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Abstract- A stochastic model for characterizing tumor texture
in brain MR images is proposed. The efficiency of the model is
demonstrated in patient-independent brain tumor texture
feature extraction and tumor segmentation in magnetic
resonance images (MRIs). There are different tissues namely
gray matter (GM), white matter (WG) are spread over the
entire brain. It is difficult to segment individually when a
brain image is considered. The boundaries are not well
defined. The multi scale patch driven active contour
methodology is proposed in this paper for automated brain
MRI image segmentation into WG, GM, Brain tumor. Label-
fusion aided deep-learning approach for automatically
segmenting isointense infant brain images into white matter,
gray matter and cerebrospinal fluid using T1- and T2-
weighted magnetic resonance images. A key idea of our
approach is to apply the fully convolutional neural network
(FCNN) to individual brain regions determined by a
traditional registration-based segmentation method instead of
training a single model for the whole brain. This provides
more refined segmentation results by capturing more region-
specific features. Segmentation of brain tumors from magnetic
resonance imaging (MRI) datasets is great important for
earlier detection of tumors for treatment stages and find,
which part of the brain is affected mainly.
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I. INTRODUCTION

To replace the time-consuming and labor-intensive
manual segmentation procedure for classifying images of
infant brains into regions of white matter (WM), grey matter
(GM) and cerebrospinal fluid (CSF), automated segmentation
approaches have been extensively studied. Different from the
adult brain, auto segmentation of the infant brain is especially
challenging due to the reduced tissue contrast, poor spatial
resolution, severe partial volume effect, and the ongoing
maturation and myelination processes. The first-year infant
brain is usually divided into three distinct stages:   infantile
stage ( 5months), (ii) isointense stage (6-8 months), and (iii)
early adult like isointense stage, it is particularly difficult to
discriminate WM from GM in brain magnetic resonance (MR)
images because of overlapping areas with low tissue contrast.

The traditional multi-atlas and label fusion (MALF) method
uses the registration from a group of atlases with manually
segmented labels. This approach has the limitation of treating
different available imaging modalities equally and is often
computationally expensive.

Deep learning techniques have emerged as powerful
methods for integrating the information from multiple
modalities and capturing a wide range of highly discriminative
imaging features. With an increased number of parameters and
intensive memory and computational requirements, the 3-
dimensional (3D) fully convolutional neural network (FCNN)
offers more accurate productivity by using more complex
hierarchical features for its dense layers, small kernels and
deeper architectures. Patch based FCNNs usually focus on the
local tissue structures instead of the regional location
information, while full-3Dimagenetworkswithend-to-end
predictions often require multiple graphic processing units
(GPUs), adequate random access memory(RAM) to load a
sufficient number of samples, and much longer time to train.
To grasp both the local structure and global spatial
information with limited computational power and RAM,
developed a label fusion-aided convolutional neural network
(LFA-FCNN). The key idea is to apply the FCNN onto
subregions that are defined by a traditional registration-based
segmentation method such as MALF rather than training a
single model for the whole brain, and then combine the
segmentation results from those subregions by label fusion. In
this way, the proposed approach captures more region-specific
features and yields more refined segmentation results. The
approach was evaluated by the dataset from the iSEGMICCAI
Grand Challenge 2017, which consists of 10training and 13
testing isointense infant brain subjects.

Brain tumor is one of the dangerous diseases in the
world. So early recognition of the cancer is key to its cure. As
human brain is very complex structure analysis of tumor in
this region is difficult process. Medical images have different
textures depending on area of body considered classification
of images becomes challenging problem. Existing system uses
different algorithms like k-means for segmentation which has
more disadvantages like it is slow, it expects user to specify
cluster number, heavily dependent on initial cluster centers. A
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very difficult problem in classification is choice of features to
distinguish between classes. So this current procedure is
extremely time consuming and more inclined to mistakes. In
order to overcome the drawbacks of existing system this
project aims to provide an efficient system by using adaptive
multi scale patch driven active contour for segmentation and
FCNN for accurate classification of MRI scan into normal and
abnormal based on features. A correct classification of brain
prompts right choice and gives great and right treatment.

