTS) to strictly enforce type-safety. This ensures that

all classes are compatible with each other, by describing types

in a common way. CTS define how types work within the

runtime, which enables types in one language to interoperate

http://en.wikipedia.org/wiki/Component_Object_Model
http://en.wikipedia.org/wiki/Platform_Invocation_Services
http://en.wikipedia.org/wiki/Common_Language_Runtime
http://en.wikipedia.org/wiki/Common_Type_System
http://en.wikipedia.org/wiki/Specification
http://en.wikipedia.org/wiki/Datatypes
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Common_Language_Infrastructure
http://en.wikipedia.org/wiki/List_of_CLI_languages
http://en.wikipedia.org/wiki/List_of_CLI_languages
http://en.wikipedia.org/wiki/Framework_Class_Library
http://en.wikipedia.org/wiki/Class_(computer_science)
http://en.wikipedia.org/wiki/Computer_file
http://en.wikipedia.org/wiki/Rendering_(computer_graphics)
http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/Installation_(computer_programs)

IJSART - Volume 9 Issue 10 – OCTOBER 2023 ISSN [ONLINE]: 2395-1052

Page | 101 www.ijsart.com

with types in another language, including cross-language

exception handling. As well as ensuring that types are only

used in appropriate ways, the runtime also ensures that code

doesn’t attempt to access memory that hasn’t been allocated to

it.

4.2.4 Common Language Specification

 The CLR provides built-in support for language

interoperability. To ensure that you can develop managed code

that can be fully used by developers using any programming

language, a set of language features and rules for using them

called the Common Language Specification (CLS) has been

defined. Components that follow these rules and expose only

CLS features are considered CLS-compliant.

4.2.5 Class Library

.NET provides a single-rooted hierarchy of classes,

containing over 7000 types. The root of the namespace is

called System; this contains basic types like Byte, Double,

Boolean, and String, as well as Object. All objects derive from

System. Object. As well as objects, there are value types.

Value types can be allocated on the stack, which can provide

useful flexibility. There are also efficient means of converting

value types to object types if and when necessary.

The set of classes is pretty comprehensive, providing

collections, file, screen, and network I/O, threading, and so on,

as well as XML and database connectivity.

The class library is subdivided into a number of sets

(or namespaces), each providing distinct areas of functionality,

with dependencies between the namespaces kept to a

minimum.

4.3 C# Introduction

C# is an elegant and type-safe object-oriented

language that enables developers to build a variety of secure

and robust applications that run on the .NET Framework. You

can use C# to create Windows client applications, XML Web

services, distributed components, client-server applications,

database applications, and much, much more. Visual C#

provides an advanced code editor, convenient user interface

designers, integrated debugger, and many other tools to make

it easier to develop applications based on the C# language and

the .NET Framework.

C# syntax is highly expressive, yet it is also simple

and easy to learn. The curly-brace syntax of C# will be

instantly recognizable to anyone familiar with C, C++ or Java.

Developers who know any of these languages are typically

able to begin to work productively in C# within a very short

time. C# syntax simplifies many of the complexities of C++

and provides powerful features such as nullable value types,

enumerations, delegates, lambda expressions and direct

memory access, which are not found in Java. C# supports

generic methods and types, which provide increased type

safety and performance, and iterators, which enable

implementers of collection classes to define custom iteration

behaviors that are simple to use by client code. Language-

Integrated Query (LINQ) expressions make the strongly-typed

query a first-class language construct.

As an object-oriented language, C# supports the

concepts of encapsulation, inheritance, and polymorphism. All

variables and methods, including the Main method, the

application's entry point, are encapsulated within class

definitions. A class may inherit directly from one parent class,

but it may implement any number of interfaces. Methods that

override virtual methods in a parent class require

the override keyword as a way to avoid accidental

redefinition. In C#, a struct is like a lightweight class; it is a

stack-allocated type that can implement interfaces but does not

support inheritance.

In addition to these basic object-oriented principles,

C# makes it easy to develop software components through

several innovative language constructs, including the

following:

 Encapsulated method signatures called delegates,

which enable type-safe event notifications.

 Properties, which serve as accessors for private

member variables.

