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Abstract- HAR detects and identifies human activity in the real
environment by learning useful information from original
sensor data or videos containing human activities. Sensor
based HAR uses sensors to obtain activity information and
classify activities without acquiring video images, which not
only protects the privacy of users, but also reduces the
computational complexity and expands the use scenarios. With
the development of pervasive computing and the improvement
of sensor technology, the characteristics of small size, low
cost, high capacity and portability have attracted people’s
attention. More and more mobile terminals such as mobile
phone and sports bracelets have embedded such as triaxial
accelerometer, gyroscope and magnetometer sensor, which
greatly promoted the development of HAR based on sensor.

The purpose of this research was to conduct an
investigation of deep learning and dimensionality reduction
techniques in human activity recognition and behavioural
prediction using MHEALTH data. These techniques combined
with multiple sensor data aim to classify daily activities.
Previous work in HAR has focused on using multiple
accelerometers placed on different parts of the body, with
more recent work focused on sensors embedded in
smartphones to classify activities. This research classifies
activities from utilising the data from the following sensors –
accelerometer, gyroscope and magnetometer.

Keywords- Human Activity, Sensor data, Machine Learning,
Deep Learning, Multilayer Perceptron, Accelerometer and
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I. INTRODUCTION

Continuous growth in the health sector has led to
astronomical advancements in the field of medicine. Due to
this continuous growth, the quality of life has greatly
increased when compared to one hundred years ago.
Everything from life expectancy, physical health, education,
safety and freedom has vastly improved. This rise in health
sector growth has led to an increase in healthcare costs.
Increased healthcare costs in monitoring patients with chronic
illness, monitoring the elderly along with many more instances

has led to drastic cost-cutting measures employed by
healthcare providers worldwide.

Technological advancements in healthcare can
contribute unquestionably in reducing healthcare costs by
ensuring clinicians, doctors and other medical staffs operates
and conduct their daily activities more efficiently in the
hospital vicinity. Since the turn of the 21st century, Human
Activity Recognition (HAR) [1] has undergone significant
research in the healthcare domain. Human activity recognition
utilised with powerful technologies can potentially benefit
remote patient monitoring, the elderly, patients suffering from
chronic illness and ambient assisted living.

Simple activities such as cycling, running and
jogging have been successfully recognized and classified to
date. Complex activities are proving increasingly difficult to
monitor, with continuous active research conducted in this
area of HAR. The main goal of HAR is to predict common
activities in real-life surroundings. Researchers are exploring
pattern recognition and human-computer relationships [2] due
to its applicability in the real world, such as a Human Activity
Recognition Healthcare Framework. Successfully classifying
human activities through wearable sensors generates endless
individual information, which provides insight about the
individuals’ functional ability, lifestyle and health [3].

1.1 Basic Building Blocks HAR systems: The figure below
details the basic building blocks of any human activity
recognition (HAR) system.

Figure 1.1: Basic building blocks of almost every system [4].
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Human Activity Recognition (HAR) becomes a very
popular and active research area for researchers from the last
two decades. However, it still remains a complex task due to
some irresolvable issues such as sensor movement, sensor
placement, background clustering, and the inherent variability
of how different people perform activities. Determining
detailed activities is beneficial in many areas of human-centric
applications, such as home care support, postoperative trauma
rehabilitation, abnormal activities, gesture detection, exercise,
and fitness. Most of the person's daily tasks can be simplified
or automated if recognized by the HAR system. Usually, HAR
systems are based on either unsupervised or supervised
learning. A supervised system requires pre-training using
special datasets, but unsupervised systems have a set of rules
during development [5].

HAR system can be divided into several modules,
sensing, segmentation, feature extraction, classification and
post preprocessing. Generally, according to the sensing
method, we can classify the HAR framework into two sorts:
vision-based and speeding up based strategies. Vision-based
technique, as a rule, utilizes at least one cameras to gather
information, this goes under outside detecting which perceives
complex exercises like shower, drinking mug of espresso,
washing dishes and so forth however acknowledgment of
human exercises through video or picture is testing task
because of which it is less well known when contrasted with
different sensors and if video is viewed as it is generally for
security reason. Then again increasing the speed-based
strategy approach clients to wear a few accelerometers for
information gathering.

The advantage of the vision-based system is that it
works without placing any sensors with users, but its
recognition performance highly depends on the light
condition, visual angle and other outer factors. On the
contrary, the acceleration-based system requires users to wear
a device, but almost eliminates all those outer interferences.
With this type of system, we use accelerometer which is the
most common device for activity tracking, counting the
number of steps and also assess their quality [6, 7]. HAR is
reflected as a significant component in several fields like in
Surveillance System, Human-computer interaction, anti-
terrorists, anti-crime securities, Healthcare as well as life
logging and assistance etc.

1.3 Various Approaches to HAR

To achieve the goal of recognizing human activity, a
HAR system is required. The two most commonly used
techniques for this purpose are sensor-based and vision-based

activity recognition. We can classify them, as shown in Fig.
1.2.

Figure 1.2: Classification of HAR system based on their
approaches [4].

