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Abstract- With the exponential increase in mobile internet 

traffic driven by a new generation of wireless devices, future 

cellular networks face a great challenge to meet this 

overwhelming demand of network capacity. At the same time, 

the demand for higher data rates and the ever-increasing 

number of wireless users led to rapid increases in power 

consumption and operating cost of cellular networks. One 

potential solution to address these issues is to overlay small 

cell networks with macrocell networks as a means to provide 

higher network capacity and better coverage. Another 

technique to improve energy efficiency in cellular networks is 

to introduce active/sleep (on/off) modes in macrocell base 

stations. In this paperwe investigate the design and the 

associated tradeoffs of energy efficient cellular networks 

through the deployment of sleeping strategies and small cells. 

We derive the success probability and energy efficiency in 

heterogeneous K-tier wireless networks under different 

sleeping policies. In addition, we formulate the power 

consumption minimization and energy efficiency maximization 

problems, and determine the optimal operating regimes for 

macrocell base stations. In addition, the deployment of small 

cells generally leads to higher energy efficiency but this gain 

saturates as the density of small cells increases. In a nutshell, 

our proposed framework provides an essential understanding 

on the deployment of future green heterogeneous networks. 
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I. INTRODUCTION 

 

 A new wireless technology generation is introduced 

every decade and the standardization is guided by the 

International Telecommunication Union (ITU), which 

provides the minimum performance requirements. For 

example, 4G was designed to satisfy the IMT-Advanced 

requirements [1] on spectral efficiency, bandwidth, latency, 

and mobility. Similarly, the new 5G standard [2] is supposed 

to satisfy the minimum requirements of being an IMT-2020 

radio interface [3]. In addition to more stringent requirements 

in the aforementioned four categories, a new metric has been 

included in [3]: energy efficiency (EE). A basic definition of 

the EE is [4], [5]. 

= (1) 

 

This is a benefit-cost ratio and the energy 

consumption term includes transmit power and dissipation in 

the transceiver hardware and baseband processing [5], [6]. A 

general concern is that higher data rates can only be achieved 

by consuming more energy; if the EE is constant, then 100× 

higher data rate in 5G is associated with a 100× higher energy 

consumption. This is an environmental concern since wireless 

networks are generally not powered from renewable green 

sources. It is desirable to vastly increase the EE in 5G, but 

IMT-2020 provides no measurable targets for it, but claims 

that higher spectral efficiency will be sufficient. There are two 

main ways to improve the spectral efficiency: smaller cells 

[6], [7] and massive multiple-input multiple-output (MIMO) 

[8], [9]. The former gives substantially higher signal-to-noise 

ratios (SNRs) by reducing the propagation distances and the 

latter allows for spatial multiplexing of many users and/or 

higher SNRs. Since these gains are achieved by deploying 

more transceiver hardware per km2, higher spectral efficiency 

will not necessarily improve the EE; the EE first grows with 

smaller cell sizes and more antennas, but there is an inflection 

point where it starts decaying instead [10]. The bandwidth is 

fixed in these prior works, but many other parameters are 

optimized for maximum EE. There are other non-trivial 

tradeoffs, such as the fact that transceiver hardware becomes 

more efficient with time [6], [11], so the energy consumption 

of a given network topology gradually reduces. 

 

While the Shannon capacity [12] manifests the 

maximal spectral efficiency over a channel and the speed of 

light limits the latency, the corresponding upper limit on the 

EE is unknown. A comprehensive study of the EE of 4G base 

stations is found in [13]. It shows that a macro site delivering 

28 Mbit/s has an energy consumption of 1.35kW, leading to 

an EE of 20 kbit/Joule. Recent papers report EE numbers in 

the order of 10 Mbit/Joule [5], [14], [15] when considering 

future 5G deployment scenarios and using estimates of current 

transceivers’ energy consumption. There is also numerous 

papers that consider normalized setups (e.g., 1 Hz of 

bandwidth) that give no insights into the EE that can be 

achieved in practice. Finally, the channel capacity per unit cost 
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was studied for additive white Gaussian noise (AWGN) 

channels in [16], which is a rigorous but normalized form of 

EE analysis. 

         

The goal of this paper is to analyze the physical EE 

limits in a few different cases and, particularly, give 

practically relevant numbers on the maximum achievable EE. 

Existing cellular architectures are designed to cater to large 

coverage areas, which often fail to achieve the expected 

throughput to ensure seamless mobile broadband in the uplink 

as users move far away from the base station. This is mainly 

due to the increase in inter-cell interference, as well as 

constraints on the transmit power of the mobile devices. 

