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Abstract- Deep learning has made spectacular breakthroughs 

in many computer vision tasks, such as semantic segmentation 

and object detection which are driven by the progress of deep 

convolutional neural networks (CNNs) and large quantities of 

available training data sets. Unfortunately, CNNs rarely 

generalize learned knowledge to new data sets, especially 

when there is a wide domain gap between the source and 

target images. The accuracy of remote sensing image 

segmentation and classification is known to dramatically 

decrease when the source and target images are from different 

sources; while deep learning-based models have boosted 

performance, they are only effective when trained with a large 

number of labeled source images that are similar to the target 

images. In this article, we propose a generative adversarial 

network (GAN) based domain adaptation for land cover 

classification using new target remote sensing images that are 

enormously different from the labeled source images. In 

GANs, the source and target images are fully aligned in the 

image space, feature space, and output space domains in two 

stages via adversarial learning. The source images are 

translated to the style of the target images, which are then 

used to train a fully convolutional network (FCN) for semantic 

segmentation to classify the land cover types of the target 

images. The domain adaptation and segmentation are 

integrated to form an end-to-end framework. 

 

Keywords- deep convolutional neural network, generative 

adversarial network    

 

I. INTRODUCTION 

 

 Deep learning has made spectacular breakthroughs in 

many computer vision tasks, such as semantic segmentation 

and object detection, which are driven by the progress of deep 

convolutional neural networks (CNNs) and large quantities of 

available training data sets. Unfortunately, CNNs rarely 

generalize learned knowledge to new data sets, especially 

when there is a wide domain gap between the source and 

target images. For example, there are usually significant 

appearance differences between the remote sensing images 

acquired from different satellites. It is never expected that a 

pretrained model can acquire satisfactory performance when 

applied directly to another quite different remote sensing data 

set, at least in the current stage. Hence, labeled samples in 

each upcoming satellite image are required to train a new deep 

learning-based model. Although a large number of historical 

GIS maps are available, these vector maps are outdated soon. 

As a result, an extensive amount of manual work is applied to 

update vector maps, which can then be provided as up-todate 

training samples. The other problem is the access to updated 

high-quality vector maps is not easy. To address these 

problems and make the best of the available vector maps, 

unsupervised domain adaptation (UDA) has been proposed to 

reduce the domain gap between the source and target data to 

enable a pretrained deep learning model to achieve 

competitive results on unlabeled target data.  

 

 Recently introduced methods have focused on cross 

domain semantic segmentation from high-quality close-range 

or medical images. A generative adversarial network (GAN)-

based feature space domain adaptation using adversarial 

training to align the CNN features from the source and target 

domains to improve the segmentation performance of target 

images, where only the source images had labeled samples. 

Following this approach, further studies addressed the domain 

transfer in semantic segmentation using different GAN-based 

adversarial training techniques in different space dimensions, 

such as the combination of image translation techniques 

(image space domain adaptation) and feature alignment 

(feature space domain adaptation) for lane image 

segmentation, image synergizing and feature adaptation for 

medical image segmentation, and synthetic-to-real adaptation 

at the output space domain.  

 

 Very recently, several GAN-based UDA methods 

have been shown to have some effects on processing remote 

sensing images obtained from different data sources. 

However, this area of research is still in its initial stages, and 

more sophisticated methods are expected to be developed for 

handling remote sensing data that are more complex than 

close-range data. For example, the work was only an 

application of CycleGAN in remote sensing image transfer at 

the image space. Another method named ColorMapGAN 

attempted to learn the color transformation from source 

images to target images. Both approaches stay in the image 
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space domain transfer without touching the more advanced 

feature space and output space domain adaptation.  

  

Remote sensing simply means obtaining information 

about an object without touching the object itself. It has two 

facets; acquiring data by a device at a distance from the object, 

and analyzing data of the object to interpret its physical 

properties. These two aspects are closely connected to each 

other. The basic fact in remote sensing is that different 

wavelength ranges of the electromagnetic spectrum is 

reflected or emitted from an object at certain intensity, which 

is dependent upon the physical and compositional attributes of 

the object.  

 

 Remote sensing today plays an important role in 

geological analysis of large areas which utilizes 

electromagnetic spectrum not only within the visible range but 

also beyond the visible range that human eye can‟t perceive. 

