
IJSART - Volume 8 Issue 6 – JUNE 2022 ISSN [ONLINE]: 2395-1052

Page | 1276 www.ijsart.com

Implementation of An Efficient Web Crawling
Algorithm

Shubham Sharma1, Shivkant2

1Dept of Computer Science and Engineering
2Assistant Professor, Dept of Computer Science and Engineering

1, 2 SKITM, Bahadurgarh, India

Abstract- T By crawling, we mean to traverse the Web by
recursively following links from a starting URL or a set of
starting URLs. This starting URL set is the entry point though
which any crawler starts searching procedure. This set of
starting URL is known as “Seed Page”. The selection of a
good seed is the most important factor in any crawling
process.Without search engines, it would be almost impossible
for us to locate anything on the Web unless or until we know a
specific URL address. Every search engine maintains a
central repository or databases of HTML documents in
indexed form. Whenever a user query comes, searching is
performed within that database of indexed web pages. The size
of repository of every search engine can’t accommodate each
and every page available on the WWW. So it is desired that
only the most relevant pages are stored in the database so as
to increase the efficiency of search engines. To store most
relevant pages from the World Wide Web, a suitable and
better approach has to be followed by the search engines. This
database of HTML documents is maintained by special
software. The software that traverses web for capturing pages
is called “Crawlers” or “Spiders”.In this paper, we
implement the efficient web crawling algorithmto resolve the
issues faced in earlier approaches or techniques.

I. INTRODUCTION

As discussed, web crawler traverses the web and
behind it there is an algorithm. In this paper, we have
implemented an algorithm and shown the results that shows
the performance of the algorithm. A web-crawler is a
program/software or automated script which browses the
World Wide Web in a methodical, automated manner.The
structure of the World Wide Web is a graphical structure, i.e.,
the links given in a page can be used to open other web pages.
Actually, Internet is a directed graph, webpage as node and
hyperlink as edge, so the search operation could be abstracted
as a process of traversing directed graph. By following the
linked structure of the Web, we can traverse a number of new
web-pages starting from a Starting webpage. Web crawlers are
the programs or software that uses the graphical structure of
the Web to move from page to page [1]. Such programs are
also called wanderers, robots, spiders, and worms. Web

crawlers are designed to retrieve Web pages and add them or
their representations to local repository/databases. Web
crawlers are mainly used to create a copy of all the visited
pages for later processing by a search engine that will index
the downloaded pages that will help in fast searches. Web
search engines work by storing information about many web
pages, which they retrieve from the WWW itself. These pages
are retrieved by a Web crawler (sometimes also known as a
spider) — which is an automated Web browser that follows
every link it sees. Web crawlers are programs that exploit the
graph structure of the web to move from page to page. It may
be observed that `crawlers' itself doesn’t indicate speed of
these programs, as they can be considerably fast working
programs.Web crawlers are software systems that use the text
and links on web pages to create search indexes of the pages,
using the HTML links to follow or crawl the connections
between pages.

II. LITERATURE SURVEY

Web crawlers are almost as old as the web itself. The
first crawler, Matthew Gray’s Wanderer, was written in the
spring of 1993, roughly coinciding with the first release of
NCSA Mosaic. Several papers about web crawling were
presented at the first two World Wide Web conferences.
However, at the time, the web was three to four orders of
magnitude smaller than it is today, so those systems did not
address the scaling problems inherent in a crawl of today’s
web.

Obviously, all of the popular search engines use
crawlers that must scale up to substantial portions of the web.
However, due to the competitive nature of the search engine
business, the designs of these crawlers have not been publicly
described. There are two notable exceptions: the Google
crawler and the Internet Archive crawler. The original Google
crawler [2] (developed at Stanford) consisted of five
functional components running in different processes. A URL
server process read URLs out of a file and forwarded them to
multiple crawler processes. Each crawler process ran on a
different machine, was single-threaded, and used
asynchronous I/O to fetch data from up to 300 web servers in

IJSART - Volume 8 Issue 6 – JUNE 2022 ISSN [ONLINE]: 2395-1052

Page | 1277 www.ijsart.com

parallel [3]. The crawlers transmitted downloaded pages to a
single StoreServer process, which compressed the pages and
stored them to disk. The pages were then read back from disk
by an indexer process, which extracted links from HTML
pages and saved them to a different disk file. A URL resolver
process read the link file, derelativized the URLs contained
therein, and saved the absolute URLs to the disk file that was
read by the URL server [4]. Typically, three to four crawler
machines were used, so the entire system required between
four and eight machines [5].

