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Abstract- Object recognition in unseen indoor environments 

remains a challenging problem for visual perception of mobile 

robots. In this letter, we propose the use of topologically 

persistent features, which rely on the objects’ shape infor- 

mation, to address this challenge. In particular, we extract 

two kinds of features, namely, sparse persistence image (PI) 

and amplitude, by applying persistent homology to multi- 

directional height function-based filtrations of the cubical 

complexes representing the object segmentation maps. The 

features are then used to train a fully connected network for 

recognition. For performance evaluation, in addition to a 

widely used shape dataset and a benchmark indoor scenes 

dataset, we collect a new dataset, comprising scene images 

from two different environments, namely, a living room and a 

mock warehouse. The scenes are captured using varying 

camera poses under different illumination conditions and 

include up to five different objects from a given set of fourteen 

objects. On the benchmark indoor scenes dataset, sparse PI 

features show better recognition performance in unseen 

environments than the features learned using the widely used 

ResNetV2-56 and EfficientNet-B4 models. Further, they 

provide slightly higher recall and accuracy values than Faster 

R-CNN, an end-to- end object detection method, and its state-

of-the-art variant, Domain Adaptive Faster R-CNN. The 

performance of our methods also remains relatively 

unchanged from the training environment (living room) to the 

unseen environment (mock warehouse) in the new dataset. In 

contrast, the performance of the object detection methods 

drops substantially. We also implement the proposed method 

on a real-world robot to demonstrate its usefulness. 

 

Keywords- Recognition, AI-Enabled Robotics, Object De- 

tection, Segmentation and Categorization 

 

I. INTRODUCTION 

 

 Perception is one of the core capabilities for 

autonomous mobile robots, and vision plays a key role in 

developing a semantic-level understanding of the robot’s 

environment. Object recognition and localization, often 

referred together as detection, therefore, form an essential 

aspect of robot visual perception. Deep learning models for 

object recognition [1], 

[2] and object detection [3]–[5] have achieved tremendous 

success in recognizing and detecting objects even in cluttered 

or crowded scenes. Such models, however, tend to require a 

large amount of training data. Therefore, a common practice is 

to use a model that is pre-trained on large databases with 

millions of images such as ImageNet, and then fine-tune the 

model based on scene images from the environments where 

the robots are expected to operate. This practice becomes 

cumbersome and runs into challenges for long-term robot 

autonomy, where the robots operate in complex and 

continually-changing environments for extended periods of 

time. Moreover, it renders the models sensitive to variations in 

environmental conditions such as illumination and object 

texture [6], [7]. Therefore, perception robustness becomes 

critical in such applications [8]. 

 

Different human interaction-based [9] and human 

supervision-based [10] methods have been developed re- 

cently to address this challenge. Additionally, various domain 

adaptation methods have also been proposed for cross- domain 

object detection, i.e., detection in environments that have 

distributions different from that of the original training 

environment [11]. For instance, within the Faster R-CNN 

framework, adversarial learning has been used for image and 

object instance level adaptation [12] and feature alignment 

[13]. Saito et al. [14] use adversarial learning for strong local 

and weak global alignment of features in an unsuper- vised 

setting. Hsu et al. [15] also use adversarial learning but 

perform progressive adaptation through an intermediate 

domain, which is synthesized from the source domain images 

to mimic the target domain. Inoue et al. [16] propose a two- 

step progressive adaptation technique in a weakly-supervised 

setting where the detector is fine-tuned on samples generated 

using CycleGAN and pseudo-labeling. Similarly, Kim et al. 

[17] use CycleGAN to perform domain diversification, 

followed by multidomain-invariant representation learning. 