II. LITERATURE SURVEY

Fractal analysis is appropriate for MR image
analysis. For tumor detection, existing fractal-based
techniques are described and three modified algorithms using
fractal analysis models are proposed. For each new method,
the brain MR images are divided into a number of pieces. The
first method involves thresholding the pixel intensity values
and the technique is called as piecewise-threshold-box-
counting (PTBC) method. Then the improved piecewise-
modified-box-counting (PMBC) and piecewise-triangular-
prism-surface-area (PTPSA) methods are implemented. With
the PTBC method, there are differences in intensity histogram
and fractal dimension between normal and tumor images.
Using PMBC and PTPSA methods, it is possible to detect and
locate the tumor in the brain MR images more accurately.

Markov Random Fields (MRFs) are a popular and
well-motivated model for many medical image processing
tasks such as segmentation. Discriminative Random Fields
(DRFs), a discriminative alternative to the traditionally
generative MRFs, allow tractable computation with less
restrictive simplifying assumptions, and achieve better
performance in many tasks. Here, the tumor segmentation
performance of a recent variant of DRF models that takes
advantage of the powerful Support Vector Machine (SVM)
classification method is proposed. Combined with a powerful
Magnetic Resonance (MR) preprocessing pipeline and a set of
‘alignment-based’ features, the use of SVMs, MRFs, and two
types of DRFs as classifiers for three segmentation tasks
related to radiation therapy target planning for brain tumors
are investigated. Two of which do not rely on ‘contrast agent’
enhancement. The results indicate that the SVM-based DRFs
offer a significant advantage over the other approaches.

An extended graph-shifts algorithm for image
segmentation and labeling is proposed. This algorithm
performs energy minimization by manipulating a dynamic
hierarchical representation of the image. It consists of a set of
moves occurring at different levels of the hierarchy where the
types of move, and the level of the hierarchy, are chosen
automatically so as to maximally decrease the energy.

Extended graph-shifts can be applied to a broad range of
problems in medical imaging. It can be used for the detection
of pathological brain structures: (i) segmentation of brain
tumors, and (ii) detection of multiple sclerosis lesions. The
energy terms in these tasks are learned from training data by
statistical learning algorithms. It provides accurate results,
precision and recall in the order of 93%, and also show that
the algorithm is computationally efficient, segmenting a full
3D volume in about one minute.

An automated system for brain tumor segmentation
that provides objective, reproducible segmentations that is
close to the manual results. Additionally, the method segments
white matter, grey matter, cerebrospinal fluid, and edema. The
segmentation of pathology and healthy structures is crucial for
surgical planning and intervention. The method performs the
segmentation of a registered set of MR images using an
Expectation-Maximization scheme. The segmentation is
guided by a spatial probabilistic atlas that contains expert prior
knowledge about brain structures. This atlas is modified with
the subject specific brain tumor prior that is computed based
on contrast enhancement. Five cases with different types of
tumors are evaluated. The results obtained from the automatic
segmentation program are then compared with results done
using manual and semi-automated methods. The automated
method yields results that have surface distances roughly 1–4
millimeters compared to the manual results. The brain atlas
was created by averaging manual segmentations of normal
brains that have been registered using affine transformation.
The atlas performs two critical functions. It provides spatial
prior probabilities and it is used to estimate the initial intensity
distribution parameters for the normal tissue classes. For each
dataset, the three different image channels are first registered
to a common space and then registered to the brain atlas. The
registration process is done using affine transformation and
the mutual information metric. Since the atlas is a normal
brain atlas, it does not contain the prior probabilities for the
tumor and edema. It is necessary to obtain prior probabilities
for tumor and edema. Otherwise, the voxel would be
incorrectly classified as normal tissue. The problem is tackled
by artificially generating prior probabilities for tumor and
edema.

The fractal texture feature is useful to detect pediatric
brain tumor in multimodal MRI. The efficacy of using several
different image features such as intensity, fractal texture, and
level-set shape in segmentation of posterior-Fossa (PF) tumor
for pediatric patients is investigated. It explores effectiveness
of using four different feature selection and three different
segmentation techniques, respectively, to discriminate tumor
regions from normal tissue in multimodal brain MRI. The
selective fusion of these features for improved PF tumor
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segmentation is proposed. The result suggests that Kullback–
Leibler divergence measure for feature ranking and selection
and the expectation maximization algorithm for feature fusion
and tumor segmentation offer the best results for the patient
data. It shows that for T1 and fluid attenuation inversion
recovery (FLAIR) MRI modalities, the best PF tumor
segmentation is obtained using the texture feature such as
multi-fractional Brownian motion (mBm) while that for T2
MRI is obtained by fusing level-set shape with intensity
features. In multimodality fused MRI (T1, T2, and FLAIR),
mBm feature offers the best PF tumor segmentation
performance. The different similarity metrics are used to
evaluate quality and robustness of these selected features for
PF tumor segmentation in MRI for ten pediatric patients.