A. Pose Based Approach

Poses are important for analyzing videos, which
include humans, and there is strong evidence that body posture
concepts are very effective for various tasks such as activity
recognition, content extraction, etc. This approach classifies
human actions based on the coordinate information of the
body parts. Basically, HPE refers to the process of assessing
the composition of a part of the human body (3D poses) or the
projection onto an image plane (2D HPE). It covers all issues
related to the human body, from understanding the entire
human body to the detailed localization of body parts [8]. It is
formulated as a regression problem that can be modelled with
a simple CNN. It takes the entire image as input and shows
the\ pixel coordinates of the body's key points. There are 15
body joints: Neck, LKnee, LAnkle, RShoulder, RWrist,
Relbow, LShoulder, RHip, LElbow, LWrist, Chest, and 14
joint connections. The classification problem can be
formulated as a multi-class classification problem that can also
be modeled by using neural networks. CNN accepts the body
joints location as input and generates a number vector
representing the probability of each activity labels
accordingly. Some popular dataset is also available such as
MPII, which contain more than 20,000 labelled images of 410
specific subcategories activities under 20 activity categories
[9].

B. Smartphone Sensor- Based

Smartphones are the most useful tool in our everyday
lives, and advanced technology is enabling us to meet the
needs and expectations of customers every day. To make these
devices more functional and powerful, designers are adding
new modules and devices to the hardware. Sensors enhance
the capabilities of smartphones and play a major role in
understanding the environment. As a result, most smartphones
have a variety of built-in sensors that can collect a wealth of
useful data about the human’s daily life. Sensors retrieve
information from body gestures and then recognized the
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activities. The most commonly used sensors are accelerometer
and gyroscope etc. Accelerometer sensor is used for measures
the change in speed, and gyroscope is used to measures the
orientation of the body. Some techniques of HAR through
smartphones used in recent studies are SVM, k-NN, Bagging,
Ada Boost [10].

C. Wearable Sensor Based

The wearable technique uses sensing devices to be
mounted on the subject to collect data from the sensors. As
human activity contains actions of different bodily positions,
the research of human activity needs to capture information
from more than one sensor installed on the different parts of
the body of the person. Wearable devices must be designed
with user accessibility in mind. Lightweight, modern, and
comfortable wearing devices with embedded sensors are used
for activity monitoring. Activity monitoring sensors are used
in multiple datasets. The most commonly used sensors are an
accelerometer, gyroscope, magnetometer, and RFID tag [11].
After feature extraction and modelling, human activities can
be recognized through statistics, and machine learning
algorithm is applied. How to map low-level sensor data to
higher-level abstractions is the key to activity recognition.

II. RELATED WORK

Modern environments can benefit greatly from the
continuous monitoring of workers current activities. The data
generated from sensors in these activity recognition
applications allow information to be analysed and pro-actively
used. Modern applications, such as in the aircraft industry,
yield these benefits. Aircraft maintenance procedures with the
aid of activity recognition applications using wearable sensors
continue to develop. Nicolai, Sindt, Witt, Reimerdes, and
Kenn [12] employ a wearable computing system with the aim
of reducing aircraft maintenance. The system incorporates
management techniques such as visual assisted maintenance
techniques, deployment of electronic logbook as well as
aircraft industry manuals.

Lampe, Strassner and Fleisch [13] present a
ubiquitous computing environment for Aircraft Maintenance
to ensure maintenance time is minimised and resources such
as staff, tools and techniques are efficiently used.

Maurtua, Kirisci, Stiefmeier, Sbodio, Witt [14]
present an activity recognition prototype using wearable
electronics that aids training activities in automotive
production. Results showed that the prototype was highly
effective in allowing automotive production to be flexible.
Workers guided by the prototype, ensure automotive

production is maximised compared to operating alone.
Monitoring the workers procedures and actions led the
prototype guided the worker in performing appropriate tasks
for error handling.

Aleksy and Rissanen [15] reports on how wearable
electronics can yield benefits in modern working
environments. A detailed account of how efficiency improves
in various sectors with constant interaction between the user
and the device is given. The study presents a case study where
processes in an industrial plant aided by wearable technology
to analyse if productivity increases.

Cheok et al. [16] presents a wearable electronic
entertainment system, which is a simulator evolving around a
human Pacman entertainment system. The system is a mobile,
wide-area entertainment system based on physical, social, and
ubiquitous computing. Cheok et al. [16] builds an architecture
that is capable of monitoring human motion with the data
generated from body worn inertial sensors. Building an
entertainment system that clearly mimics the real and virtual
world is difficult, [45] successfully accomplishes this.

Tobita and Kuzi [46] present an unusual
entertainment application. The wig-based wearable computing
device enhances communication and provides entertainment to
users. This obscure, natural looking device employs wearable
sensors to allow to parties to communicate with each other.
SmartWig is one of the first wearable electronic applications
for effective communication in the entertainment sector.

2.9 Activities

When presented with a human activity recognition
problem, choosing the correct sensor to complement the
working environment or application is important. The amount
of different types of sensors to choose from is endless, with
advanced sensors developed each year. Continuous research in
the activity recognition field has led more companies trying to
reap benefits of predicting activities to improve
communication and improve productivity. This section
discusses the different types of activities performed for
activity recognition.