 Attributes, which provide declarative metadata about

types at run time.

 Inline XML documentation comments.

 Language-Integrated Query (LINQ) which provides

built-in query capabilities across a variety of data

sources.

If you have to interact with other Windows software

such as COM objects or native Win32 DLLs, you can do this

in C# through a process called "Interop." Interop enables C#

programs to do almost anything that a native C++ application

can do. C# even supports pointers and the concept of "unsafe"

code for those cases in which direct memory access is

absolutely critical.

The C# build process is simple compared to C and

C++ and more flexible than in Java. There are no separate

header files, and no requirement that methods and types be

IJSART - Volume 9 Issue 10 – OCTOBER 2023 ISSN [ONLINE]: 2395-1052

Page | 102 www.ijsart.com

declared in a particular order. A C# source file may define any

number of classes, structs, interfaces, and events.

The following are additional C# resources:

 For a good general introduction to the language, see

Chapter 1 of the C# Language Specification.

 For detailed information about specific aspects of the

C# language, see the C# Reference.

 For more information about LINQ, see LINQ

(Language-Integrated Query).

 To find the latest articles and resources from the

Visual C# team, see the Visual C# Developer Center.

5.4.1 .NET Framework Platform Architecture

C# programs run on the .NET Framework, an integral

component of Windows that includes a virtual execution

system called the common language runtime (CLR) and a

unified set of class libraries. The CLR is the commercial

implementation by Microsoft of the common language

infrastructure (CLI), an international standard that is the basis

for creating execution and development environments in

which languages and libraries work together seamlessly.

Source code written in C# is compiled into an

intermediate language (IL) that conforms to the CLI

specification. The IL code and resources, such as bitmaps and

strings, are stored on disk in an executable file called an

assembly, typically with an extension of .exe or .dll. An

assembly contains a manifest that provides information about

the assembly's types, version, culture, and security

requirements.

When the C# program is executed, the assembly is

loaded into the CLR, which might take various actions based

on the information in the manifest. Then, if the security

requirements are met, the CLR performs just in time (JIT)

compilation to convert the IL code to native machine

instructions. The CLR also provides other services related to

automatic garbage collection, exception handling, and

resource management. Code that is executed by the CLR is

sometimes referred to as "managed code," in contrast to

"unmanaged code" which is compiled into native machine

language that targets a specific system. The following diagram

illustrates the compile-time and run-time relationships of C#

source code files, the .NET Framework class libraries,

assemblies, and the CLR.

Language interoperability is a key feature of the

.NET Framework. Because the IL code produced by the C#

compiler conforms to the Common Type Specification (CTS),

IL code generated from C# can interact with code that was

generated from the .NET versions of Visual Basic, Visual

C++, or any of more than 20 other CTS-compliant languages.

A single assembly may contain multiple modules written in

different .NET languages, and the types can reference each

other just as if they were written in the same language.

In addition to the run time services, the .NET

Framework also includes an extensive library of over 4000

classes organized into namespaces that provide a wide variety

of useful functionality for everything from file input and

output to string manipulation to XML parsing, to Windows

Forms controls. The typical C# application uses the .NET

Framework class library extensively to handle common

"plumbing" chores.

For more information about the .NET Framework,

see Overview of the Microsoft .NET Framework.

5.4.2 C# (C Sharp) Meaning

C# is a general object-oriented programming (OOP)

language for networking and Web development. C# is

specified as a common language infrastructure (CLI)

language.

http://msdn.microsoft.com/en-us/library/ms228593.aspx
http://msdn.microsoft.com/en-us/library/618ayhy6.aspx
http://msdn.microsoft.com/en-us/library/bb397926.aspx
http://msdn.microsoft.com/en-us/library/bb397926.aspx
http://go.microsoft.com/fwlink/?LinkId=47811
javascript:void(0)
http://msdn.microsoft.com/en-us/library/ms687307.aspx

IJSART - Volume 9 Issue 10 – OCTOBER 2023 ISSN [ONLINE]: 2395-1052

Page | 103 www.ijsart.com

In January 1999, Dutch software engineer Anders

Hejlsberg formed a team to develop C# as a complement to

Microsoft’s NET framework. Initially, C# was developed as

C-Like Object Oriented Language (Cool). The actual name

was changed to avert potential trademark issues. In January

2000, NET was released as C#. Its NET framework promotes

multiple Web technologies.