III. PROPOSED SYSTEM

To develop a fast and reliable automatic
segmentation approach that is competitive with manual
segmentation, first used an atlas-based approach to obtain a
rough segmentation result, and then applied the FCNN model
onto each individual sub region derived from the initial result
to generate refined segmentation results. For each subject,
need the T1-, T2-weighted MR images and manual
segmentations for training purposes. Before started, some
preprocessing steps were necessary including within-subject
T1 and T2 registration, resolution standardization, skull
stripping, intensity in homogeneity correction and removal of
the cerebellum and brain stem.

Fig 1 Proposed Block Diagram

Multi-Atlas Label Fusion

After preprocessing, used atlas-based segmentation to
segment the WM, GM and CSF regions. This type of methods
have an advantage over the level set method and watershed
transform by borrowing prior knowledge about the shape and
distribution of the segmented structures from a pre-segmented
reference atlas. Assume have N subjects. For real data, N is

the number of training subjects. A target image is segmented
by treating images of all the other N-1 subjects as atlases.
First, performed rigid, affine and then differ morphism
registration (with mutual information as the loss function)
using the Advanced Normalization Tools software to align all
the T1-weighted images from atlases to the target T1 weighted
image. Then transferred the annotation results from those
atlases to the target space and obtained N-1 candidate labels
for the target. The next step is to combine the candidate labels
by label fusion. Define the Normalized Cross-Correlation
(NCC) between registered image I1 and target image I2:

The NCC was computed in an r x r square local
neighborhood around each voxel, which characterizes the -
local similarity. In this way, calculated the N-1 NCC maps
between the N-1 atlases and the target T1-weighted image.
Then, for a given voxel, from the N-1 registered local label
maps, chose the one with the largest NCC at that voxel as its
segmented label. This method is referred to as the NCC-based
local weighted voting.

Integration of Label Fusion and FCNN

Based on the label fusion segmentation, developed
two strategies to determine the subregions for building FCNN
models separately. Strategy A: training two FCNN models,
where in the first model the extracted patches are centered
within the areas with NCC<0.85 while in the second model
they were centered within those with NCC>0.85. Strategy B:
training three FCNN models using patches centered. Within
the two-voxel-dilated WM, GM and CSF areas. From the last
subsection, had MALF segmentation for target images a1) and
a2). By thresholding the NCC map, obtained b11) the
(NCC<0.85) area and b12) the (NCC>0.85) area; by dilating
the CSF, GM and WM areas by 2 voxels in a2), obtained the
dilated CSF in b21), dilated GM in b22) and dilated WM in
b23). can obtain those 5 areas in b11), b12), b21), b22) and
b23) from the target image as well as from each atlas by
alternating the atlas to a target. Next, extracted patches from
the five areas of each atlas to train 5 FCNN models and
predicted the target labels at their corresponding areas.

Pre-Processing

MRI images are altered by the bias field distortion.
This makes the intensity of the same tissues to vary across the
image. To correct it, applied the N4ITK method However, this
is not enough to ensure that the intensity distribution of a
tissue type is in a similar intensity scale a cross different
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subjects for the same MRI sequence, which is an explicit or
implicit assumption in most segmentation methods. In fact, it
can vary even if the image of the same patient is acquired in
the same scanner in different time points, or in the presence of
a pathology. So, to make the contrast and intensity ranges
more similar across patients and acquisitions, apply the
intensity normalization method proposed by Nyul on each
sequence.

After normalizing the MRI images, compute the
mean intensity value and standard deviation across all training
patches extracted for each sequence. Then, normalize the
patches on each sequence to have zero mean and unit variance.

Fullyconvolutional Neural Network

FCNN were used to achieve some breakthrough
results and win well-known contests. The application of
convolutional layers consists in convolving a signal or an
image with kernels to obtain feature maps. So, a unit in a
feature map is connected to the previous layer through the
weights of the kernels.