Another limitation of conventional macrocell approach is the 

poor indoor penetration and the presence of dead spots, which 

result in drastically reduced indoor coverage. In order to 

overcome these issues and provide a significant network 

performance leap, heterogeneous networks have been 

introduced in the LTE-Advanced standardization [1]–[3]. A 

heterogeneous network uses a mixture of macrocells and small 

cells such as microcells, picocells, and femtocells. These small 

cells can potentially improve spatial reuse and coverage by 

allowing future cellular systems to achieve higher data rates, 

while retaining seamless connectivity and mobility in cellular 

networks. Besides the issue of meeting overwhelming traffic 

demands, network operators around the world now realize the 

importance of managing their cellular networks in an energy 

efficient manner and reducing the amount of CO2 emission 

levels simultaneously [4]–[7]. Current studies show that the 

amount of CO2 emission levels due to information and 

communication technologies is already 2%. With the 

exponential increase in data traffic and mobile devices, this 

figure is projected to increase significantly. Improving energy 

efficiency also helps network operators reduce the operational 

cost as energy constitutes a significant part of their 

expenditure. As a result, the terminology of ”green cellular 

network” has become very popular recently, showing the 

current sentiment of the telecom industries to place more 

emphasis on energy efficiency as one of the key performance 

indicators for cellular network design [7]. Although the 

deployment of small cell networks is seen to be a promising 

way of catering to the ever increasing traffic demands, the 

dense and random deployment of small cells and their 

uncoordinated operation raise important questions about the 

implication of energy efficiency in such multitier networks 

[8]–[11]. Besides introducing small cells into existing 

macrocell networks, another effective technique is to 

introduce sleep mode in macrocell base stations (MBSs) [12]–

[15]. The main motivation is that current cellular networks 

usually assume that the traffic demand is always high and so 

the MBSs are always powered on at all times. However, 

studies have shown that there are high fluctuations in traffic 

demand over space and time in cellular networks [6]. For 

example, the traffic demands in urban and rural areas or traffic 

demands in day and night time are entirely different. From this 

perspective, there is potential in energy savings by adapting 

the sleeping mode of MBSs to the demanded traffic. 

Nevertheless, when we switch some MBSs off, certain users 

may need to connect to MBSs located further away while 

experiencing a lower amount of intercell interference. For the 

case of dense deployment of MBSs, we know that these two 

effects cancel out equally and the coverage probability is 

independent of the sleeping mode [16]. However, for sparse 

deployment of MBSs, it is expected that we need to maintain 

the coverage of the cellular networks when we implement 

sleeping mode in MBSs either through power control or open 

access small cells. Since both techniques consume power, it is 

unclear which technique is more energy efficient and how the 

energy efficiency depends on the intensity of small cells and 

access policy. On the other hand, one of the major challenges 

in small cell deployment is the incursion of inter-tier 

interference due to aggressive frequency reuse, which can 

deteriorate the effectiveness of small cell architecture [1]–[3]. 

As a result, there has been a significant amount of research on 

managing inter-tier and intra-tier interference in a two-tier 

small cell network, which consists of a macrocell network 

overlaid with small cells [17], [18]. In [17], the authors 

proposed a spectrum partitioning approach to avoid the inter-

tier interference between the macrocell and small cell tiers by 

using orthogonal spectrum allocation. However, under a 

sparse small cell deployment setting, this approach is clearly 

inefficient and much higher area spectrum efficiency can be 

attained if spectrum sharing is allowed [18]. On the other 

hand, for spectrum sharing in two-tier small cell networks, it 

becomes imperative to properly manage the inter-tier 

interference using techniques such as access control [18], [19], 

power control [20], [21], multiple antennas [22], or cognitive 

radio [23]–[25]. Besides interference management techniques, 

interference modeling in two-tier networks using stochastic 

geometry has also gathered considerable attention due to its 

accuracy and tractability [26]–[28]. The spatial distribution of 

MBSs in the network is usually modeled by lattices or 

hexagonal cells since their deployment is considered well-

planned, centralized, and hence regular. Nevertheless, it has 

been recently shown that modeling MBSs by a homogeneous 

Poisson point process (PPP) and associating macrocell users to 

their closest MBSs is a tractable yet accurate macrocell 

network model [16]. On the other hand, femtocell access 

points (FAPs) are extensively modeled as PPP as well, mainly 

due to uncoordinated and random deployment and operation. 