The unique spectral signatures of rocks, minerals, and other 

geological elements are used to map these geological elements 

in large areas in a short time using remote sensing data. Earth 

observation systems generally include infrared region of the 

electromagnetic spectrum, which include the visible-near 

infrared (VNIR) and shortwave infrared (SWIR). Further 

some imaging systems such as LANDSAT and ASTER cover 

thermal infrared (TIR) region, which is a mid-long wave 

infrared region in the spectrum.  

 

 TIR radiance values of objects can also be used for 

mapping similar to VNIR and SWIR. As useful as it may be, 

remote sensing like any tool requires continuously increasing 

improvement. Similarly advances in the technology 

necessitate the improvement of the methods accordingly, both 

in terms of accuracy and precision. Image fusion is one of the 

techniques that are employed to increase spatial and/or 

spectral resolution of remotely sensed data by fusing a high 

spatial but low spectral resolution image with a low spatial 

high spectral resolution image.  

 

 The purpose of this study is to fuse TIR and SWIR 

bands of ASTER with VNIR bands, while evaluating the 

multispectral infrared data with increased resolution for 

lithological discrimination and mapping using the basic image 

fusion techniques. Evaluation techniques will reveal which 

methods provide the best information and show how they 

compare to the original non-fused data. To accomplish these 

objectives, a graphical user interface (GUI) was prepared 

using the commercial software MATLAB and its Image 

Processing toolbox which contains commands and utilities that 

are commonly used in image processing applications. 

 

 

II. LITERATURE SURVEY 

 

This The relationship between impervious land cover 

and tree development is an important component to 

understanding urban ecological systems. While impervious 

surfaces are associated with degraded soil conditions, rerouted 

hydrological networks and urban microclimates, the overall 

impact of these effects on tree development is highly variable 

landscape. Using a fusion of airborne hyperspectral imagery 

and light detection and ranging (LiDAR) data, a 1.0 m spatial 

resolution classified land cover map (accuracy of 88.6%) was 

produced for the city of Surrey, British Columbia, Canada, 

from which landscape imperviousness was then derived. The 

stem heights of 1914 trees were estimated from the LiDAR 

data, to which species-specific height models were fit using 

planting dates recorded by city authorities. Having accounted 

for the age of the trees, the residuals from these models (i.e.: 

the difference between modelled and measured height) were 

then used as indicators of tree development. When aggregated 

to 0.5 km2 spatial units, negative relationships (r2 between 

0.292 and 0.753) were found between height model residuals 

and the degree of land cover imperviousness. These 

relationships did not persist when examined at the individual 

tree level, for which imperviousness was measured within the 

direct vicinity of each tree using the same imperviousness 

map. We conclude that, imperviousness does not appear to be 

a significant driver of tree height variation, with broad-scale 

relationships likely due to correlations with other 

environmental variables associated with the urban-rural 

gradient. Some limitations, the integration of hyperspectral 

and LiDAR data proved to be a powerful tool for mapping 

imperviousness, with LiDAR metrics being particularly 

important for distinguishing between types of urban land 

cover. The drawback of this method is imperviousness in 

urban tree development within the city of Surrey is low. 

 

Airborne laser scanning (ALS), often combined with 

passive multispectral information from aerial images, has 

shown its high feasibility for automated mapping processes. 

The main benefits have been achieved in the mapping of 

elevated objects such as buildings and trees. Recently, the first 

multispectral airborne laser scanners have been launched, and 

active multispectral information is for the first time available 

for 3D ALS point clouds from a single sensor. This article 

discusses the potential of this new technology in map 

updating, especially in automated object-based land cover 

classification and change detection in a suburban area. Results 

from an object-based random forests analysis suggest that the 

multispectral ALS data are very useful for land cover 

classification, considering both elevated classes and ground-

level classes. The overall accuracy of the land cover 

classification results with six classes was 96% compared with 
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validation points. Compared to classification of single-channel 

data, the main improvements were achieved for ground-level 

classes. According to feature importance analyses, 

multispectral intensity features based on several channels were 

more useful than those based on one channel. Automatic 

change detection for buildings and roads was also 

demonstrated by utilizing the new multispectral ALS data in 

combination with old map vectors. In change detection of 

buildings, an old digital surface model (DSM) based on 

single-channel ALS data was also used. Overall, our analyses 

suggest that the new data have high potential for further 

increasing the automation level in mapping. Unlike passive 

aerial imaging commonly used in mapping, the multispectral 

ALS technology is independent of external illumination 

conditions, and there are no shadows on intensity images 

produced from the data. These are significant advantages in 

developing automated classification and change detection 

procedures. The drawback of this method is the role of laser 

intensity has been relatively small in the development. 