The weights of the kernels are adapted during the
training phase by backpropagation, in order to enhance certain
characteristics of the input. Since the kernels are shared
among all units of the same feature maps, convolutional layers
have fewer weights to train than dense FC layers, making
FCNN easier to train and less prone to overfitting. Moreover,
since the same kernel is convolved overall the image, the same
feature is detected independently of the location – translation
invariance. By using kernels, information of the neighborhood
is taken into account, which is an useful source of context
information. Usually, a non linear activation function is
applied on the output of each neural unit.

Deeper Architectures/Small Kernels

Using cascaded layers with small 3 x3 kernels has the
advantage of maintaining the same effective receptive field of
bigger kernels, while reducing the number of weights, and
allowing more non-linear transformations on the data. To
evaluate the real impact of this technique on brain tumor
segmentation, changed the cascaded convolutional layers
before each max pooling of the proposed architecture by one
layer with larger kernels with the equivalent effective
receptive field. So, in HGG changed the groups of layers 1, 2,
3 and 5, 6, 7by one convolutional layer with 7 x7 kernels each,
while in the LGG changed the groups of layers 1 and 2, and 4
and 5 by one layer with 5 x5 kernels each. Using these
architectures, experimented two variants for both grades: 1)
maintained the 64 feature maps in the first convolutional layer

and 128 in the second; 2) increased the capacity of the FCNN
by using wider layers, namely, 128 feature maps in the first
convolutional layer and 256 in the second. Present the results
obtained in the Leader board and Challenge data (Leader
board: 3:1%, Challenge: 1:6%), while for variant it was 2:1%
(Leader board: 2:4%, Challenge: 1:8%). In the majority of
metrics, the proposed method obtained higher scores than both
variants with bigger kernels, with some of them with statistical
significance, while the variants achieved better scores in PPV
(HGG in both data sets). In the boxplots, both variants seem to
have larger dispersion and more outliers. In the segmentations,
although the segmentations by the variants appear with good
quality, the proposed method can capture more details, and
variant 2 classified some non enhanced tumor inside the
enhancing ring, which does not happen in the manual
segmentation in HGG in LGG the architecture with bigger
kernels also identified an excess of non-enhancing tumor.

Patch Extraction Plane

The use of 2D patches in a MRI image requires that
define a plane perpendicular to an axis to extract patches. So,
following the procedure defined in the previous subsection,
investigated the use of patches extracted in a plane
perpendicular to the Axial, Coronal, and Sagittal axis. The
results in both the Leader board and Challenge data sets. As
can be observed, extracting patches in the plane perpendicular
to the Axial axis presented the best overall performance with a
mean gain of 2:33% relative to the Coronal plane and 4:00%
relative to the Sagittal plane. The Axial plane presented better
DSC and PPV scores for both data sets than the Sagittal plane,
but worst sensitivity for the Challenge data set and for the
complete region in the Leaderboard data set.

Considering, this can be explained by an over-
segmentation of the tumor, which is corroborated by the lower
PPV score. A similar pattern is found for the Coronal plane,
which was better in the enhanced region for the PPV score and
in the complete region for the Sensitivity score. The better
performance obtained using patches extracted in the axial
plane can be explained by some acquisitions having lower
spatial resolution in the Coronal and Sagittal planes, which
can be considered a limitation of the BRATS databases.

Finally, as an overall analysis, note some general
trends across all experiments. Considering the boxplots, verify
a lower dispersion for the complete region, presenting also a
higher mean value for the same region. This lower dispersion
is less expressive in the Leaderboard than in the Challenge
data set, which may be explained by the worst performance of
the algorithms on LGG subjects in this data.
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Gliomas are the brain tumors with the highest
mortality rate and prevalence. These neoplasms can be graded
into Low Grade Gliomas (LGG) and High Grade Gliomas
(HGG), with the former being less aggressive and infiltrative
than the latter. Even under treatment, patients do not survive
on average more than 14 months after diagnosis. Current
treatments include surgery, chemotherapy, radiotherapy, or a
combination of them. MRI is especially useful to assess
gliomas in clinical practice, since it is possible to acquire MRI
sequences providing complementary information.

The accurate segmentation of gliomas and its intra-
tumoral structures is important not only for treatment
planning, but also for follow-up evaluations. However, manual
segmentation is time-consuming and subjected to inter- and
intra-rater errors difficult to characterize. Thus, physicians
usually use rough measures for evaluation. For these reasons,
accurate semiautomatic or automatic methods are required.
However, it is a challenging task, since the shape, structure,
and location of these abnormalities are highly variable.
Additionally, the tumor mass effect change the arrangement of
the surrounding normal tissues. Also, MRI images may
present some problems, such as intensity inhomogeneity, or
different intensity ranges among the same sequences and
acquisition scanners.