In this work, we apply the tools from stochastic geometry to 

analyze the energy efficiency of cellular networks through the 

deployment of sleeping strategy as well as small cells. By 

assuming that the network operators have some information of 
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the traffic usage patterns, they can employ a coordinated 

sleeping mode, where certain MBSs will be shut off while 

others increase their coverage areas to avoid coverage hole. In 

particular, we model the sleeping mode at each MBS as a 

Bernoulli random variable, where q denotes the probability 

that a MBS remains in operation and the underlying spatial 

distribution of MBSs is modeled as a PPP. In practice the 

network operators will have a predetermined policy of sending 

MBSs to sleep that ensures reasonable coverage over the 

entire network, i.e., such as spacing out sleeping MBSs 

regularly. We nevertheless adopt a marked PPP to model the 

dynamics of the sleeping mode (which is a random process) 

for its tractability in order to come up with reasonable design 

guidelines of green cellular network design. To maintain 

similar network coverage after some MBSs have been 

switched off, we need to perform some form of power control. 

Given no knowledge of the channel state information, we will 

employ fixed power control. One question we will explore is 

the effect that q has on the energy efficiency when we shut 

some MBSs off. 

 

While we will reduce the interference from some 

MBSs, this will cause certain macrocell users to connect to 

MBSs which are even further away. Besides homogeneous 

macrocell networks with sleeping strategy, we will also 

investigate the energy efficiency in heterogeneous K-tier 

networks with open access small cells. In addition, we 

formulate optimization problems in the form of power 

consumption minimization and energy efficiency 

maximization and determine the optimal operating frequency 

of the macrocell base station. Numerical results confirm that 

the effectiveness of sleeping strategy in homogeneous 

macrocell networks but the gain in energy efficiency depends 

on the type of sleeping strategy used. In addition, the 

deployment of small cells generally lead to higher energy 

efficiency but this gain saturates as the density of small cells 

increases. 

 

The mobile industry faces a critical energy 

consumption challenge. Anticipated by Gartner [1],by 2013 

smartphones will exceed 1.82 billion units and surpass PCs as 

the most common web access devices. Consequently, more 

wireless infrastructures have to be deployed with large 

demands on energy. Meanwhile, data-intensive services are 

beginning to dominate mobile services. The network data 

volume is expected to increase by a factor of 10 every five 

years, associated with a 16–20 percent increase of energy 

consumption [2]. Applying this rate to mobile 

communications, which contribute 15–20 percent of the entire 

information and communications technologies (ICT) energy 

footprint and 0.3–0.4 percent of global CO2 emissions [2], the 

mobile industry faces a great sustainable development 

problem in energy consumption. It is crucial to develop 

energy-efficient wireless technologies to meet this challenge. 

We study In this papere the energy efficiency (EE) of the 

wireless access network, which is broadly defined as any 

wireless system using radio base stations (RBSs) or access 

points (AP) to interface mobile devices with the core network 

or Internet. The reasons to focus on wireless access networks 

are following. First, since wireless access networks are the 

most widely deployed wireless networks in the world, energy-

efficient solutions designed for wireless access networks are 

expected to significantly improve EE in the ICT sector. 

Second, as a long tradition, the standards of wireless access 

networks are mainly focused on throughput performance. 

Only recently has EE been receiving increasing attention. 

Significant studies are needed to balance performance and EE. 

Third, the demand from mobile users for EE is urgent in order 

to enjoy better mobile services. As shown in Fig.1.1, statistics 

indicate that the RBS is the main source of energy 

consumption in the network of a mobile operator [3]. Energy 

efficient solutions for wireless access networks are mainly 

concentrated on RBSs. Among all components in an RBS, 

power amplifiers (PAs) drain the most energy. Energy is also 

dissipated in alternating current/direct current (AC/DC) 

converting, cabling, and cooling. Various solutions have been 

proposed to improve EE of the RBS, such as increasing PA 

efficiency, using non-active cooling techniques, employing 

masthead PA to reduce feeder loss, exploiting energy efficient 

backhaul solutions, applying energy-efficient deployment 

strategies, and introducing energy-efficient protocols. This 

papere overviews soft methods to improve EE of RBSs, with 

an emphasis on Long Term Evolution (LTE) sys tems. Soft 

methods do not upgrade hardware, but tune parameters in 

protocols, and apply enhanced architecture and deployment 

strategies for EE improvement. They enable flexible and cost-

efficient solutions with minimum impact on hardware 

implementation. 