 

Alternatively, we can consider domain-invariant 

shape- based features in such continually-changing 

environments to make object recognition more robust to 

illumination, context, color, and texture variations (we still 

expect these features to be important though). Topological 

data analysis (TDA) focuses on extracting such shape 
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information from high-dimensional data using algebraic and 

computational topology. In particular, persistent homology has 

been widely used to extract topologically persistent features 

for machine learning tasks [18], especially, computer vision 

[19]–[21]. Reininghaus et al. [19] propose a new stable 

representation that suits learning tasks, known as persistence 

images (PIs), and demonstrate its use for 3D shape 

classification/retrieval and texture recognition. Guo et al. [20] 

use sparsely sampled PIs for human posture recognition and 

texture classification. Garin et al. [21] use persistent features 

from different filtra- tion functions and representations to 

classify hand-written digits. Generating approximate PIs using 

a deep neural network has also been explored for image 

classification [22]. In this work, we propose the use of 

topologically persis- tent features for object recognition in 

indoor environments. Particularly, the key contributions of our 

work are as follows: 

 

 We propose two kinds of topologically persistent features, 

namely, sparse PI and amplitude, for object recognition. 

 We present a new dataset, the UW Indoor Scenes dataset, 

to evaluate the robustness of object recognition methods 

on unseen environments. 

 We show that recognition using topologically persistent 

features is more robust to changing environments than a 

state-of-the-art cross-domain object detection model. 

 We demonstrate that sparse PI features have better recog- 

nition performance than features from deep learning-

based recognition methods and lead to better performance 

than end-to-end object detection methods (in terms of 

accuracy and recall) in unseen environments. 

 

We also successfully implement the proposed framework on a 

real-world robot. 

 

II. MATHEMATICAL PRELIMINARIES 

 

We begin by covering some of the mathematical prelimi- 

naries associated with TDA. 

 

A. Cubical Complexes 

 

For TDA, data is often represented by cubical or 

simplicial complexes depending on the type of data. Images 

can be considered as point clouds by treating every pixel as a 

point in R2. Such a point cloud is commonly represented using 

a simplicial complex. However, since images are made up of 

pixels, they have a natural grid-like structure to them. 

Therefore, they are more efficiently represented as cubical 

complexes in various ways [21], [23]. 

 

A cubical complex in Rn is a finite set of elementary 

cubes aligned on the grid Zn, where an elementary cube is a 

finite product of elementary intervals with dimension given by 

the number of its non-degenerate components [24]. An n-

dimensional image is a map    : I    Zn R. A voxel is an 

element v    I, and its value   (v) is the intensity. When n = 2, 

the voxel is known as a pixel, and the intensity is known as the 

grayscale value. While there are various ways of constructing 

a cubical complex from an n-dimensional image, Garin et al. 

[21] adopt a method in which an n-cube represents a voxel, 

and all the adjacent lower-dimensional cubes (faces of the n-

cube) are included. The values of the voxels v are extended to 

all the cubes λ in the resulting cubical complex C as 

 

 
After the complexes are generated, a filtration is constructed, 

as described next. 

 

B. Filtration 

 

For any cubical (or, simplicial) complex K, let Ki 

denote the i-th sublevel  set  of  K. A  filtration  is  then  

defined as a collection of complexes {Ks}s∈R such that Ks is 

a subcomplex of Kt, for each s ≤ t. 

 

The pixel values in a grayscale image embed a 

natural filtration, which are used to obtain the sublevel sets of 

the corresponding cubical complex. The i-th sublevel set of 

the cubical complex C is then obtained as 

 

Ci := {λ ∈ C | I′(λ) ≤ i} , (2) 

 

which defines the filtration as Ci i . For binary 

images, various functions known as descriptor functions (or, 

filtration functions) are used to construct such grayscale 

images [21]. Similarly, filtration functions are also defined for 

generating filtrations from point cloud data or mesh data [19]. 

 

C. Persistent Homology 

 

Persistent homology is a common tool in TDA that 

studies the topological changes of the sublevel sets Ci as i 

increases from ( , ). During filtration, topological features, 

interpreted as h-dimensional holes, appear and dis- appear at 

different scales, referred to as their birth and death times, 

respectively. This information is summarized in an h-

dimensional persistence diagram (PD). An h-dimensional PD 

is a countable multiset of points in R2. Each point (x, y) 

represents an h-dimensional hole born at a time x and filled at 

a time y. The diagonal of a PD is a multiset 
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∆ =  (x, x)    R2 x    R  , where every point in ∆  has infinite 

multiplicity. 