 C# and .NET Programming demonstrates a very

simple C# program that prints the text string "Hello World!"

to the console screen and provides a line-by-line analysis of

that program. However, even that simple program was

complex enough that we had to skip some of the details. In

this chapter, we'll begin an in-depth exploration of the syntax

and structure of the C# language. The syntax of a language is

the order of the keywords, where you put semicolons, and so

forth. The semantics are what you are expressing in the code,

and how your code fits together. Syntax is trivial and

unimportant, but because compilers are absolute sticklers for

correct syntax, novice programmers pay a lot of attention to

syntax until they are comfortable. Fortunately, Visual Studio

2008 makes managing syntax much easier so that you can

focus on semantics, which are far more important.

In this chapter, we'll introduce statements and

expressions, the building blocks of any program. You'll learn

about variables and constants, which let you store values for

use in your program. We'll also begin an explanation of types,

and we'll take a look at strings, which you saw briefly in the

Hello World program. This is all very basic stuff, but it's the

foundation you need to start getting fancy. Without variables,

your applications can't actually process any data. All variables

need types, and variables are used in expressions. You'll see

how neatly this all fits together.

 C# is a modern language created by Microsoft as

part of its .NET platform of languages. .NET is a layer of

software that makes it easier for you to write programs that

can communicate with the operating system (in this case,

Windows). As the name implies, C# has its roots in C++, but

over three versions, it has evolved its own techniques and

elements that make it distinct. Most important, C# has the

backing of the .NET Framework behind it, which we'll get into

shortly. We're not going to assume that you have any C++

experience, so we won't frame our discussions of C# in terms

of C++, or any other programming language. What you need

to know right now is that you can write applications in C# that

will do just about anything you need to do. You can write

applications to manage your company's inventory (interacting

with a database); you can write applications to analyze

documents; you can write games; you can create an entire

operating system in C# if you have a mind to. The .NET

Framework allows C# to operate seamlessly with Windows,

and take advantage of the familiar Windows features that users

all over the world already know. You can also create C#

applications that you can use on the Web, in much the same

way.

To be completely honest, most modern object-

oriented languages are rather similar underneath. The choice

of one over the other is usually just a matter of personal

preference. C# and Visual Basic have the advantage of the

.NET Framework, but third-party languages can interact with

the framework, too. C#'s similarity to C++ and Java makes it

easy to learn for programmers familiar with those languages,

but it's also easy to learn as your first language. Once you

have the basics of C# down, you'll find it much easier to learn

any other language you want to.

Unless we specifically say otherwise, when we refer

to C# in this book, we mean C# 3.0; when we refer to .NET,

we mean the .NET 3.5 Framework; and when we refer to

Visual Studio, we mean Visual Studio 2008. We could spend

some time telling you about the cool new features of C# 3.0

over its predecessors-and we're pretty excited about them-but

if you're new to the language, it's all new to you, so there's

little point in calling attention to specific features.

Finally, when we refer to using Visual Studio 2008,

you may be using Visual C# 2008 Express Edition instead. C#

Express is the free version of Visual Studio, designed for

students and home users, but that doesn't mean it's a toy. In

fact, the examples in this book were written and tested using

C# Express. C# Express has the same compiler and libraries as

Visual Studio, and within the examples in this book, you won't

find any significant differences. There are some small

differences in look and feel, or in feature names, and any time

those come up, we'll mention them.

C#, as mentioned earlier, is one of the languages you

can use to create applications that will run in the .NET CLR. It

is an evolution of the C and C++ languages and has been

created by Microsoft specifically to work with the .NET

platform. The C# language has been designed to incorporate

many of the best features from other languages, while clearing

up their problems.