 

 
Figure 1.1 Energy consumption composition of a mobile 

operator [3]. 
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II. SYSTEM MODEL 

 

2.1 Network Model : 

 

We consider a wireless cellular network consisting of 

MBSs located according to a homogeneous PPP ΘM of 

intensity λM in the Euclidean plane. Users are distributed 

according to a different independent stationary point process 

of intensity μ. Each macrocell user is associated with its 

geographically closest MBS and the analysis is performed for 

a randomly selected typical user. Since ΘM is a stationary 

process, the distribution of distance RM between a macrocell 

user and its designated MBS remains the same regardless of 

the exact locations, and its probability density function (pdf) is 

given by . We assume universal 

frequency reuse among base stations and that each MBS 

serves only one user. If there are multiple users in a Poisson-

Voronoi cell, some form of orthogonal resource sharing (e.g. 

frequency or time division multiple access) is performed. 

 

2.2. Signal-to-Interference-plus-Noise Ratio: 

 

For notational convenience, we denote a base station 

by its location while the user is at the origin 0. For downlink 

transmission of a MBS x to the typical user 0, the signal-to 

interference-plus-noise ratio (SINR) experienced by a 

macrocell user is given by 

 

                  (2) 

 

where Θ(x) denotes the set of nodes interfering with 

x, Pt,i denotes the transmit power at tier i, and hx,hy are the 

channel power gain due to small-scale fading from x, y 

respectively. In the following, we assume that hx  exp(1) and 

hy  exp(1) (Rayleigh fading). The background noise is 

assumed to be additive white Gaussian with variance σ2 and 

the path loss function is denoted by  , with α 

being the path loss exponent. 

 

2.3. Power Consumption Model: K 

 

 We also consider a general K-tier heterogeneous 

network model, where the base stations in each tier are 

modeled as independent homogeneous PPP Θi with intensity 

λi. We will always use Θ1 for the macro tier ΘM. In addition, 

we consider again that all base stations in the K tiers share the 

same bandwidth. Without employing any sleeping mode at 

each base station in the i-th tier, the average power 

consumption of the i-th tier heterogeneous networks is given 

by 

             ( 3) 

 

where Pi0 is the static power expenditure of the base 

station in the i-th tier, Pi is the RF output power of the i-th tier 

base station, and Δi is the slope of the load-dependent power 

consumption the base station in the i-th tier. 

 

2.4. Base Station Sleep Mode Strategies: 

 

In this paper, we present the two main policies that 

we propose and analyze in order to optimize the power 

consumption at each MBS. We investigate policies of 

dynamically switching off MBS, where the power consumed 

by a switched off MBS in sleep mode is Psleep. Note that we 

consider that Psleep < PM0 which is a valid assumption for 

future base stations with sleeping mode capabilities. To 

maintain similar network coverage after some MBSs having 

been switched off, we employ power control by selecting Pt,M 

= β ,M, where β denotes the uniform increase in transmission 

power for MBS. The attractiveness of fixed power control is 

that it compensates for the sleeping activity without the need 

for obtaining instantaneous channel state information for the 

macrocell users. 

 

2.4.1 Random Sleeping: 

 

 In random sleeping, we model the sleeping strategy 

as a Bernoulli trial such that each station continues to operate 

with probability q and sleeps (is turned off) with probability 

1−q, independently of all the other base stations. Therefore, 

after applying random sleeping at the macro tier, the average 

total power consumption of the macrocell network is given by 

 

PRS = λMq(PM0 +ΔMβPM) + λM(1 − q)Psleep      (4) 

 

2.4.2 Strategic Sleeping: 

   

Instead of randomly switching MBSs off, we can also switch 

off MBSs when their activity levels are low, e.g. when load or 

traffic demands are low. Specifically, we model this strategic 

sleeping as a function s : [0, 1] → [0, 1] which says that if the 

activity level of the coverage area associated with the MBS 

has activity level x, then it operates with probability s(x) and 

sleeps with probability 1−s(x), independently. This sleep mode 

strategy can be seen as a load-aware policy and it can 

incorporate traffic profile in the optimization problem. As a 

result, the average power consumption of the macrocell 

network after employing strategic sleeping is given by 

 

PSS = λME{s}(PM0+βΔMPM)+λM(1−E{s})Psleep,  (5) 
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where E{s} =  and  is the pdf of 

