An Experimental Investigation on Mechanical And Durable Properties of High Strength Fiber Reinforced Concrete By Partial Replacement of Cement With Silica Fumes And Fly Ash

N N Dinesh kumar¹, K Jayachandra²

¹Dept of Civil Engineering

²Principal and Professor, Dept of Civil Engineering

^{1, 2} Sree Rama Engineering College, Tirupati, Andhra Pradesh, India

Abstract- The cost of construction materials is currently so high that only governments, corporate organizations and wealthy individuals can afford to do meaningful constructions. Unfortunately, production of cement involves emission of large amount of carbon-dioxide gas into the atmosphere, a major contributor for green house effect and global warming, hence it is inevitable either to search for another material or partly replace it by some other material. In this study, the various types of admixtures were used to study individual and as well as combined effects on the concrete strength in addition to the effects on durability, workability and compressive strength by replacement of admixtures by 10 %, 15 % of silica fume and 10%, 20 % and 30 % of fly ash by weight of cement with a fixed amount of 0.5 % steel hook fibers that are added by volume of concrete throughout the study.

Keywords- Carbon-dioxide, Normal-Strength High strength concrete, silica fume, fly ash, Steel fibres, Concrete strength

I. INTRODUCTION

The use of high strength concrete (HSC) is continuously increasing due to its mechanical and durability advantages over normal strength concrete (NSC). In high-rise buildings, HSC can reduce the dimensions of the lower-story columns, which makes it a more cost-effective choice for builders than NSC, HSC is more brittle in comparison with NSC and that the confinement provided to HSC is less effective than in NSC.

The main difference between normal strength concrete NSC and high strength concrete HSC is that the compressive strength that shows highest resistance to concrete sample for the applied pressure. Even though there is no specific point of division between normal strength concrete and high strength concrete the American Concrete Institute

(ACI) explains that high strength concrete as concrete with compressive strength greater than 60N/mm2.

The usage of fine Pozzolanic materials in high strength concrete like fly ash, silica fume lead to reduction in crystalline compounds mostly calcium hydroxide. Also there will be reduction in thickness of interfacial transition zone of high-strength concrete. Usage of mineral admixtures like silica fume SF, fly ash FA in concrete is effective to increase in the strength and make durable for high strength concrete in future. Addition of admixtures to concrete mixture will increase the strength of concrete by pozzolanic action and fills the voids that are created between cement particles.

1.1 Economic Benefit

Cement represents the most expensive component of a concrete mixture. As it is a highly energy intensive material, the increasing energy costs reflect on higher Cement costs. Most of the pozzolanic and cementitious materials in use today are industrial by-products, which require no expenditure of energy for use as mineral admixtures. When used as partial Cement replacement, up to 70% Cement by mass, mineral admixtures can result in substantial energy and cost savings

II. MATERIALS

Cement-Ordinary Portland cement (OPC)

Ordinary Portland cement of 53 grades was selected for the experimental investigation. The compressive strength characteristics of cement were tested as per IS: 4031-1988 and IS: 12269-1987(9). The cement used in present study was Zuari cement. The experiments such as standard consistency, initial setting time, final setting time and specific gravity of cement are conducted on ordinary Portland cement.

Page | 71 www.ijsart.com

Silica Fume

Silica fume is a by-product in the production of silicon and silicon alloys. Silica fume is available in various forms of which the most usually used is in dandified form. As per IS: 1331(PART-1) 1992 and ASTM C (1240-2000) Silica fume is being used. It is also referred as micro silica or as condensed silica fume which is a by-product material that is being used as pozzolanic. This by-product is a result of reduction of high purity quartz with coal as an electric arc furnace in manufacturing of silicon or ferro-silicon alloy.

Fly Ash-As per ASTM C 618

A) Class F fly ash

This type of fly ash is produced in the process of burning harder and older anthracite and bituminous coal. Class F is usually low-calcium fly ash which has carbon content less than 5% but occasionally it's carbon content is as high as 10%. This type of fly ash is pozzolanic in nature and lime CaO content is less than 20%. Having pozzolanic properties alumina, glassy silica of Class F fly ash require a cementing agent like Portland cement, hydrated lime, quicklime with water in to react and form cementations compounds. Class F ashes will only react with the by products produced when cement reacts with water. Instead of this, when chemical activator like sodium (water glass) is added to Class F fly ash that leads to the formation of High strength concrete.

B) Class C fly ash

Class-C fly ash is produced by burning of sub bituminous coal or younger lignite. In addition to pozzolanic properties, Class C ashes will also possess self-cementing properties. In the presence of water Class C ashes will react and harden same as cement and also gains strength over time. Class C fly ash usually contains carbon content less than 2% with more than 20% lime (CaO). Self-cementing Class C fly ash does not require an activator in contrast to Class F. In Class C fly ashes sulphate (SO4) and Alkali contents are generally higher.