 

Several other stable representations of persistence 

can be obtained from a PD [25], [26]. One such representation 

is the Persistence Image (PI), a stable and finite dimensional 

vector representation of persistent homology [26]. To obtain a 

PI, an equivalent diagram of birth-persistence points, i.e., (x, y   

x), is computed. The birth-persistence points are then regarded 

as a sum of Dirac delta functions, which are convolved with a 

Gaussian kernel over a rectangular grid of evenly sampled 

points to compute the PI. 

 

III. METHODS 

 

Given an RGB scene image, our goal is to recognize 

all the objects in the scene, based on their shape information 

that are captured using topologically persistent features. We 

first generate segmentation maps for the objects using a deep 

neural network, as explained in Section III-A. We then extract 

topologically persistent features from the object segmentation 

maps, as described in III-B. These features are then fed to a 

fully connected network for recognition. Fig. 1 illustrates the 

proposed framework. 

 

A. Object Segmentation Map Generation 

  

To generate the object segmentation maps for an 

input scene image, we follow a foreground segmentation 

method that is similar to the one proposed in [27]. In 

particular, we use the state-of-the-art DeepLabv3+ architecture 

[28], which is pre-trained on a large number of classes and is 

hypothesized to have a strong representation of ’objectness’. 

Subsequently, we train the network using pixel-level fore- 

ground annotations for a limited number of images from our 

datasets. 

  

 
Fig. 1: Proposed framework for object recognition using 

topologically persistent features 

 

A shape-based object recognition method relies on 

the objects’ contours for distinguishing among multiple 

objects. However, the number of foreground pixels is very low 

as compared to the background when segmentation is per- 

formed on images taken from distances as large as two meters. 

Hence, it is difficult for a segmentation model to capture the 

minor details in the objects’ shapes in a single shot. Therefore, 

we employ a two-step segmentation frame- work to preserve 

the objects’ contours details. In the first step, the segmentation 

model predicts a segmentation map for the input scene image. 

Contour detection is performed on this scene segmentation 

map to obtain the bounding boxes for the objects. These 

bounding boxes are used to divide the scene image into 

multiple sub-images, each of which contains a single object. In 

step two, these sub-images are fed to the same trained 

segmentation model for predicting the individual object 

segmentation maps. 

 

B. Persistent Features Generation 

 

Segmentation maps are essentially binary images 

com- prising only black and white voxels. A grayscale image, 

suitable for building a filtration of cubical complexes, can be 

generated from such binary images using various filtration 

functions. We select a commonly used filtration function, 

known as the height function, which computes a sufficient 

statistic to uniquely represent shapes in R2 and surfaces R3 in 

the form of the persistent homology transform [29]. 

 

For the cubical complexes in our case, we define the 

height function as stated in [21]. Consider a binary object 

segmentation map B : I ⊆ Zn −→ {0, 1}, a grayscale image 

 
 

evenly spaced on a unit 1-sphere S1. We construct cubical 

complexes from each grayscale image according to Eq. (1). 

The sublevel sets of the d complexes are then computed ac- 

cording to Eq. (2) to obtain d filtrations. Persistent homology 

is applied to these filtrations to obtain d persistence diagrams 

(PDs) for every object segmentation map. We only consider 

0th order homology for generating the PDs. We investigate the 

performance of two types of persistent features from the 

generated PDs. The following subsections III-B.1 and III-B.2 

describe their computation details. 

 

1) Sparse persistence image features: Since the number of 

points in a PD varies from shape to shape, such a 

representation is not suitable for machine learning tasks. 

Instead, we use the persistence image (PI) representation to 
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generate suitable features for training the recognition network. 

However, only a few key pixel locations of the PIs, which 

contain nonzero entries, sparsely encode topo- logical 

information. Therefore, we adopt QR-pivoting based sparse 

sampling to obtain a Sparse PI, as proposed in [20]. For every 

object segmentation mask, d PIs are generated from their 

corresponding PDs. Fig. 2 shows sample PIs for two different 

objects using height functions in multiple directions, 

illustrating the (collective) presence of sufficient 

discriminative information. In step four, for every direction 

pk, k 1, . . . , d , the corresponding PIs for all the N training 

(binary) object segmentation maps are vectorized and arranged 

as columns of a large matrix Xk . 