A and A denotes the random activity within a cell and takes 

values in [0, 1]. The rationale behind the proposed strategic 

sleeping is the following: while random sleeping models a 

network that is adaptive to the fluctuating activity levels 

during the day, strategic sleeping goes one step further and 

models a network that is adaptive to the fluctuating activity 

levels within the location. Furthermore, the strategic sleeping 

model may be used as a method of measuring the impact of 

cooperation among MBSs. Let us illustrate this with an 

example. Suppose that we have a pair of cooperating MBSs. If 

the activity level in the combined coverage area is expected to 

be below half of the full capacity, then the pair may choose to 

keep only one of them awake. Then, the awake MBS may 

serve both coverage areas or the coverage areas can be 

reassigned among all remaining awake MBSs. The above 

cooperation model can be modeled by strategic sleeping by 

having, say, both MBS to stay awake with probability s = 0.5. 

While an explicit association between neighboring MBSs is 

technically absent, this model may nevertheless be seen as a 

way to measure the energy savings by introducing cooperation 

within the network. 

 

III. HOMOGENEOUS MACROCELL NETWORK 

 

In this paper, we study the effect of switching off 

MBSs based on the aforementioned sleeping policies, i.e. 

randomly and dynamically. The performance measure is the 

coverage probability and the effect of noise is taken into 

account, i.e. σ2 > 0. In recent work analyzing coverage in 

macro cellular networks, it is shown that the coverage 

probability  is independent of the intensity of the base stations 

in the interference-limited regime (σ2 → 0) [16]. This also 

holds true in heterogeneous K-tier networks [18], [29-31]. The 

main reason behind this is the fact that in dense networks, the 

improvement in received signal power by adding more MBSs 

and bringing the transmitters closer to the receivers is equally 

canceled out by the increased interference from more MBSs 

(interferers). Nevertheless, when MBS sleeping policies are 

applied, the effect of noise is noticeable and cannot be ignored 

as the number of interferers may be significantly decreased. 

Therefore, in this work we also consider the case where σ2 > 

0. 

 

3 .1 Random Sleeping : 

 

As explained in Paper 3, the random sleeping strategy 

is simply equivalent to modeling the active MBSs as a marked  

PPP with intensity qλM and increasing the transmission power 

of the active MBSs to βPM. 

Theorem 1. In homogeneous macrocell networks with 

random sleeping, the coverage probability of a randomly 

located macrocell user is given by 

 

      (6) 

Where  

 

Furthermore, for σ2 = 0, ℙRS(β, γ) can be simplified as 

 

 
 

Proof :  

 

The coverage probability is defined as 

 

     (7) 

 

where the probability density function of the MBS 

 is 2πλMr exp(−πλMr2) (without sleeping) and 2πqλMr 

exp(−πqλMr2) (with sleeping). 

 

We can see that the coverage probability is 

completely independent of the sleeping policy, the density of 

MBSs λM, as well as the power control β when σ2 = 0.The only 

parameter that affects the coverage probability is the target 

SINR threshold γ. In the case of σ2 > 0, numerical integration 

is required to calculate the coverage probability. 

 

3.2  Strategic Sleeping: 

 

Here we analyze the strategic MBS switching off that 

is based on the activity of macrocell users in each cell. We 

assign i.i.d. random variables Ai ∼ A to each MBS i ∈ ΘM, 

such that A takes values in [0, 1]. Ai represents user activity 

within the Poisson-Voronoi cell that the MBS covers. That is 

to say, for any user located in a Poisson-Voronoi cell of a 

MBS with activity level a, the user is active with probability a, 

i.e. it is actually connected to the MBS with probability a. 

Therefore, we can model the sleeping strategy as a function s 

:[0, 1] → [0, 1], which implies that if the activity level of the 

MBS has activity level x, then it operates with probability s(x) 

and sleeps with probability 1 − s(x). In addition, we impose 

that s(x) is increasing. Using this model, the active MBSs are 

distributed accordingly to a homogeneous PPP with intensity 

λME{s} =  . Therefore, the coverage 

probability that captures the activity of the macrocell user is 

provided in the next theorem. 