 

In this paper, we propose a multiscale deep feature 

learning method for high-resolution satellite image scene 

classification. Specifically, we first warp the original satellite 

image into multiple different scales. The images in each scale 

are employed to train a deep convolutional neural network 

(DCNN). However, simultaneously training multiple DCNNs 

is time-consuming. To address this issue, we explore DCNN 

with spatial pyramid pooling (SPP-net). Since different SPP-

nets have the same number of parameters, which share the 

identical initial values, and only fine-tuning the parameters in 

fully connected layers ensures the effectiveness of each 

network, thereby greatly accelerating the training process. 

Then, the multiscale satellite images are fed into their 

corresponding SPP-nets, respectively, to extract multiscale 

deep features. Finally, a multiple kernel learning method is 

developed to automatically learn the optimal combination of 

such features. Experiments on two difficult data sets show that 

the proposed method achieves favorable performance 

compared with other state-of-the-art methods. The drawback 

of this method is spatial pyramid pooling (SPP-net) inevitably 

poses the overfitting problem. 

 

The deep convolutional neural network (CNN) can 

provide excellent performance in hyperspectral image 

classification when the number of training samples is 

sufficiently large. In this paper, a novel pixel-pair method is 

proposed to significantly increase such a number, ensuring 

that the advantage of CNN can be actually offered. For a 

testing pixel, pixel-pairs, constructed by combining the center 

pixel and each of the surrounding pixels, are classified by the 

trained CNN, and the final label is then determined by a 

voting strategy. The proposed method utilizing deep CNN to 

learn pixel-pair features is expected to have more 

discriminative power. Several hyperspectral image data sets 

demonstrate that the proposed method can achieve better 

classification performance than the conventional deep 

learning-based method. Deep-learning models are usually 

heavily parameterized and enormous amounts of training data 

are required to ensure the performance; however, through 

reorganizing the available training samples, the proposed 

pixel-pair strategy is able to overcome this problem. A deep 

CNN architecture is designed with multiple layers, and then 

employed to learn deep PPFs, which tend to be more 

discriminative and reliable. The proposed testing procedure is 

implemented by a voting strategy based on the fact that 

neighboring pixels belong to the same class with high 

probability; the voting fashion that determines the final label 

makes classification performance more robust, particularly in 

heterogeneous regions. The drawback of this method is the 

execution time of CNN is much less than that of CNN-PPF for 

both the training and testing procedures CNN-Training(0.5), 

Testing(0.21), CNN-PPF-Training(6.0), Testing(4.76). 

 

In this paper, we propose a method using a three 

dimensional convolutional neural network (3-D-CNN) to fuse 

together multispectral (MS) and hyperspectral (HS) images to 

obtain a high resolution hyperspectral image. Dimensionality 

reduction of the hyperspectral image is performed prior to 

fusion in order to significantly reduce the computational time 

and make the method more robust to noise. Experiments are 

performed on a data set simulated using a real hyperspectral 

image. The proposed approach is very promising when 

compared to conventional methods. This is especially true 

when the hyperspectral image is corrupted by additive noise. 

An important component of the method is dimensionality 

reduction via PCA prior to the fusion. This decreases the 

computational cost significantly while having no impact on 

the quality of the fused image. In the presence of noise, the 

dimensionality reduction can improve the result. The proposed 

method is compared to two methods based on MAP 

estimation. Experiments using a simulated dataset 

demonstrated that the proposed method gives good results and 

is also tolerant to noise in the HS image. The drawback of this 

method is MAP1method, which does not use PCA prior to the 

fusion, performs significantly worse than the other methods in 

the presence of noise. 

 

A novel spatiotemporal fusion method based on deep 

convolutional neural networks (CNNs) under the application 

background of massive remote sensing data. In the training 

stage, we build two five-layer CNNs to deal with the problems 

of complicated correspondence and large spatial resolution 

gaps between MODIS and Landsat images. Specifically, we 

first learn a nonlinear mapping CNN between MODIS and 
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low-spatial-resolution (LSR) Landsat images and then learn a 

super-resolution CNN between LSR Landsat and original 

Landsat images. In the prediction stage, instead of directly 

taking the outputs of CNNs as the fusion result, we design a 

fusion   consisting of high-pass modulation and a weighting 

strategy to make full use of the information in prior images. 