 

The dominant PI patterns Ulk are obtained by computing the 

truncated singular value decomposition of Xk as 

 

Xk ≈ U  Σ  (V  )  , (4) 

  

where lk is the optimal singular value threshold [30] for the 

pkth direction PIs. Ulk is then discretely sampled using the 

pivoted QR factorization as 

 

UT (Πk)T  = QkRk. (5) 

 

 is farthest away from the hyperplane. 

 

In step three, we obtain d such grayscale images for 

each object segmentation map by considering d directions that 

are sparsely sampled PIs. We finally perform row wise 

concate- nation of all the d sparsely sampled PI matrices to 

generate the overall set of features for recognition in step five. 

  

 
Fig. 2: Persistence images (PIs) for two sample objects. The 

collection of PIs, computed using height functions in different 

directions on object segmentation maps, have enough 

information to distinguish between the two objects. 

 

 
Fig. 3: Sample images from the MPEG-7 Shape Silhoutte 

Dataset 

 

2) Amplitude features: An alternative method of generat- ing 

topologically persistent features is using the amplitude or the 

distance of a given PD from an empty diagram. For each of 

the d generated PDs corresponding to an object segmentation 

map, we compute the bottleneck amplitude [21], Ak, as 

 
 

IV. DATASETS 

 

A. MPEG-7 Shape Silhouette Dataset 

 

We first choose the widely used MPEG-7 Shape 

Silhouette dataset to solely characterize the shape recognition 

capability of the two persistent features-based networks for 

(almost) ideal object segmentation maps. In particular, we use 

a subset of this dataset, namely, the MPEG-7 CE Shape 1 Part 

B dataset, which is specifically designed to evaluate the 

performance of 2D shape descriptors for similarity-based 

image retrieval [31]. It includes the shapes of 70 different 

classes and 20 images for each class, for a total of 1,400 

images. Fig. 3 shows sample images from the dataset. 

 

B. RGB-D Scenes Dataset v1 

 

The shapes in the MPEG-7 are detailed and fairly dis- 

tinguishable from each other. However, common objects in 

indoor environments are often less detailed and, therefore, 

more challenging for topological methods. Most deep learn- 

ing models work exceptionally well in recognizing such 

everyday objects in their training environments. However, 

they face challenges when used in new (previously unseen) 

environments without any retraining, even if the objects 

remain the same. Therefore, we choose the widely used 

benchmark, the RGB-D Scene Dataset v1 [32], to evaluate the 

performance of our proposed methods. The dataset consists of 
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eight scene setups with objects that belong to the RGB-D 

Object Dataset [32]. The scenes are shot in five different 

environments: desk, kitchen small, meeting small, table, and 

table small. In particular, we select the table small and desk 

environments for our evaluation. Among all the objects 

present in the scenes, we consider six object classes for 

recognition corresponding to the six objects types that appear 

in both the environments. For our current analysis, we only 

consider RGB images where the objects are not occluded. 

 

C. UW Indoor Scenes Dataset 

 

While the RGB-D Scenes Dataset consists of scenes 

from multiple environments, all of them are tabletop 

environments with limited variation in terms of lighting 

conditions and object types. On the other hand, the dataset in 

[33] provides images with several objects but only in a single 

environ- ment. Although there are quite a few other indoor 

scene datasets in the literature, none of them includes a large 

enough set of object types, poses, and arrangements with 

varying backgrounds and lighting conditions. Therefore, we 

introduce a new RGB dataset, which we call the UW Indoor 

 
 

The UW-IS dataset consists of indoor scenes taken in 

two completely different environments. The first environment 

is a living room scene where the objects are placed on a 

tabletop. The second environment is a mock warehouse setup 

where the objects are placed on a shelf. For the living room 

environment, we have a total of 347 scene images. The images 

are taken in four different illumination settings from three 

different camera perspectives and varying distances up to two 

meters. Sixteen out of the 347 scene images are with two 

different objects, 135 images are with three different objects, 

156 images are with four different objects, and 40 images are 

with five different objects. For the mock warehouse 

environment, we have a total of 200 scene images taken from 

distances up to 1.6 meters. Sixty out of 200 images are images 

with three different objects, 68 images with four different 

objects, and 72 images are with five different objects. Fig. 4a 

shows some sample living room scene images, and Fig. 4b 

shows sample images from the mock warehouse environment. 