IJSART - Volume 8 Issue 5 – MAY 2022                                                                                           ISSN [ONLINE]: 2395-1052 
 

Page | 188                                                                                                                                                                     www.ijsart.com 

 

Theorem 2. The coverage probability of the active macrocell 

user2 is given by 

 

    (8) 

 

where gi(r) is the pdf of the i-th nearest point from a PPP, such 

that . For σ2 = 0,  

can be simplified as 

 

=       (9) 

 

Proof: The first step is to condition on the activity of a typical 

cell a(x). Next, we enumerate all the MBSs in increasing order 

of distance from the user, starting from the distance of each 

MBS from the user is almost surely distinct. Nord denotes the 

order of the MBS the user connects to and fA(x) denotes the 

pdf of A. The success probability per link is thus given by 

 

 

 

  (10) 

 

where (a) is by definition of a coverage probability 

weighted over the active user links, (b) partitions into the 

event of the nearest MBS being awake and the event of the 

nearest MBS being asleep, and (c) is from the Laplace 

transform of the remaining active interferers, distributed as a 

PPP with intensity E{s}λM, and the pdf of the nearest MBS. 

This leads us to ℙ(SINR > γ|Nord > 1), which is given by 

 

 

     (11) 

 

where (a) splits into the events “connect to the i-th 

MBS”,(b) is the Laplace transform of the interference term 

and the pdf of the i-th MBS. 

 

In the case where σ2 = 0, the term P(SINR > γ|Nord 

>1) simplifies to 

 

 which,combined with (10), 

leads to (9). 

 

For the case of σ2 = 0, we can see that the coverage 

probability is independent of the intensity of MBSs and the 

transmit power. Unlike the case of random sleeping, the 

strategic sleeping has an effect on the coverage probability 

even in the interference-limited regime (σ2=0). Using 

(9),which corresponds to the interference-limited regime, we 

can show an interesting property of the strategic sleeping: the 

coverage probability of the active macrocell user is at least as 

good as in the case where no sleeping mode is employed. 

 

3.3. Constrained Optimization Framework: 

 

In the following, we use the results from the previous 

heading to solve several energy efficiency related optimization 

problems under different sleeping policies: 

 

3.3.1  Power Consumption Minimization with Random 

Sleeping: 

 

In the first problem, we minimize the power 

consumption subject to a coverage probability constraint, 

which can be interpreted as a QoS constraint. In the case of 

random sleeping, the problem is formulated as follows 

 

 :                 (12) 

 

where q is the fraction of MBSs that are still 

operating. In order to solve the above problem, we first show 

that the coverage probability is an increasing function of a 

certain variable x.  Then, we find the value  that satisfies the 

constraint tightly, and finally, we solve the minimization 

problem subject to the condition  .Therefore, rewriting qλM 

= S in Theorem 1,we have 

 

3.3.2. Power Consumption Minimization with Strategic 

Sleeping: 
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The minimization problem in the case of strategic sleeping is 

formulated similarly as 

 

 : (13) (16) 

 

 

Solving the above optimization problem is more 

challenging in the case of strategic sleeping since before 

stating that the constraint is satisfied by equality, we first need 

to compute the optimal strategy as shown in the following 

lemma.  

   

For a fixed E{s}, the strategy that optimizes the 

success probability per active user is to have s(a) = 1{a≥a0}(a) 

for some a0. That is to say, the strategy takes a form of a 

threshold function where the MBS is switched on if the 

activity exceeds a0. 

 

Theorem 3. The optimal s*(a), denoted as a*, satisfies 

 

    (14) 

  

Where 

 
  and 

 
Nord = i denotes the event the user is connected to the i-th 

nearest MBS. 

 

Despite the simple form of the optimal strategy, 

which is to switch on MBSs when the activity level exceeds a 

threshold, it may be realistic to assume a probabilistic decision 

making function taking probabilities that are not in {0, 1}.This 

is because operators may choose to shut down MBSs in a 

coordinated fashion according to the activity in a certain 

location. While this does not model coordination between 

neighboring cells, we can use intermediate probabilities to 

model the effect of coordination with a neighboring MBS 

which the current MBS hands traffic over to. 

 

IV. HETEROGENEOUS K-TIER NETWORKS 

 

In this paper, we consider that all base stations in the 

heterogeneous networks operate in open access, i.e. any user is 

allowed to connect to access points (called below as BSs) 

from any tier [29]. We consider three different user 

association schemes, namely location based scheme, average 

signal based scheme, and instantaneous SINR based scheme. 