C) Steel Fibres

Steel fibres make significant improvement in impact, flexural and fatigue strength of concrete. These fibres used as crack arrester for concrete and also significantly improves static and dynamic properties of concrete. With increase in steel fibres content in concrete the Compressive strength of fibre reinforced concrete increased significantly

1)Uses of steel fibers in concrete

In concrete Steel Fibers are usually used for the following reasons:

- To control plastic shrinkage and drying shrinkage cracks.
- To reduce permeability of concrete in which it further reduces bleeding of water can be reduced.

2)Steel Fiber Reinforced Concrete (SFRC)

Concrete is most extensively used structural material around the globe with production of more than seven billion tons per year. For various reasons in concrete cracks are usually observed. The main cause for concrete to develop cracks is may be due to structural, economic, or environmental factors but mostly the cracks are formed due to the weakness of material to resist tensile forces

D) Fine aggregates

Sand is a naturally occurring material from Rock and Minerals by weathering and is composed of majorly sio2, and Calcium carbonate. The sand used throughout the experimental work was obtained from the Muthireveluvanka near Chittoor, Chittoor district, Andhra Pradesh. This type of sand was used by many of researchers as an ingredient in concrete. According to IS 650:1966, the sand used in cement concrete should confirm to the following specifications. o Sand shall be of quartz, light gray or whitish variety.

E) Coarse aggregates

Gravels are popularly used as Coarse aggregates, which are free from organic impurities and silt. As per Indian standard specifications IS 383-1970 the coarse aggregates were tested and locally available gravels of size 20 mm passing 10 mm retained are taken and specific gravity of coarse aggregate

F) Steel hook fibres

Steel fibres make significant improvements in flexural, impact and fatigue strength of concrete. These fibres are used in concrete as crack arrester and would substantially improve its static and dynamic properties. Compressive strength of fibre reinforced concrete increased with increase in steel fibre content

G) Water

Page | 72 www.ijsart.com

Water used for drinking can also be used for mixing concrete. Impurities in the water may affect concrete, its setting time, and its Compressive strength and Split tensile strength. Water has two functions in a concrete mix. Firstly, it reacts chemically with the cement to form a cement paste in which the inert aggregates are held in suspension until the cement paste has hardened. Secondly, it serves as a vehicle or lubricant in the mixture of fine aggregates and cement.

EFFECT ON INITIAL AND FINAL SETTING TIME

Table 1 gives the results of initial and final setting time for different replacement percentages of Cement with Fly ash. Initial setting time test results shows very slight increase in initial setting time of Cement for different dosages 0%, 10%, 20% and 30% of Fly ash in Ordinary Portland Cement. Final setting time test results shows very slight decrease in final setting time of Cement for different dosages 0%, 10%, 20% and 30% of Fly ash in Ordinary Portland Cement.

TABLE 1- Initial and final setting time for different percentages of cement with fly ash

S.NO	Mix Proportion	Initial Setting Time (minutes)	Final Setting Time (minutes)	
1	100% OPC and 0% FA	40	350	
2	90% OPC and 10% FA	60	320	
3	80% OPC and 20% FA	70	280	
4	70% OPC and 30% FA	80	250	

Table 2 gives the result of initial and final setting time for different replacement percentages of Cement with Silica fume. Initial setting time test results shows very slight increase in initial setting time of Cement for different dosages 0%, 10% and 15% of Silica fume in Ordinary Portland Cement. Final setting time test results shows very slight decrease in final setting time of Cement for different dosages 0%, 10% and 15% of Silica fume in Ordinary Portland Cement.

TABLE 2- Initial and final setting time for different percentages of cement with silica fume

S.N O	Mix Proportion	Initial Setting Time (minutes)	Final Setting Time (minutes)	
1	100% OPC and 0% SF	40	350	
2	90% OPC and 10% SF	45	340	
3	85% OPC and 15% SF	50	330	

III. TESTS ON CONCRETE

3.1 Tests for hardened concrete

Compressive Strength Testing Machine is used for the determination of compressive strength for cubes and cylinders. The specimens after subjected to curing drying for 1 day are loaded in compressive strength testing machine.

Based on usual compatibility and equilibrium conditions used for normal reinforced concrete except the contribution of the fibers in the tension is recognized and the ultimate flexural strength analysis is being presented in this paper.

Following assumptions are considered in the analysis

- 1. Plane sections remain plane after bending
- 2. The compressive force is equal to the tensile force.
- 3. The internal moment is equal to the applied bending moment.