Fig. 4c shows all the fourteen objects used in our dataset. The 

dataset is 

  

 
(a) Living room environment 

 

 
(b) Mock warehouse environment 

 

 
(c) Objects 

Fig. 4: Representative images from the UW Indoor Scenes 

Dataset 

 

publicly available at https://data.mendeley.com/ 

datasets/dxzf29ttyh/. 

 

V. EXPERIMENTS 

 

A. Implementation Details 

 

We perform five-fold training and testing on all 

images of the MPEG-7 Shape Dataset. For evaluation on the 

RGB- D Scenes dataset, we use the table small environment 

for both training and testing, and the desk  environment only 

for testing. For the UW-IS dataset, we use the living room 

images for training and testing, and the mock warehouse 

images only for testing. All the training and testing is 

performed using GeForce GTX 1080 and 1080 Ti GPUs on 

workstations running Windows 10 and Ubuntu 18.04 LTS, 

respectively. The code for the proposed methods is available 

at https://github.com/smartslab/ 

objectRecognitionTopologicalFeatures. 

 

For the MPEG-7 Shape Dataset, we divide the 1,400 

images into five sets of 280 images each, with four images of 

each class included in every set. We perform five-fold training 

and testing using these sets, such that each set is used once as 

a test set while the remaining four sets are used for training 

and validation. We use the giotto-tda [35] library to generate 

the PDs and the Persim package in Scikit-TDA Toolbox to 
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generate the PIs. The PDs are generated using height functions 

along 8 evenly spaced directions on S1. We choose a grid size 

equal to 50     50, a spread of 10, and a linear weighting 

function for generating the PIs. We use three-layered and five-

layered fully connected networks for recognition using 

amplitude features and sparse PI features, 

 

  

respectively. We use the ReLU activation (last layer uses 

softmax activation), Adam optimizer and categorical cross- 

entropy loss function for training. The learning rate is set to 

0.01 for the first 500 epochs. It is decreased by a factor of 10 

after every 100 epochs for the next 200 epochs, and by a factor 

of 100 for the last 100 epochs. 

 

For the RGB-D Scenes dataset and the UW-IS 

dataset, we use the DeepLabv3+ segmentation model with 

Xception- 65 backbone following the implementation in [36] 

to obtain object segmentation maps. The network is initialized 

using a model pre-trained on the ImageNet and PASCAL 

VOC2012 datasets available from [36]. We use 147 images 

from the table small environment to train the network for the 

RGB- D Scenes dataset and 200 living room images to train 

the network for the UW-IS dataset. Horizontally flipped coun- 

terparts of the images are also used for training the models. 

We generate the corresponding foreground annotations using 

LabelMe [37]. We train the network for 20,000 steps using the 

categorical cross-entropy loss with 10% hard example mining 

after 2,500 steps in the case of the RGB-D Scenes dataset. For 

the UW-IS dataset, we use 1% hard example mining1. 

 

We then perform five-fold training and testing of the 

proposed methods on both datasets by diving the scene images 

from the training environment into five folds. The resulting 

five models are also tested separately on all the im- ages of the 

test environment. First, the trained DeepLabv3+ segmentation 

models are used to obtain object segmenta- tion maps from all 

the images. To ensure the quality of segmentation maps 

remain consistent across training and test environments, we 

generate object segmentation maps for the test environments 

using segmentation models fine- tuned in these environments. 

We then appropriately pad all the segmentation maps with 

zeros and consistently resize them to obtain 125 125 binary 

images. We augment the training data by rotating every object 

segmentation map by 90o, 180o, and 270o. The PDs and PIs 

are generated in the same manner as for the MPEG-7 dataset, 

except that the spread value is chosen to be 20. We also use 

the same fully connected network architectures and 

hyperparameters as for the MPEG-7 dataset. 

 

Comparison with deep learning-based object recogni- 

tion methods: To solely characterize the recognition perfor- 

mance of the topologically persistent features, we compare 

their performance with features extracted using two other 

widely used object recognition methods, namely, ResNetV2- 

56 [1] and EfficientNet-B4 [2], on the RGB-D Scenes 

benchmark. We use the same sets of cropped objects obtained 

using DeepLabv3+ in Step 1 of our proposed method for five- 

fold training and testing of both the methods. The networks for 

both the methods are trained using the implementations 

available in Keras [38]. 