Zhu, Xu, Guo, Liu, and Wu [48] classify physical
exercise activities such as running, jogging, standing still and
powerwalking using body-worn inertial sensors in related
work. These activities, when performed, generate a specific
type of range in body motion with the acceleration measured
being relatively similar when individuals of different
characteristics perform the activity.
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III. PROPOSED WORK

For the Figure 4.1 below shows the data flow and
approach implemented to classify the activities detailed in
chapter 4. All three sensors data (gyroscope, accelerometer,
magnetometer and electrocardiogram) are classified together
while predictions are generated from each individual
classification model. A classification model including all six
classification predictions is generated, followed by an in-depth
evaluation procedure. The best overall prediction model is
then identified.

Figure 4.1: Proposed Model Architecture.

4.1 Proposed Model steps:

The steps of the proposed model are described below:

Stage 1: Business Understanding

The first goal of this research is to build six different
types of prediction models and conduct a comparative study
on the performance of each model to identify which model
yields the greatest results in terms of classifying human
activities. The six models are CNN, LSTM, ConvLSTM,
MLP, XGBoost and AE with RF.

Stage 2: Data Understanding

For this research, The MHEALTH dataset is
analysed. The dataset includes body motion and vital signs
recordings for ten differing characteristics while performing
several physical activities. Twelve different activities with
three sensors attached to their body (gyroscope, accelerometer
and magnetometer) are recorded. Each activity leads the three
sensors to record twenty-three signals. There are no missing
values in this classification task. The goal is to predict each
activity given the twenty-three signals recorded. The data

collected for each volunteer is stored in individual log files:
‘mHealth_subject.log’. There are ten log files altogether. Each
file contains the data samples recorded for all three sensors.

Stage 3: Data Preparation:

Data preparation involves feature extraction,
encoding labels to one-hot form, converting the raw data into
the right shape for input into the model, normalising the data
and finally splitting the data into training and testing. Each
volunteers’ data was analysed separately for various reasons.

Stage 4: Modelling

Building each model involved extracting the features
and labels, hyperparameters setting, compiling the model and
model evaluation. Following models are build.

 CNN: The process for building the CNN model.

 LSTM: The process for building the LSTM model.

 ConvLSTM: The process for building the
ConvLSTM model.

 MLP: The process for building the MLP model.

 XGBoost: The process for building the XGBoost
model.

 RF: The process for building the RF model.

Stage 5: Evaluation

This stage involves evaluating each model. Each
classification model is evaluated using accuracy, precision,
recall, F1-Score, feature importance and confusion matrix. All
six-classification models are evaluated based on their
categorical cross entropy values. The model, which best suits
the data is chosen based on the evaluation procedures.

DBSCAN and t-SNE are evaluated based on how
well each one visualises clusters in this high-dimensional
dataset.

Stage 6: Deployment

The final stage involves the deployment of each
model into Python to analyse the MHEALTH dataset. Each
models code is not only applicable to the MHEALTH dataset,
but can be applied to any health prediction dataset, as each
model is built on multivariate analysis. Finally each models
experimental result is analysed.

4.2 Feature Extraction
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The next step is feature extraction. The MHEALTH
dataset consist of 10 log files, with each log file corresponding
to each of the ten subjects. In order to extract the features
(signal attributes) and labels (activities) of each log file, the
following feature extraction method is used.

1. Each file is opened by reading it into the Python Editor.
2. Each line in the file is then processed and read in until the
final line in the file is reached.
3. Each line is split to extract the labels for each line.
4. Once the label is found, it is split and removes the word. If
there is a space or comma, it detects it.
6. A sub list is created store all the values of each line.
7. Each line is split into values.
8. An array is then created from the sublist.
This loop successfully extracts all the features and labels of

each subjects log file.

IV. RESULTS WORK

Hyperparameters setting

This section gives an overview of training the model and
hyperparameters setting.

 In the training process, the ‘fit ()’ function is used to
train the proposed model.

 ‘X_train’ represents the training data.
 ‘y_train’ refers to the target data.
 ‘X_test,y_test’ represent the validation data.

 The model is trained on 706317 parameters.

While training the model:

 The Learning rate is set as 0.0005.

 Batch size is set as 32.

 Training process is run for 20 epochs.

The generalisation between each subjects activity
performed was measured in performance. Performance is
measured through precision, recall, f1 score and accuracy. The
following table depicts a detailed evaluation summarisation of
each class, the figures are normalised to the percentage of
data. Table below shows the comparison of the proposed and
existing models.

Table 5.1: Comparison Table.

Algorithms
Evaluation parameters
Accuracy Precision Recall F-

Score
CNN 84.16% 83.91% 84.16% 83.28%

XGBoost 90.024% 90.155% 90.024% 89.85%
CNN-
LSTM

84.61% 84.32% 84.61% 84.14%

Random
Forest

83.3% 83.5% 83.9% 81.5%

Proposed
Model

90.53% 91.71% 90.53% 90.76%
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