In brain tumor segmentation, find several methods
that explicitly develop a parametric or non-parametric
probabilistic model for the underlying data. These models
usually include a likelihood function corresponding to the
observations and a prior model. Being abnormalities, tumors
can be segmented as outliers of normal tissue, subjected to
shape and connectivity constrains. Other approaches rely on
probabilistic atlases. In the case of brain tumors, the atlas must
be estimated at segmentation time, because of the variable
shape and location of the neoplasms.

Tumor growth models can be used as estimates of its
mass effect, being useful to improve the atlases. The
neighborhood of the voxels provides useful information for
achieving smoother segmentations through Markov Random
Fields (MRF).Zhao at alalso used a MRF to segment brain
tumors after a first over segmentation of the image into super
voxels, with a histogram-based estimation of the likelihood
function. As observed by Menze et al. generative models
generalize well in unseen data, but it may be difficult to
explicitly translate prior knowledge into an appropriate
probabilistic model. Another class of methods learns a
distribution directly from the data.

Although a training stage can be a disadvantage these
methods can learn brain tumor patterns that do not follow a

specific model. This kind of approaches commonly consider
voxels as independent and identically distributed, although
context information may be introduced through the features.
Because of this, some isolated voxels or small clusters may be
mistakenly classified with the wrong class, sometimes in
physiological and anatomically unlikely locations. To
overcome this problem, some authors include information of
the neighborhood by embedding the probabilistic predictions
of the classifier into a Conditional Random Field. Classifiers
such as Support Vector Machines and, more recently, Random
Forests (RF) were successfully applied in brain tumor
segmentation.

Other methods known as Deep Learning deal with
representation learning by automatically learning an hierarchy
of increasingly complex features directly from data. So, the
focus is on designing architectures instead of developing
handcrafted features, which may require specialized
knowledge.

FCNNs have been used to win several object
recognition and biological image segmentation challenges.
Since a FCNN operates over patches using kernels, it has the
advantages of taking context into account and being used with
raw data. In the field of brain tumor segmentation, recent
proposals also investigate the use of FCNNs.  Used a shallow
FCNN with two convolutional layers separated by max-
pooling with stride 3, followed by one fully-connected (FC)
layer and a soft max layer. Urban et al. evaluated the use of
3D filters, although the majority of authors opted for 2D
filters. 3D filters can take advantage of the 3D nature of the
images, but it increases the computational load. Some
proposals evaluated two-pathway networks to allow one of the
branches to receive bigger patches than the other, thus having
a larger context view over the image. In addition to their two-
pathway network, built a cascade of two networks and
performed a two-stage training, by training with balanced
classes and then refining it with proportions near the originals.
Use a binary FCNN to identify the complete tumor. Then, a
cellular automata smooths the segmentation, before a
multiclass FCNN discriminates the sub-regions of tumor.
Extracted patches in each plane of each voxel and trained a
FCNN in each MRI sequence; the outputs of the last FC layer
with softmax of each FCNN are concatenated and used to train
a RF classifier. divided the brain tumor regions segmentation
tasks into binary sub-tasks and proposed structured predictions
using a FCNN as learning method.
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IV. SCREEN SHOTS
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Segmentation Result

Fully Convolutional Neural Network

V. CONCLUSION

Thus a label-fusion aided deep-learning approach for
automatically segmenting isointense infant brain images into
white matter, gray matter and cerebrospinal fluid using T1-
and T2-weighted magnetic resonance images. A key idea of
our approach is to apply the fully convolutional neural
network (FCNN) to individual brain regions determined by a
traditional registration-based segmentation method instead of
training a single model for the whole brain. This provides
more refined segmentation results by capturing more region
specific features. The GM and WM were more difficult to
discriminate; compared with MALF, deep-learning based
methods performed much better; the Strategy-B-based FCNN
method outperformed the FCNN-only method. A two-sample
paired t-test shows that the Dice coefficients of all the three
labels by Strategy are significantly larger than using MALF
and FCNN. Compared with the top ranking team, it is
competitive on CSF segmentation. The low standard deviation
on test set implies this approach is robust. Believe that using
more complex brain parcellations to train a variety of FCNN
models may capture more region-specific features, but training

multiple models undoubtedly increases the computational
burden.
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