Split tensile test as per IS specifications IS 5816:1999 is to be conducted. The size of cylinder is 150 mm diameter and length of 300 mm length is considered. "The cylinders are placed horizontally between the loading plate surfaces of compression testing machine. Align the sample such that the lines are marked on the ends is vertical and centered over the bottom plate of the apparatus.

3.2 Tests carried out on fresh concrete

Slump cone test

Slump cone test apparatus was made according to IS: 7320-1974 and used for calculating normal consistency of concrete Fresh concrete was filled in slump cone by tamping each layer for 25 times with a tamping rod. Later on metal

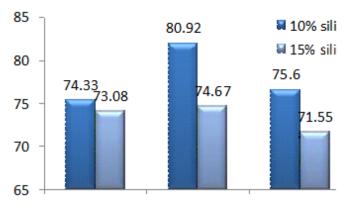
Page | 73 www.ijsart.com

cone is raised slowly in the vertical direction. As soon as the settlement of concrete slump of the concrete measured by scale.

Compaction factor test

"Place the concrete sample in the upper hopper to its edge by using the hand scoop and level it. Cover the cylinder and open the trap door at bottom of the upper hopper so that concrete falls into the lower hopper. Push the concrete sticking on its sides gently with the road. Open the trap door of lower hopper and allow the concrete so that it will fall into the cylinder below". [2]

Remove excess concrete above the top level of cylinder with the help of trowel and level it. Clean the outside of the cylinder. Weight the cylinder with concrete rounding off to the nearest 10 gm. This weight is known as weight of partially compacted concrete (P1). Empty the cylinder and then fill it again with same concrete mixture into three layers approximately 5 cm deep and each layer has to be heavily rammed to obtain full compaction. Level the top surface and weigh the cylinder with fully compacted concrete. The weight we get is known as the weight of fully compacted concrete (P2). To find the weight of empty cylinder (P)


.

Compaction Factor= (P1-P2 / P2-P)

3.3 Strength of concrete for different types of tests Compressive strength of concrete

The compressive strength of concrete for different replacements of cement with 10 % and 20 % of silica fume and 10 %, 20 % and 30 % of fly ash with 0.5 % steel hook fibers by volume of concrete is tested for 3,7,28,56 and 90 days by using compressive test machine (CTM). The water to cement ratio in concrete mix was taken as 0.35. Three cubes were casted for each proportion and the average of three test samples was taken for the accuracy of results. At the room temperature and immersing the cubes in water tank or sump the concrete cubes were cured.

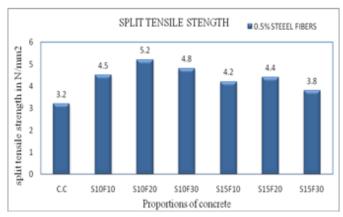

Compressive strength of concrete increases with the usage of mineral admixtures. Considering the proportion (S15F20) the compressive strengths for 3, 7, 28, 56 and 90 days are 36.41, 47.33, 71.55, 73.55 and 78 N/mm2. By using this proportion the compressive strength of concrete has been increased by 5.11%.

Chart -1: 28 days compressive strength variation for 10% and 15% silica fume for every 10%, 20% and 30% of fly ash replacement.

From the above graph it is observed that for every 10 %, 20% and 30% of fly ash replacement the difference in compressive strength reaches to a maximum at 10% of silica fume. With the increasing silica fume replacement to 15% it shows decreasing compressive strength values of concrete. Hence it is concluded that at 10% silica fume and 20% fly ash replacement the mix gives maximum 28 days compressive strength as 81.92 N/mm2. Therefore this replacement percentage (S10F20) can be considered as optimum mix.

Split tensile strength of concrete

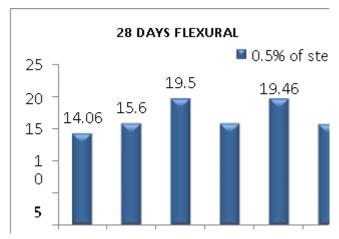


Chart -2: Tensile strength at 28 days for various percentages of Silica Fume and Fly Ash

From the above chart-2 it can be seen that the comparison of split tensile strength results of concrete for different replacements of silica fume and fly ash with 0.5 % of steel hook fibers as admixture. At 10 % of silica fume and 20% of fly ash the mix gives the maximum 28 days split tensile strength as 5.2N/mm2.