Developing applications using C# is simpler than

using C++, because the language syntax is simpler. Still, C# is

a powerful language, and there is little you might want to do in

C++ that you can't do in C#. Having said that, those features

of C# that parallel the more advanced features of C++, such as

directly accessing and manipulating system memory, can be

carried out only by using code marked as unsafe. This

IJSART - Volume 9 Issue 10 – OCTOBER 2023 ISSN [ONLINE]: 2395-1052

Page | 104 www.ijsart.com

advanced programmatic technique is potentially dangerous

(hence its name) because it is possible to overwrite system-

critical blocks of memory with potentially catastrophic results.

For this reason, and others, this book does not cover that topic.

At times, C# code is slightly more verbose than C++. This is a

consequence of C# being a type-safe language (unlike C++).

In layperson's terms, this means that once some data has been

assigned to a type, it cannot subsequently transform itself into

another unrelated type. Consequently, strict rules must be

adhered to when converting between types, which means you

will often need to write more code to carry out the same task

in C# than you might write in C++. However, you get two

benefits: the code is more robust and debugging is simpler,

and .NET can always track the type of a piece of data at any

time. In C#, you therefore may not be able to do things such as

″take the region of memory 4 bytes into this data and 10 bytes

long and interpret it as X,″ but that's not necessarily a bad

thing.

C# is just one of the languages available for .NET

development, but it is certainly the best. It has the advantage

of being the only language designed from the ground up for

the .NET Framework and is the principal language used in

versions of .NET that are ported to other operating systems.

To keep languages such as the .NET version of Visual Basic

as similar as possible to their predecessors yet compliant with

the CLR, certain features of the .NET code library are not

fully supported, or at least require unusual syntax. By contrast,

C# can make use of every feature that the .NET Framework

code library has to offer. The latest version of .NET includes

several additions to the C# language, partly in response to

requests from developers, making it even more powerful.

Applications You Can Write with C#

The .NET Framework has no restrictions on the types

of applications that are possible, as discussed earlier. C# uses

the framework and therefore has no restrictions on possible

applications. However, here are a few of the more common

application types:

 Windows applications. Applications, such as

Microsoft Office, that have a familiar Windows look

and feel about them. This is made simple by using the

Windows Forms module of the .NET Framework,

which is a library of controls (such as buttons,

toolbars, menus, and so on) that you can use to build

a Windows user interface (UI). Alternatively, you can

use Windows Presentation Foundation (WPF) to

build Windows applications, which gives you much

greater flexibility and power.

 Web applications. Web pages such as those that

might be viewed through any Web browser. The

.NET Framework includes a powerful system for

generating Web content dynamically, enabling

personalization, security, and much more. This

system is called ASP.NET (Active Server Pages

.NET), and you can use C# to create ASP.NET

applications using Web Forms. You can also write

applications that run inside the browser with

Silverlight.

 Web services. An exciting way to create versatile

distributed applications. Using Web services you can

exchange virtually any data over the Internet, using

the same simple syntax regardless of the language

used to create a Web service or the system on which

it resides. For more advanced capabilities, you can

also create Windows Communication Foundation

(WCF) services.

4.4 Feasibility Analysis

An important objective of conducting the system

analysis is the determination of the feasibility. All projects are

feasible if given unlimited resources and infinite time. But our

systems have shortage of resources. It is necessary to evaluate

the feasibility of a project at the earliest possible time.

Feasibility and risk analysis are related in many ways. If

project risk is great, the feasibility of producing quality

software is reduced. During system engineering, however, we

concentrate our attention on three primary areas of interest

4.4.1 Technical feasibility

It is a study of function, performance and constraints

that may affect the ability to achieve an acceptable system.

The proposed system is web technology based system and all

the technical requirements are available with the organization

and the internet technology is available for most of the people

in this world. So the proposed system will definitely work

with the current equipment, existing software technology, and

available personnel. The proposed system is developed in such

a way that, it is simple enough to understand and manipulate.

4.4.2 Operational feasibility

Will the system be used if it is developed and

implemented? Will there be resistance from users that will

undermine the possible application benefits? Since household

items and all other consumer products are being used

worldwide for human purposes there will be worldwide

interest in the information about these items. Hence the system

will be definitely used by the users. By considering the various

IJSART - Volume 9 Issue 10 – OCTOBER 2023 ISSN [ONLINE]: 2395-1052

Page | 105 www.ijsart.com

factors, the proposed system gives high performance, it is

reliable, maintainable. Hence the proposed system is feasible.