Theorem 1:The coverage probability for the general mobile 

user operating under the location based scheme is given by 

 

 
 

where ai =   

and +  when 

 
we have  

 

   (15) 

 

Proof: Let fi(r) = 2πλirexp(−πλir2) denotes the pdf of the 

distance to the nearest BS in tier i. First, we compute the 

probability of connecting to tier i, i.e. ℙ(κiri<κjrj∀j  as 

follows: 

 

ℙ(κiri < κjrj∀j  i) =  

 

 

 

 

=          (16) 

 

Now, conditioned on the event that the user is 

connected to the i-th tier, we derive the probability of a 

successful transmission. This requires us to determine the 

Laplace Transform of the interference and noise terms. For the 

Laplace Transform of the noise term, it is given in (25). As 

such, we need to derive the generic Laplace transform due to 

interference I from transmitters from a general tier j (including 

i) [16], [18]: 

 

ℒI(j)(s) =  

=  

     (17) 

 

where the last step follows from known results about 

the probability generating functional (PGFL) of PPPs. 
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Following the definition of the success probability as ℙ(SINR 

> γ), we compute [Pt,ihr−α >γI(j)] and after some algebraic 

manipulations, we get  

=

 
The success probability is given by 

   (18) 

 

and so the final step is to combine the previously 

obtained expressions and integrate w.r.t. r. 

 

Instead of deriving the coverage probability for the 

average signal based scheme, we show that the location based 

and the average signal based schemes are equal with an 

appropriate choice of biasing factor. This is because the 

average signal is averaged over the fading effect so the 

remaining factors are the transmission power and path loss, 

being identical to the location based scheme. We formally 

state this in the following lemma. 

 

Theorem 2: The coverage probabilities for the instantaneous 

SINR based scheme are 

 

 = 

(11) 

    
 (19) 

 

Where  

 

4.1. Constrained Optimization Framework: 

 

Similar to the previous paper, we investigate the 

problem of minimizing energy consumption subject to a QoS 

constraint in terms of coverage probability. 

 

4.1.1 Power Consumption Minimization with Average 

Signal based Scheme: 

 

 In the following, we formulate an optimization 

problem that minimizes energy consumption across different 

tiers. Using Theorem 4, we obtain the following corollary. 

Corollary 1. If we connect to the highest average SINR 

signal, the coverage probabilities are given by 

 

 -  

exp(- ))dr    (20) 

 

      (21) 

 

 

Proof: Let   in Theorem 4. The result is obtained 

after some algebraic manipulations. 

 

We investigate now the following optimization problem: 

 

      (22) 

 

For our analysis, it is necessary to consider the cases 

σ2 = 0 and σ2 > 0 separately. When σ2 = 0, the solution is to 

choose λi as small as possible, for all i. Hence, when the 

network is dense, it is beneficial to shut down as many access 

points as possible. However, this observation is no longer 

valid when the network is sparse as the assumption σ2 = 0 is 

no longer valid. Now, suppose σ2 > 0, we denote S =  

for notational convenience. As a consequence of Lemma 3, the 

optimal S* = , satisfies 

 ))exp- dr   

      (23) 

This reduces the original minimization problem in (5.12) to 

 

      (24) 

 

which is a linear program having as solution the tier 

that minimizes .This minimization problem can 

be further adapted to include certain constraints on λi and it 

still gives a linear program (for example, the macro tier 

structure is an existing infrastructure and this could be 

reflected by fixing λM). In a more general setting, one could 

include βi representing power control as a decision variable 

(replace Pt,i with βiPt,i) though the resulting minimization 

problem would require numerical computation. 

 

4.1.2 Energy Efficiency Optimization with Instantaneous 

SINR based Scheme: In the following, we shall consider that 
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the network has two tiers, a macro tier where random sleeping  

is implemented and a femto tier that does not implement any 

sleeping strategy. Given the density of the femtocell access 

points λF , we want to determine the value of that 

optimizes the energy efficiency. Since the equations are 

intractable in general, we assume that σ2 = 0 as a means to 

obtain some insight. The problem formulation is given by 

 

    (25) 

 

which is monotone decreasing in q and hence has optimal 

= 0. 

 

V. SIMULATION RESULTS 

 

In this paper, we use the default values in Table-1 

unless otherwise stated. The parameters concerning the power 

consumption are obtained from [6]. 

 

TABLE-1 

PARAMETER VALUES USED RESULT 

 
 

We shall consider two models of activity levels: 

binary where the activity level associated with each coverage 

area, which in turn is associated with a particular MBS is 

either 0 or 1 with probability 0.5 each, and uniform where the 

activity level is drawn from a uniform [0, 1] random variable. 