Flexural strength of concrete

Page | 74 www.ijsart.com

Chart-3: Flexural strength at 28 days for various percentages of Silica Fume and Fly Ash

Comparison of tests on concrete

TABLE 3: 28 Days strength comparison in percentage

		•	_	-	-	_
Type of	S10	S10	S10	S15	S15	S15
Test	F10	F20	F30	F10	F20	F30
Compressive strength	10.7%	20.34 %	12.51 %	10%	9.8%	5.11%
Split Tensile Test	37.61 %	60.85 %	47.70 %	29.66 %	37%	18.04 %
Flexural Test	10.99 %	38.74 %	10.99 %	38.42 %	10.45 %	8.85
Compressive strength on cylinder	9.21%	19.37 %	9.15%	6.18%	13.35 %	5.86%

S is % of silica fume; F is % of fly ash

From the above table it is observed that the percentage variation of compressive strength, split tensile strength and flexural strength is maximum at 10% of silica fume and 20% of fly ash replacement with 0.5% of steel hook fibers as admixture.

IV. CONCLUSIONS

Addition of steel hook fibers in concrete will result in increase of compressive strength and makes concrete more ductile.

- In split tensile and flexural tests, it is noticed that crack width has been reduced due to the presence of steel fibers when compared to conventional specimen.
- 2. When the cement is replaced with 10 % of silica fume and 20 % of fly ash it gives optimum compressive strength, split tensile strength and flexural strength.
- 3. At 10% of silica fume and 20% of fly ash replacement to cement the compressive strength is increased up to

- 20.34% when compared to conventional concrete for 28 days.
- 4. At 10% of silica fume and 20% of fly ash replacement to cement the split tensile strength is increased up to 60.85% when compared to conventional concrete for 28 days.
- 5. At 10% of silica fume and 20% of fly ash replacement to cement the flexural strength is increased up to 38.74% when compared to conventional concrete for 28 days.
- 6. Addition of silica fume and fly ash as replacement to cement in concrete its normal consistency and initial setting time increases with the increase in percentage and final setting time decreases with increase in percentage.
- Use of mineral admixtures in concrete causes significant reduction in the volume of voids and hence reduces the permeability of concrete mix because of its high fineness and formation of C-S-H gel.

REFERENCES

- [1] A.M. Shende, A.M. Pande, M. Gulfam Pathan(sep 2012), Experimental Study on Steel Fiber Reinforced Concrete for M-40 Grade, International Refereed Journal of Engineering and Science (IRJES).
- [2] Ushida, K., Nasir, S., Uehara, T., and Umehara, H. (2004). "Effects of Fiber Shapes and Contents on Steel Fiber Reinforcement in High-Strength Concrete."
- [3] Goplakrishnan, S., Rajamane, N.P., Neelamegam, M., Peter, J.A. and Dattatreya, J.K (2001), "Effect of Partial Replacement of Cement with Fly ash on the Strength and Durability of HPC"
- [4] M.S Shetty, "Concrete Technology". year 2008.
- [5] composite," Asian Journal of Civil Engineering, vol. 13, no. 4, pp. 511–520, 2012
- [6] Abdul Ghayoor khan, Dr. Bazid khan, "Effect of Partial Replacement of Cement by Mixture of Glass Powder and Silica Fume Upon Concrete Strength", International Journal of Engineering Works, Vol. 4, Issue 7, July 2017
- [7] M.L.Gambhir (2009), "Concrete Technology. Theory and Practice", Mc Graw Hill Publications.
- [8] S.K. Duggal (1997): Text Book on Building Materials. Oxford and IBM Publishing CO. Pvt. Ltd., New Delhi.
- [9] IS: 10262-1982. "Recommended guidelines for concrete mix design". Bureau of Indian standards, New Delhi P.K.mehta (2005): "High-Performance, High volume Fly ash Concrete for sustainable Development".
- [10] Singh, S. P. Mohammadi, Y. and Kaushik, S. K. (2005), Flexural Fatigue Analysis of Steel Fibrous Concrete Containing Mixed Fibres.
- [11] Cusson D. and Paultre P. 1995. Stress-Strain Modelfor Confined High-Strength Concrete.
- [12] Razvi S. and Saaticioglu M. 1994. Strength and deformability of confined high strength concrete columns.

Page | 75 www.ijsart.com

- [13] Pessiki S. and Pieroni A. 1997. Axial Load Behavior of Large Scale Spirally Reinforced High Strength Concrete Columns.
- [14] Mansur M. A., Chin M. S. and Wee T. H. 1999. Stress-Strain Relationship of High-Strength Fiber Concrete in Compression.
- [15] Hsu L. S. and Hsu C.T.T. 1994. Stress-Strain Behavior of Steel-Fiber High Strength Concrete under Compression.

Page | 76 www.ijsart.com