4.4.3 Economical feasibility

It is an evaluation of development of cost weighed

against the ultimate income or benefit derived from the

developed system. Economic justification includes a broad

range of concerns that include cost–benefit analysis, long-term

corporate income strategies, cost of resources needed for

development.

V. SYSTEM ARCHITECTURE

VI. SYSTEM DESIGN

6.1 ACTIVITY DIAGRAM:

6.2 SEQUENCE DIAGRAM:

6.3 USE CASE DIAGRAM:

6.4 SYSTEM FLOW DIAGRAM:

IJSART - Volume 9 Issue 10 – OCTOBER 2023 ISSN [ONLINE]: 2395-1052

Page | 106 www.ijsart.com

4. SCREEN SHOTS

Server Form

VII. SYSTEM TESTING

The purpose of testing is to discover errors. Testing is

the process of trying to discover every conceivable fault or

weakness in a work product. It provides a way to check the

functionality of components, sub assemblies, assemblies

and/or a finished product Software system meets its

requirements and user expectations and does not fail in an

unacceptable manner. There are various types of test. Each test

type addresses a specific testing requirement.

7.1 UNIT TESTING

Unit testing involves the design of test cases that

validate that the internal program logic is functioning

properly, and that program inputs produce valid outputs. All

decision branches and internal code flow should be validated.

It is the testing of individual software units of the application

.it is done after the completion of an individual unit before

integration. This is a structural testing, that relies on

knowledge of its construction and is invasive. Unit tests

perform basic tests at component level and test a specific

business process, application, and/or system configuration.

Unit tests ensure that each unique path of a business process

performs accurately to the documented specifications and

contains clearly defined inputs and expected results.

 Unit testing is usually conducted as part of a

combined code and unit test phase of the software lifecycle,

although it is not uncommon for coding and unit testing to be

conducted as two distinct phases.

7.2 INTEGRATION TESTING

Integration tests are designed to test integrated

software components to determine if they actually run as one

program. Testing is event driven and is more concerned with

the basic outcome of screens or fields. Integration tests

demonstrate that although the components were individually

satisfaction, as shown by successfully unit testing, the

combination of components is correct and consistent.

Integration testing is specifically aimed at exposing the

problems that arise from the combination of components.

7.3 OUTPUT TESTING

 Various outputs have been generated by the system.

The system generated output and the desk-calculated values

have been compared. All the output is perfect as the company

desires. It begins with low volumes of transactions based on

live tone. The volume is increased until the maximum level for

each transaction type is reached. The total system is also tested

for recovery and fallback, after various major failures to

ensure that no data are lost during the emergency time.

VIII. LITERATURE SURVEY

1) Efficient resource allocation in hybrid wireless networks

AUTHORS: B. Bengfort, W. Zhang, and X. Du.

In this paper, we study an emerging type of wireless

network - Hybrid Wireless Networks (HWNs). A HWN

consists of an infrastructure wireless network (e.g., a cellular

network) and several ad hoc nodes (such as a Mobile ad hoc

network). Forming a HWN is a very cost-effective way to

improve wireless coverage and the available bandwidth to

users. Specifically, in this work we investigate the issue of

bandwidth allocation in multi-hop HWNs. We propose three

efficient bandwidth allocation schemes for HWNs: top-down,

bottom-up, and auction-based allocation schemes. In order to

evaluate the bandwidth allocation schemes, we develop a

simulated HWN environment. Our simulation results show

that the proposed schemes achieve good performance: the

schemes can achieve maximum revenue/utility in many cases,

while also providing fairness. We also show that each of the

schemes has merit in different application scenarios.

2) Interference aware resource allocation for hybrid

hierarchical wireless networks

AUTHORS: P. Thulasiraman and X. Shen.