 

1Unlike the UW-IS dataset, the smaller training set 

for the RGB-D Scenes dataset leads to poor quality object 

segmentation maps that are unsuitable for extracting 

topological features. Therefore, we use a separate 

DeepLabv3+ model for Step 2, which is fine-tuned on images 

of individual objects obtained from the original scene images 

  

Comparison with end-to-end object detection meth- 

ods: We also compare the overall performance of both the 

persistent features-based methods against end-to-end object 

detection methods on both the RGB-D Scenes dataset and the 

UW-IS dataset. Particularly, we compare performance against 

Faster R-CNN [3], a widely used object detection method, and 

its state-of-the-art variant for cross-domain object detection, 

Domain Adaptive Faster R-CNN [12]. For Faster R-CNN 

(referred to as FR-CNN), we use a pre- trained model with 

InceptionResNet-V2 feature extractor and hyperparameters 

available with the TensorFlow Object Detection API [39]. For 

Domain Adaptive Faster R-CNN, we use a modified 

implementation from [40], where the VGG backbone is 

replaced with ResNet-50, and the RoI-pooling layer is 

replaced with the more popular RoIAlign. The mod- ified 

implementation has been shown to outperform other state-of-

the-art methods for cross-domain object detection [40]. We 

call this improved method DA-FR-CNN*. Similar to the 

proposed methods, we perform five-fold training and testing 

of these methods on both datasets. In the case of DA-FR-

CNN* for the UW-IS dataset, all the training set images with 

artificial lighting (e.g., bottom row in Fig. 4a) are used as the 

source domain, while all the images with natural lighting (e.g., 

top row in Fig. 4a) are used as the target domain. Since such a 

split is not possible in the RGB- D Scenes dataset, we 

randomly divide the images into the source and target 

domains. The ground truth bounding boxes for both the 

datasets are generated using LabelImg [41]. 

 

B. Results 

 

We first examine the recognition performance of both 

amplitude features and sparse PI features on the MPEG-7 

dataset. We use the weighted F1 score, weighted precision, 

weighted recall, and accuracy for evaluating performance. 
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Table I shows the test-time performance of the trained 

recognition networks. We observe that sparse PI-based recog- 

nition performance is quite impressive (more than 0.85) with 

respect to all the four metrics. It is also consistently better than 

amplitude-based recognition, indicating the usefulness of 

sparse sampling in selecting the key features. It is worth 

noting that 100% recognition performance using 2D shape 

knowledge is not possible for this dataset, since some of the 

classes contain shapes that are significantly different from the 

others in the same class but are similar to certain shapes in 

other classes [31]. 

 

TABLE I: Performance comparison of amplitude and sparse 

PI features (best in bold) on the MPEG Shape Silhouette 

dataset. (w) indicates weighted metric. 

 
 

We then examine the performance2 of both the 

persistent features-based methods along with other object 

recognition and detection methods on the RGB-D Scenes 

benchmark. Table II reports the performance of all the 

methods (trained in the table small environment) on the 

unseen desk en- vironment. We observe that sparse PI-based 

recognition, which achieves an overall accuracy of 0.71 0.01, 

has the highest performance among all the methods in terms of 

recall and accuracy. Particularly, for the same set of object 

images obtained using the DeepLabv3+ model, recognition 

using sparse PI features computed from object segmentation 

maps is better than recognition using features learned by 

ResNetV2-56 and EfficientNet-B4 from RGB inputs with 

respect to accuracy, recall, and F1-score. Additionally, am- 

plitude features-based recognition is comparable to both 

ResNetV2-56 and EfficientNet-B4. Additionally, the differ- 

ence between the recognition performance using sparse PI 

features and amplitude features is, however, much lower than 

that for the MPEG-7 dataset. We also note that the sparse PI 

features-based method outperforms Faster R-CNN (referred to 

as FR-CNN) substantially and DA-FR-CNN* by a small 

margin in terms of accuracy and recall. 