Specifically, we first map the input MODIS images to 

transitional images via the learned nonlinear mapping CNN 

and further improve the transitional images to LSR Landsat 

images via the fusion model; then, via the learned SR CNN, 

the LSR Landsat images are supersolved to transitional 

images, which are further improved to Landsat images via the 

fusion model. Compared with the previous learning-based 

fusion methods, mainly referring to the sparse-representation-

based methods, our CNNs-based spatiotemporal method has 

the following advantages:1) automatically extracting effective 

image features; 2) learning an end-to-end mapping between 

MODIS and LSR Landsat images; and 3) generating more 

favorable fusion results. The proposed fusion method, we 

conduct experiments on two representative Landsat–MODIS 

datasets by comparing with the sparse-representation-based 

spatiotemporal fusion model. 

 

III. PROPOSED SYSTEM 

 

Propose a novel end-to-end GAN-based full-space 

domain adaptation learning framework, which, to the best of 

knowledge, is the first full-space domain transfer method. It is 

not only applicable in land cover classification from 

multisource remote sensing images but also can be generic to 

many UDA tasks. Second, authors propose an image style 

transfer method that generates stylized images similar to the 

target domain images for improving the performance of deep 

learning tasks. Third, in its implementation in two different 

large-scale data sets, one consists of bitemporal satellite 

images in Wuhan city, and the other consists of open-source 

aerial image sets, method demonstrated superior performance 

for segmentation adaptation from multiple-source remote 

sensing images and markedly improved accuracy over current 

state-of-the-art methods. 

 
Fig 1 Block Diagram 

 

Propose a novel end-to-end GAN-based full-space 

domain adaptation framework for land cover classification of 

the unlabeled target remote sensing images with labeled 

source data, i.e., existing remote sensing images with 

corresponding GIS data. The core idea of this approach is 

using the adversarial learning in all of the image space, feature 

space, and output space to transfer the source domain to the 

target domain and to realize the segmentation of the target 

images simultaneously. The proposed method consists of two 

stages. 

 

Stage I: The image style transfer model aligns the distribution 

of the source images and target images both in the image 

space and the feature space.   

 

Stage II: The output space domain transfer model further 

reduces their distribution gaps between the output spaces, and 

the segmentation network predicts the output results. 

 

 The main contributions of this article are as follows. 

First, authors propose a novel end-to-end GAN-based full-

space domain adaptation learning framework, which, to the 

best of knowledge, is the first full-space domain transfer 

method. It is not only applicable in land cover classification 

from multisource remote sensing images but also can be 

generic to many UDA tasks. Second, authors propose an 

image style transfer method that generates stylized images 

similar to the target domain images for improving the 

performance of deep learning tasks. Third, in its 

implementation in two different large-scale data sets, one 

consists of bitemporal satellite images in Wuhan city, and the 

other consists of open-source aerial image sets in Potsdam and 

Vaihingen; method demonstrated superior performance for 

segmentation adaptation from multiple-source remote sensing 
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images and markedly improved accuracy over current state-of-

the-art methods. 

 

SYSTEM MODULES 

 

Dataset 

Image domain adaptation module 

Feature domain adaptation module 

Segmentation network 

Output domain adaptation module 

 

MODULES DESCRIPTION 

 

Dataset 

 

 Land cover classification from multisource remote 

sensing images but also can be generic to many UDA tasks. 

An image style transfer method that generates stylized images 

similar to the target domain images for improving the 

performance of deep learning tasks. Implementation in two 

different large-scale data sets, one consists of bitemporal 

satellite images and the other consists of open-source aerial 

image sets. 

 

Image domain adaptation module 

 

 The image space domain adaptation module focuses 

on the transformation between the source and target images at 

the image-level. To translate a source image set XS with 

known labels YS , to the domain of a target image set XT 

,which is lacking labels and needs to be classified. By doing 

this, a task model trained on the translated source data can be 

well adapted to the target data, and an unsupervised 

classification problem can be adequately supervised. In image 

space domain adaptation, follow the classic GAN structure 

proposed . In the output of discriminator DT is a binary value 

of 0 or 1, indicating that the discriminator judges the input 

images that are from the source domain or target domain. 

 

Feature domain adaptation module 

 

 Feature space domain adaptation then further 

enhances the domain-invariance of the extracted CNN 

features. An adversarial learning to achieve the feature space 

domain adaptation. The adaptation in the feature space is not 

the optimal choice for semantic segmentation. 