Research on web crawling continues at Stanford even
after Google has been transformed into a commercial effort.
The Stanford WebBase project has implemented a high
performance distributed crawler, capable of downloading 50
to 100 documents per second .Cho and others have also
developed models of document update frequencies to inform
the download schedule of incremental crawlers.

The Internet Archive also used multiple machines to
crawl the web. Each crawler process was assigned up to 64
sites to crawl, and no site was assigned to more than one
crawler. Each single-threaded crawler process read a list of
seed URLs for its assigned sites from disk into per-site queues,
and then used asynchronous I/O to fetch pages from these
queues in parallel. Once a page was downloaded, the crawler
extracted the links contained in it [6]. If a link referred to the
site of the page it was contained in, it was added to the
appropriate site queue; otherwise it was logged to disk.
Periodically, a batch process merged these logged “cross-site”
URLs into the site-specific seed sets, filtering out duplicates in
the process [7].

III. WEB CRAWLING ALGORITHM

By looking at the basic working of crawlers, it is
clear to us that at each stage crawler selects a new link from
the frontier for processing. So the selection of the next link
from the frontier is also a major aspect. The selection of the
next link from the frontier entirely depends upon the crawling
algorithm we are using.

So the job of selecting the next link from the frontier
is something like selection of job by the CPU from Ready
Queue (CPU Scheduling) in operating systems.The basic
algorithm executed by any web crawler takes a list of seed
URLs as its input and repeatedly executes the following steps:

Remove a URL from the URL list
Determine the IP address of its host name
Download the corresponding document
Extract any links contained in it

For each of the extracted links, ensure that it is an
absolute URL and add it to the list of URLs to download;
provided it has not been encountered before. If desired,
process the downloaded document in other ways (e.g., index
its content).

Any basic Web crawling algorithm requires a number of
functional components:

 A component (called the URL frontier) for storing the list
of URLs to download;

 A component for resolving host names into IP addresses;

 A component for downloading documents using the
HTTP protocol;

 A component for extracting links from HTML
documents; and

 A component for determining whether a URL has been
encountered before or not.

The simplest crawling algorithm uses a queue of
URLs yet to be visited and a fast mechanism for determining
if it has already seen a URL. This requires huge data
structures. A simple list of 20 billion URLs contains more than
a terabyte of data. [How things] The crawler initializes the
queue with one or more “seed” URLs. A good seed URL will
link to many high-quality Web sites—for example,
www.dmoz.org or wikipedia.org. Crawling proceeds by
making an HTTP request to fetch the page at the first URL in
the queue. When the crawler fetches the page, it scans the
contents for links to other URLs and adds each previously
unseen URL to the queue. Finally, the crawler saves the page
content for indexing. Crawling continues until the queue is
empty.

Modified Best First Algorithm

The Pseudo-code of Modified Best First approach can be
stated as below:

Figure 6.1: Pseudo-code of modified Best Approach

IJSART - Volume 8 Issue 6 – JUNE 2022 ISSN [ONLINE]: 2395-1052

Page | 1278 www.ijsart.com

As cleared from the pseudo-code above, the initial
SEED URLs are assigned relevancy value 0 and are inserted
into the Frontier. Until the Frontier gets empty, the URL with
highest relevancy value is fetched. Each URL is traversed and
checked for relevancy.

The relevancy score of the node is assigned to each
of its child nodes. Along with respective relevancy values
inherited from parent node, new children URLs are inserted
into the Frontier.

Results for Modified Best First Search

In our modified Best First Approach, the Relevancy
Score of the Parent Page is also associated with the current
page.

The output screen of the results is as shown below:

Output Results for Modified Best First approach

As cleared from the output screenshot, the parent
relevance decides which page will be selected next. The page
with the highest parent relevance value is selected from the
Frontier every time.We start with A. since it is the starting
node, its parent is nothing and parent relevancy is also 0. Its
own relevancy comes out to be 0.4.

Page A has 2 children – B and C. So both B and C
are assigned parent relevance 0.4.(Note that the parent
relevancy calculation is dynamic. i.e. if a page is traversed
again from another parent, its parent value will depend on that
new parent page and corresponding parent relevance will also
change dynamically)

As here, C is approached again from Page D, since
the relevancy of D comes out to be 1.0, the parent relevancy
of C changes from 0.4 to 1.0.Thus our modified program
considers the dynamic nature of the web where contents of the
pages could change anytime and thus the relevancy also gets
affected.