 

We then  assess the  performance of  both the  

persistent features-based methods, FR-CNN, and DA-FR-

CNN* on the living room scene images from the UW-IS 

dataset reported in Table III. We observe that both the 

persistent features- based methods, which only use the 

information in object segmentation maps, perform reasonably 

well. Sparse PI- based recognition achieves an overall 

accuracy of 0.71 0.01 and is marginally better than amplitude-

based recognition, whose accuracy is 0.69 0.01. Moreover, 

both FR-CNN and DA-FR-CNN*, which are trained on this 

environment and use RGB images as inputs, outperform these 

methods with respect to all the metrics including class-wise F1 

scores. 

 

We believe that the quality of the object 

segmentation maps has substantial impact on the performance 

of the persistent features-based methods. Notably, 

performance is considerably worse for the fork as compared to 

the other objects. To assess this impact, we compare the 

recognition performance of both these methods with that of a 

human given an identical set of segmentation maps. Table IV 

sum- marizes the comparison results. For the persistent 

features based-methods, we only report the accuracy for those 

images where the human recognizes the object correctly. We 

observe that a human achieves an accuracy of 0.84 0.01, 

which is lower that FR-CNN performance, and finds it 

difficult to recognize the objects based on the generated 

segmentation maps, especially for the spoon and fork classes. 

We refer the reader to Section VI for further discussion on 

segmentation map quality. 

 

Despite this challenge, we expect recognition 

performance to be relatively unaffected, when the 

environments vary con- siderably but the objects are identical, 

provided the quality  

 

2We do not account for the false negatives and false positives 

resulting from errors of the segmentation model to ensure a 

fair judgement of our methods’ effectiveness. Equivalently, 

for object detection methods, false positives arising from 

incorrect region proposals are also not considered. 

  

TABLE II: Performance comparison of the proposed 

persistent features-based methods with ResNetV2-56, 

EfficientNet-B4, FR-CNN, and DA-FR-CNN* (best in bold) 

on the desk images from the RGB-D Scenes dataset. 
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TABLE III: Performance comparison of the proposed per- 

sistent features-based methods with FR-CNN and DA-FR- 

CNN* (best in bold) on the living room images from the UW-

IS dataset. 

 
 

TABLE IV: Comparison of recognition accuracy of the 

proposed persistent features-based methods with a human 

given the object segmentation maps for living room scene 

images from the UW-IS dataset 

 
 

of the segmentation maps remains consistent. Accordingly, we 

test the performance of the persistent features-based methods 

on all the warehouse scene images of the UW- IS dataset 

without retraining the recognition networks. We also test the 

performance of FR-CNN and DA-FR-CNN* on all the 

warehouse images without any retraining. Table V 

summarizes the performances of all the four methods on the 

mock warehouse test environment. We observe that the 

performance of sparse PI-based recognition is unchanged from 

the living room scenario, and is substantially better than that 

of amplitude-based recognition, whose accuracy reduces by 

4%. However, the performance of FR-CNN degrades a lot 

without fine-tuning (accuracy drops by 25%). The 

performance of DA-FR-CNN* also degrades considerably 

(accuracy drops by 18%). Similar to the RGB-D Scenes 

benchmark case, the sparse PI features-based method outper- 

forms FR-CNN substantially and DA-FR-CNN* by a small 

margin with respect to accuracy and recall. 

 

C. Robot Implementation 

 

We also implement our proposed framework on a 

LoCoBot platform built on a Yujin Robot Kobuki Base 

(YMR-K01-W1) and powered by an Intel NUC NUC7i5BNH 

Mini PC. We mount a ZED2 camera with stereo vision on top 

of the LoCoBot and control the robot using the PyRobot 

interface [42]. The camera images are fed to the trained 

segmentation model and recognition networks, which are run 

on an on- board NVIDIA Jetson AGX Xavier processor, 

equipped with a 512-core Volta GPU with Tensor Cores and 

8-core ARM v8.2 64-bit CPU. We use TensorRT [43] for 

optimizing the trained segmentation model. Fig. 5 shows a 

screenshot of the platform. The sparse PI features-based 

recognition runs at a speed of 1.1s per frame on this platform. 

A video demonstration of object recognition on this platform 

is included in the Supplementary Materials. 
 