 

 The image space domain adaptation module focuses 

on the transformation between the source and target images at 

the image-level. However, it is not an easy task for a GAN-

based module to learn complete transferable knowledge and 

achieve the desired image style transfer, especially when the 

domain shift is complicated. Inspired by SIFA, authors 

developed a collaborative training framework for image style 

transfer that transforms the appearance of the images across 

the domains both in image space and feature space, where the 

feature space domain adaptation then further enhances the 

domain-invariance of the extracted CNN features.  

 

 As multilayer high-dimension features are difficult to 

align, in SIFA, low-dimensional features are extracted by 

compressing the high-dimensional features, i.e., the output of 

encoder E. Authors borrowed the idea of the shared encoder 

from SIFA; however, in that work, the compression is 

implemented by a simple rough decoder C, which is composed 

of a single convolutional layer and a direct 16× upsampling. 

Inspired by Deeplabv3+, authors added three upsampling 

blocks that gradually recover the spatial information to capture 

finer and sharper object boundaries. 

 

3.4.4 Segmentation network 

 

The segmentation network predicts the output results. 

In the test procedure, the input is only the target images to be 

fed into the segmentation network.  A stylized image and an 

original image may exhibit some difference in visual 

appearance, regardless of whether the images were stylized or 

not, they should have the same semantic information outputted 

from the segmentation networks, which would lead to 

perceptual loss. The output maps that are produced by the 

same segmentation network and adjust the output maps of 

target images to be the final segmentation maps. 

 

3.4.5 Output domain adaptation module 

 

 Output space domain adaptation consists of a 

segmentation network, which is supervised with labels in the 

source domain and predicts the segmentation outputs of both 

the source and target images, and an adversarial learning 

module, which aligns the two outputs. The output space 

domain alignment feature can be useful supervision to guide 

finer training. Here align the target-stylized source images and 

target images in the output space; in other words, here align 

the output maps that are produced by the same segmentation 

network and adjust the output maps of target images to be the 

final segmentation maps. 

 

Here only tested the output space alignment between 

the SYNTHIA data set and the Cityscapes data set, both of 

which have high-quality close-range images and relatively 

simple segmentation maps. Alignment only at the output space 

may not be suitable for remote sensing images due to the 

relatively rougher image quality, complex land covers, and 

nonlinear radiometric changes between two data sets. In 



IJSART - Volume 8 Issue 8 – AUGUST 2022                                                                                    ISSN  [ONLINE]: 2395-1052 
 

Page | 133                                                                                                                                                                     www.ijsart.com 

 

method, authors integrate output space domain adaptation into 

the image and feature space domain adaptation in stage I.  

 

 The basic idea for output space domain adaptation 

consists of a segmentation network, which is supervised with 

labels in the source domain and predicts the segmentation 

outputs of both the source and target images, and an 

adversarial learning module, which aligns the two outputs. In 

Fig. 1, the target-stylized source images GS→T (xs) and 

reconstructed source images U(E(GS→T (xs))) generated 

from stage I, as well as the source images xs and target images 

xt , are separately sent to a multiscale segmentation network, 

which is represented as S. The first task is to train the 

segmentation network with target-stylized source images 

GS→T (xs) and labels ys. The segmentation loss is 

formulated.  

 

FEATURE SPACE DOMAIN ADAPTATION MODULE 

  

The image space domain adaptation module focuses 

on the transformation between the source and target images at 

the image-level. However, it is not an easy task for a GAN-

based module to learn complete transferable knowledge and 

achieve the desired image style transfer, especially when the 

domain shift is complicated. Inspired by SIFA, developed a 

collaborative training framework for image style transfer that 

transforms the appearance of the images across the domains 

both in image space and feature space, where the feature space 

domain adaptation then further enhances the domain-

invariance of the extracted CNN features.  

 

 As multilayer high-dimension features are difficult to 

align, in SIFA, low-dimensional features are extracted by 

compressing the high-dimensional features, i.e., the output of 

encoder E. Authors borrowed the idea of the shared encoder 

from SIFA, however, in that work, the compression is 

implemented by a simple rough decoder C, which is composed 

of a single convolutional layer and a direct 16× upsampling. 

Inspired by Deeplabv3+, added three Upsampling blocks that 

gradually recover the spatial information to capture finer and 

sharper object boundaries. 