The sleeping strategy for both cases is identical: if the activity 

level in the coverage area associated with the MBS is a, then 

the MBS stays awake with probability a. We also calculate the 

coverage probability through Monte Carlo simulation. The 

locations of the MBSs are distributed according to a PPP in a 

5000m×5000m grid, with 5000 trials. Fig. 1 compares the 

analytical results versus the simulated results, verifying the 

validity of the expression (9) concerning the strategic sleeping 

strategy for σ2 = 0. From henceforth, all figures are numerical 

plots of the expressions obtained previously. Fig. 2 shows the 

energy efficiency with random sleeping with respect to q for 

various values of β (expression (6) divided by expression (4)). 

From this figure, we observe that the energy efficiency 

increases with q. This is because the network throughput 

decreases at a faster rate than the savings in power 

consumption when we decrease q. The figure also shows that 

the energy efficiency decreases with increasing β, which 

implies that the cost incurred from raising the power 

uniformly is not compensated by an increase in the data rate. 

Note that this result has not yet taken into account traffic 

demands and different operating power consumption 

parameters at the MBS. Therefore, it is likely that taking into 

account these additional parameters will give us new tradeoffs, 

which will be studied in future work. Nevertheless, our 

framework does give a simple tractable approach to study the 

effect of random sleeping in macrocell networks. Fig. 3 plots 

the coverage probability versus noise σ2 for different sleeping 

strategies (eq. (8)) while Fig. 4 plots the energy efficiency 

with respect to q for various sleeping strategies (eq. (8) 

divided by eq. (5)). For Fig. 3, the activity model for strategic 

sleeping is assumed to be 0 and 1 with equal probability 0.5. 

The sleeping strategy is modeled as 0 and 1, respectively. For 

random sleeping, MBSs are in sleep mode with probability 

0.5. From the plots, we can see that the coverage probability 

per active user in strategic sleeping is only marginally better 

than no sleeping. We also see that strategic sleeping has a 

bigger margin of improvement over no sleeping when σ2 → 0. 

In this figure, we see that even for a contrived example, there 

is little improvement when noise is significant. On the other 

hand, our analytical results demonstrate that when σ2 = 0, any 

increasing strategy S(a) would suffice. This implies that the 

presence of noise can significantly affect the performance. 

Finally, it can be seen that expectedly, strategic sleeping is 

always better than random sleeping for the same fraction of 

sleeping MBSs. In Fig. 4, we choose the strategic sleeping 

model to have a activity 1 with probability q, represented by 

the x-axis, and activity 0 otherwise. Likewise the sleeping 

strategy is 1 if the activity is 1, 0 otherwise. To obtain a fair 

comparison, we also plot the random sleeping with MBS 

staying awake with probability q so that both plots have the 

same fraction of active MBSs. From Fig 4, we observe that the 

energy efficiency for a strategic sleeping strategy is also 

higher than random sleeping and in fact, for these set of 

parameters, is about half of the interference-limited regime 

case for all values of q. 
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Fig. 1. Comparison of analytical expressions vs. simulated 

results for strategic sleeping mode. 
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Fig. 2. Effect of power control on energy efficiency. 
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Fig.3. Coverage probabilities for different sleeping strategies. 
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Fig.4. Energy efficiency ratio for different sleeping strategies. 

 

V. CONCLUSION 

 

In this papere, we investigated the design of energy 

efficient cellular networks through the  employment of base 

station sleep mode strategies as well as small cells, and 

investigated the tradeoff issues associated with these 

techniques. Using a stochastic geometry based model, we 

derived the success probability and energy efficiency under 

sleeping strategies in  homogeneous macrocell and 

heterogeneous K-tier networks. In addition, we formulated 

optimization problems in the form of power consumption 

minimization and energy efficiency maximization and 

determined the optimal operating frequency of the macrocell 

base station. In particular, we investigated the impact of 

random sleeping and strategic sleeping on the power 

consumption and energy efficiency. Numerical results 

confirmed the effectiveness of sleeping strategy in 

homogeneous macrocell networks but the gain in energy 

efficiency depends on the type of sleeping strategy used. In 

addition, the deployment of small cells generally leads to 

higher energy efficiency but this gain saturates as the density 

of small cells increases. Future work may include the 

extension of the above model to the case where base stations 

have multiple antennas and may perform opportunistic user 

selection. It would also be of interest to explore how random 

spatial placements of base stations that model repulsion or 

inhibition affect the results in terms of throughput and energy 

efficiency. Finally, the energy efficiency metric investigated 

here is only dependent on the power consumption and the 

coverage within the network, and does not take into account 

the infrastructure cost and backhaul overhead associated with 

implementing small cell networks. 
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