VI. DISCUSSION 
 

We note that segmentation map quality has a 

considerable impact on the performance of the persistent 

features-based methods. For example, the performance is 

particularly bad for the fork and spoon classes, as observed 

from Tables III and V. The inherent similarity between forks 

and spoons, along with low segmentation quality, often makes 

it hard to distinguish between them, as shown in Fig. 6a. Table 
 

TABLE V: Performance comparisons of the proposed per- 

sistent features-based methods with FR-CNN and DA-FR- 

CNN* (best in bold) on mock warehouse scene images from 

the UW-IS dataset. 

 

 
Fig. 5: Screenshot of the LoCoBot operating in a mock 

warehouse setup 
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IV shows that even humans have difficulty 

distinguishing between them from the generated segmentation 

maps. Both Faster R-CNN (referred to as FR-CNN) and DA-

FR-CNN* also have difficulties with these classes, especially 

in the unseen warehouse environment. On a related note, 

incom- plete segmentation maps also affect performance of 

the proposed methods. For example, the shape in the 

incomplete segmentation map of a padlock shown in Fig. 6b is 

quite different from that of a padlock, making it difficult for a 

topology-based method to recognize the object. Moreover, we 

observe from Table IV that our methods only achieve 76% 

and 74% of human performance using sparse PI and amplitude 

features, respectively. We believe this difference is primarily 

due to humans’ additional cognitive capability to complete 

(partially visible) shapes. 

 

Additionally, we observe relatively small variations 

in the class-wise performance of the proposed methods 

between the living room and mock warehouse environments 

except for the plate and gelatin box classes. This observation 

can be attributed to changes in camera locations and viewing 

angles that lead to unseen object poses and naturally occur- 

ring variations in object placements. Fig. 6c illustrates this 

  

 
Fig. 6: Sample failure cases. Fig. 6a shows a case where a 

poorly segmented fork is confused with a spoon. Fig. 6b 

shows a case where, unlike the proposed topological methods, 

a human succeeds by being able to complete the shape. Fig. 6c 

and 6d illustrate that camera pose changes cause some of the 

objects to appear similar to other objects. 

 

problem for the gelatin box. The leftmost image is 

from the living room. The middle image shows the same 

object pose captured from a different camera viewing angle in 

the warehouse. The 2D shape in the middle image becomes 

very similar to that of the chips can in the rightmost image. 

Similarly, Fig. 6d shows how such a change results in a 

completely different 2D shape for the plate, which is similar to 

a half-visible spoon. The performance of FR- CNN is also 

affected by such variations in camera pose, as observed for the 

plate class in Table V. On the other hand, the performance of 

DA-FR-CNN* drops due to changes in object appearance. For 

example, the cups in the desk and table small environments 

look considerably different, leading to poor recognition, as 

reported in Table II. 

 

VII. CONCLUSIONS 

 

In this letter, we propose the use of topologically 

persis- tent features for object recognition in indoor 

environments. We construct cubical complexes from binary 

segmentation maps of the objects. For every cubical complex, 

we ob- tain multiple filtrations using height functions in 

multiple directions. Persistent homology is applied to these 

filtrations to obtain topologically persistent features that 

capture the shape information of the objects. We present two 

different kinds of persistent features, namely, sparse PI and 

amplitude features, to train a fully connected recognition 

network. Sparse PI features achieve better recognition 

performance in unseen environments than features learned 

from ResNetV2- 56 and EfficientNet-B4. Unlike end-to-end 

object detection methods Faster R-CNN and its state-of-the-art 

variant DA- FR-CNN*, the overall performance of our 

methods remains relatively unaffected on a different test 

environment without retraining, provided the quality of the 

object segmentation maps is maintained. Moreover, the sparse 

PI features-based method slightly outperforms DA-FR-CNN* 

in terms of recall and accuracy, making it a promising first 

step in achieving robust object recognition. In the future, we 

plan to use depth information to deal with the challenges 

associated with camera pose variations and to perform class-

agnostic instance segmentation. Depth information, along with 

shape completion, might also help address the issues of 

incom- plete segmentation maps and partial occlusion of 

objects in cluttered environments. We also plan to explore the 

use of topologically persistent features in estimating 6D object 

poses through few-shot deep learning. 
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