IJSART - Volume 9 Issue 10 – OCTOBER 2023 ISSN [ONLINE]: 2395-1052

Page | 107 www.ijsart.com

This paper addresses the problem of interference

aware resource allocation for OFDMA based hybrid

hierarchical wireless networks. We develop two resource

allocation algorithms considering the impact of wireless

interference constraints using a weighted SINR conflict graph

to quantify the interference among the various nodes: (1)

interference aware routing using maximum concurrent flow

optimization; and (2) rate adaptive joint subcarrier and power

allocation algorithm under interference and QoS constraints.

We exploit spatial reuse to allocate subcarriers in the network

and show that an intelligent reuse of resources can improve

throughput while mitigating interference. We provide a sub-

optimal heuristic to solve the rate adaptive resource allocation

problem. We demonstrate that aggressive spatial reuse and

fine tuned-interference modeling garner advantages in terms

of throughput, end-to-end delay and power distribution.

3) A hybrid network model for wireless packet data

networks

AUTHORS: H. Y. Hsieh and R. Sivakumar

We propose a hybrid network model called Sphinx

for cellular wireless packet data networks. Sphinx uses a peer-

to-peer network model in tandem with the cellular network

model to achieve higher throughput and lower-power

consumption. At the same time, Sphinx avoids the typical

pitfalls of the pure peer-to-peer network model including

unfair resource allocation, and throughput degradation due to

mobility and traffic locality. We present simulation results

showing that Sphinx outperforms the cellular network model

in terms of throughput and power consumption, and achieves

better fairness and resilience to mobility than the peer-to-peer

network model.

4) Multihop cellular networks: Technology and economics

AUTHORS: X. J. Li, B. C. Seet, and P. H. J. Chong

Recently, multihop cellular networks (MCNs) were

proposed to preserve the advantages of traditional single-hop

cellular networks with multihop ad hoc relaying networks,

while minimizing the drawbacks that they involved. In this

way, MCNs enhance the performance of both the existing

cellular networks and ad hoc networks. Consequently, MCN-

type system is considered as a promising candidate of fourth

generation (4G) wireless network for future mobile

communications. This paper surveys a number of MCN-type

architectures in literature through a comprehensive

comparison and discussion among the proposed architectures.

The discussion is divided into two phases. In the first phase,

we review the concept of MCN and compare the selected

MCN-type architectures from a technology perspective. In the

second phase, we further compare and discuss the economic

perspective on the deployment of MCNs. Specifically, we

focus on the economic considerations for deploying relays in

MCN-type systems.

5) Dynamic source routing in ad hoc wireless networks

AUTHORS: D. B. Johnson and D. A. Maltz

An ad hoc network is a collection of wireless mobile

hosts forming a temporary network without the aid of any

established infrastructure or centralized administration. In

such an environment, it may be necessary for one mobile host

to enlist the aid of other hosts in forwarding a packet to its

destination, due to the limited range of each mobile host’s

wireless transmissions. This paper presents a protocol for

routing in ad hoc networks that uses dynamic source routing.

The protocol adapts quickly to routing changes when host

movement is frequent, yet requires little or no overhead during

periods in which hosts move less frequently. Based on results

from a packet-level simulation of mobile hosts operating in an

ad hoc network, the protocol performs well over a variety of

environmental conditions such as host density and movement

rates. For all but the highest rates of host movement simulated,

the overhead of the protocol is quite low, falling to just 1% of

total data packets transmitted for moderate movement rates in

a network of 24 mobile hosts. In all cases, the difference in

length between the routes used and the optimal route lengths is

negligible, and in most cases, route lengths are on average

within a factor of 1.01 of optimal.

IX. CONCLUSION

Hybrid wireless networks have been receiving

increasing attention in recent years. A hybrid wireless network

combining an infrastructure wireless network and a mobile ad-

hoc network leverages their advantages to increase the

throughput capacity of the system. However, current hybrid

wireless networks simply combine the routing protocols in the

two types of networks data transmission, which prevents them

from achieving higher system capacity. In this paper, we

propose a Distributed Three-hop Routing (DTR) data routing

protocol that integrates the dual features of hybrid wireless

networks in the data transmission process. In DTR, a source

node divides a message stream into segments and transmits

them to its mobile neighbors, which further forward the

segments to their destination through an infrastructure

network. DTR limits the routing path length to three, and

always arranges for high-capacity nodes to forward data.