IV. CONCLUSION & FUTURE WORK

Here we have implemented the modified algorithm
for web crawling and can easily identify that it has provided
best results. Internet is one of the easiest sources available in
present days for searching and accessing any sort of data from
the entire world. The structure of the World Wide Web is a
graphical structure, and the links given in a page can be used
to open other web pages. In this thesis, we have used the
graphical structure to process certain traversing algorithms
used in the search engines by the Crawlers. Each webpage can
be considered as node and hyperlink as edge, so the search
operation could be abstracted as a process of traversing
directed graph. By following the linked structure of the Web,
we can traverse a number of new web-pages starting from a
Starting webpage. Web crawlers are the programs or software
that uses the graphical structure of the Web to move from page
to page. In this thesis, we have briefly discussed about
Internet, Search Engines, Crawlers and then Crawling
Algorithms.

There are number of crawling strategies used by
various search engines. The basic crawling approach uses
simple Breadth First method of graph traversing. But there are
certain disadvantages of BFS since it is a blind traversing
approach. To make traversing more relevant and fast, some
heuristic approaches are followed. The results of all the
crawling approaches are giving different results.

These heuristic searches keep a check on the
relevancy factor of every page to be traversed. Thus the
efficiency of the database of the search engine increases and
only relevant pages are stored in it.The fast and more accurate
version of Fish Search is known as – Shark Search, which is
probably the best crawling approach. But there are some
issues related with the implementation of Shark Search
Approach in simple programming environment as there is lot
of factors, calculations associated with it.

In future, work can be done to improve the efficiency
of algorithms and accuracy and timeliness of the search
engines. The work of Shark Search can be extended further to
make Web crawling much faster and more accurate.

IJSART - Volume 8 Issue 6 – JUNE 2022 ISSN [ONLINE]: 2395-1052

Page | 1279 www.ijsart.com

REFERENCES

[1] Junghoo Cho, Hector Garcia-Molina: “Parallel Crawlers”,
7–11 May 2021, Honolulu,Hawaii, USA.

[2] Articles about Web Crawlers available at
Http://en.wikipedia.org/wiki/Web_crawler#Examples_of_
Web_crawlers

[3] Marc Najork, Janet L. Wiener,” Breadth-first search
crawling yields high-quality pages”, WWW10
proceedings in May 2-5, 2021, Hong Kong.

[4] Sergey Brin and Lawrence Page, “The Anatomy of a
Large-Scale Hypertextual Web Search Engine”,
Computer Science Department, Stanford University,
Stanford, CA Available at-
http://www.his.se/upload/51108/google.pdf

[5] Filippo Menczer, Gautam Pant and Padmini Srinivasan,
“Topical Web Crawlers: Evaluating Adaptive
Algorithms” ACM Transactions on Internet Technology,
Vol. 4, No. 4, November 2019, Pages 378–419. Available
at-
http://www.informatics.indiana.edu/fil/Papers/TOIT.pdf

[6] P. De Bra, G. Houben, Y. Kornatzky and R. Post,
"Information Retrieval in Distributed Hypertexts", in
Proceedings of the 4th RIAO Conference, 481 - 491, New
York, 2017.

[7] M. Hersovici, M. Jacovi, Y. Maarek, D. Pelleg, M.
Shtalhaim and S. Ur "The Shark-Search Algorithm – An
Application: Tailored Web Site Mapping", In
Proceedings of the Seventh International World Wide
Web Conference, Brisbane, Australia, April 2018.
Available at-
http://www7.scu.edu.au/1849/com1849.htm

[8] Sriram Raghavan, Hector Garcia-Molina, “Representing
Web Graphs”, Stanford University, CA – June 2020.
Available at-
http://www.almaden.ibm.com/cs/people/rsriram/pubs/icde
03.pdf

[9] A. Z. Broder, S. R. Kumar, F. Maghoul, P. Raghavan, S.
Rajagopalan, R. Stata, A. Tomkins, and J. L. Wiener,
“Graph structure in the web” in Proc of WWW Conf.,
2020 Available at
http://www.cis.upenn.edu/~mkearns/teaching/Networked
Life/broder.pdf

[10] Input Web Graph available at-
http://www.openarchives.org/ore/0.1/datamodel

[11] Dr. P.M.E. De Bra, Drs. R.D.J. Post, "Searching for
arbitrary information in the WWW: the fish-search for
Mosaic." Available at-
http://archive.ncsa.uiuc.edu/SDG/IT94/Proceedings/Searc
hing/debra/article.html

[12] Blaz Novak, “A survey of focused web crawling
algorithms”, Department of Knowledge Technologies,
Jozef Stefan Institute, Ljubljana, Slovenia

[13] Edleno S. de Moura, Daniel R. Fernandes, Altigran S.
Silva, “Improving Web Search Efficiency via a Locality
Based Static Pruning Method”, WWW 2021, May 10-14
2021, Chiba, Japan.

[14] “Graph Data structure Introduction “, available at-
hamilton.bell.ac.uk/swdev2/notes/notes_18.pdf