 

OUTPUT SPACE DOMAIN TRANSFER 

 

 A segmentation map of the target images created, the 

map is rough and cannot be treated as the final results. On the 

other hand, although authors obtained target-stylized source 

images from stage I, a domain shift may still exist, as and 

reported, because the adaptation in the feature space is not the 

optimal choice for semantic segmentation. The output space 

domain alignment feature can be useful supervision to guide 

finer training. In this section, authors align the target-stylized 

source images and target images in the output space; in other 

words, authors align the output maps that are produced by the 

same segmentation network and adjust the output maps of 

target images to be the final segmentation maps. 

 

Output Space Domain Adaptation Module  

 

 Output space domain adaptation, which was first 

mentioned, is based on the observation that the segmentation 

results of the source and target images usually share a 

significant amount of similarities in the spatial layout and local 

context. However, only tested the output space alignment 

between the SYNTHIA data set and the Cityscapes data set, 

both of which have high-quality close-range images and 

relatively simple segmentation maps. Alignment only at the 

output space may not be suitable for remote sensing images 

due to the relatively rougher image quality, complex land 

covers, and nonlinear radiometric changes between two data 

sets. 

 

 The basic idea for output space domain adaptation 

consists of a segmentation network, which is supervised with 

labels in the source domain and predicts the segmentation 

outputs of both the source and target images, and an 

adversarial learning module, which aligns the two outputs. 

  

 Up to this point, the data flow is forward-propagated 

from stage I to stage II. Authors needed gradient propagation 

from updated stage II back to stage I to refine the latter. 

Therefore, authors introduced a new loss function called the 

perceptual loss L. The original perceptual loss was used to 

measure the distance of the features. Inspired by this idea, 

authors proposed perceptual loss to maintain the semantic 

consistency between the original images and stylized images. 

Although a stylized image and an original image may exhibit 

some difference in visual appearance, regardless of whether 

the images were stylized or not, they should have the same 

semantic information outputted from the segmentation 

networks, which would lead to perceptual loss to tie stage I 

and stage II together. Especially, perceptual loss consists of 

two parts: 1) the gradient from updated stage II modifies the 

parameters of generator G to generate more target-like source 

images and 2) the gradient also forces generator {E, U} to 

output the reconstructed source images approaching to the 

source images. 

 

NETWORK ARCHITECTURE 

 

 In stage I, the structure of gener follows CycleGAN, 

which consists of three convolutional layers, nine residual 

blocks, two deconvolutional layers, and one convolutional 

output layer to obtain the target-stylized source images. The 
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structures of Eand Ufollow SIFA. Encoder Eis comprised of 

the residual connections and dilated convolutions (dilation rate 

= 2) to enlarge the model’s field-of-view while preserving the 

spatial information for dense predictions. Decoder Uconsists 

of one convolutional layer, four residual blocks, and three 

deconvolutional layers, followed by one convolutional output 

layer to obtain the source-stylized target images.  The decoder 

C that we designed is composed of three upsampling blocks, 

each of which consists of one upsampling layer by a factor of 

2; two convolutional layers each with a 3 × 3 kernel size, a 

batch normalization (BN) layer, and an ReLU activation; and 

one convolutional output layer with a 1 × 1 kernel size and 

without activation. The size of the output feature is the same 

as the original image size. The pair {E, C} constitute the 

feature extractor for feature space domain transfer. 

 

 In stage II, the segmentation network is modified 

from a multiscale segmentation network MA-FCN. The 

backbone and the encoder are the same, while the difference in 

the decoder is that we do not upsample the output feature 

maps of each scale and concatenate them. 

 

IV. SCREEN SHOTS 

 

 
Source Image 

 

 
Target Image 

 

 
Encoded Features  

 
Decoded Features 

 

 
Output Image 
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Performance Window 

 

V. CONCLUSION 

 

Thus, generative adversarial network (GAN) based 

domain adaptation for land cover classification using new 

target remote sensing images that are enormously different 

from the labeled source images. In GANs, the source and 

target images are fully aligned in the image space, feature 

space, and output space domains in two stages via adversarial 

learning. The source images are translated to the style of the 

target images, which are then used to train a fully 

convolutional network (FCN) for semantic segmentation to 

classify the land cover types of the target images. The domain 

adaptation and segmentation are integrated to form an end-to-

end framework. Authors also proved that GAN is a generic 

framework that can be implemented for other domain transfer 

methods to boost their performance. 
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