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Abstract- Android’s popularity is due in part to it being an 

open platform. Google produces a baseline version of 

Android, and then makes it freely available in the form of the 

Android Open-Source Project (AOSP). Manufacturers and 

carriers are free to build upon this baseline, adding custom 

features in a bid to differentiate their products from their 

competitors. These customizations have grown increasingly 

sophisticated over time, as the hardware has grown more 

capable and the vendors more adept at working with the 

Android framework. Flagship devices today often offer a 

substantially different look and feel, along with a plethora of 

pre-loaded third-party apps. From another perspective, 

vendor customizations will inherently impact overall Android 

security. Past works have shown that Android devices had 

security flaws shipped in their preloaded apps. Note that stock 

images include code from potentially many sources: the AOSP 

itself, the vendor, and any third-party apps that are bundled 

by the vendor or carrier. It is therefore important to attribute 

each particular security issue back to its source for possible 

bug-fixes or improvements. We aim to study vendor 

customizations on stock Android devices and assess the impact 

on overall Android security. 
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I. INTRODUCTION 

 

 Android is an open-source Operating System created 

for mobile phones and other devices led by Google. In 2003, 

Andy Rubin and his team invented Android. Later in 2005, 

Google acquired the Android operating system. Android is a 

software environment built for mobile devices. It is not a 

hardware platform. Android includes a Linux kernel-based 

OS, a rich UI, end-user applications, code libraries, 

application frameworks, multimedia support, and much more. 

On the 5th of November in 2007, distribution of Google’s 

version was announced with the founding of the Open Handset 

Alliance. Open Handset Alliance is a group of device 

manufactures, Chipset Manufacturers and Mobile Carriers. 

Device Manufacturers include companies like HTC, LG, 

Samsung, Motorola and Sony. Chipset makers are Qualcomm, 

Texas Instrumental and Intel. Mobile Carrier companies are 

represented by companies like Verizon, Sprint, AT&T, T- 

Mobile, MetroPCS and lots of other companies all over the 

world. Most of the Android platform is released under Apache 

2.0 license. Google Android released the entire source code 

under an Apache license. With Apache license, a user can 

freely download and use Android for personal and commercial 

purposes. It allows user to make changes to original software 

without having to contribute to the open-source community. 

 

The Linux-based open-source Android platform has 

grown into the mainstay of mobile computing, attracting most 

phone manufacturers, carriers as well as millions of 

developers to build their services and applications (app for 

short) upon it. Up to March 2014, Android has dominated 

global smartphone shipments with nearly 80% market share. 

Such success, however, does not come without any cost. The 

openness of the system allows the manufacturers and carriers 

to alter it at will, making arbitrary customizations to fit the OS 

to their hardware and distinguish their services from what their 

competitors offer. Further complicating this situation is the 

fast pace with which the Android Open-Source Project 

(AOSP) upgrades its OS versions. Since 2009, 19 official 

Android versions have been released. Most of them have been 

heavily customized, which results in tens of thousands of 

customized Android branches coexisting on billions of mobile 

phones around the world. This fragmented ecosystem not only 

makes development and testing of new apps across different 

phones a challenge, but it also brings in a plethora of security 

risks when vendors and carriers enrich the system’s 

functionalities without fully understanding the security 

implications of the changes they make. 

 

Security risks in customizations: For each new Android 

version, Google first releases it to mobile phone vendors, 

allowing them to add their apps, device drivers and other new 

features to their corresponding Android branches. Such 

customizations, if not carefully done, could bring in 

implementation errors, including those with serious security 

consequences. Indeed, recent studies show that many pre-

loaded apps on those images are vulnerable, leaking system 

capabilities or sensitive user information to unauthorized 
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parties. The security risks here, however, go much deeper than 

those on the app layer, as what have been customized by 

vendors are way beyond apps. Particularly, they almost always 

need to modify a few device drivers (e.g., for camera, audio, 

etc.) and related system settings to support their hardware. 

Most customizations on the Android kernel layer are actually 

related to those devices, and they are extremely error-prone, 

due to the complexity of Android architecture and the security 

mechanism built upon it. Android is a layered system, with its 

app layer and framework layer built with Java sitting on top of 

a set of C libraries and the Linux kernel. Device drivers work 

on the Linux layer and communicate with Android users 

through framework services such as Location Service and 

Media Service. Therefore, any customization on an Android 

device needs to make sure that it remains well protected at 

both the Linux and framework layers, a task that can be hard 

to accomplish within the small-time window the vendors have 

to develop their own OS version. Any lapses in safeguarding 

these devices can have devastating consequences, giving a 

malicious app access to sensitive user information (e.g., 

photos, audio, location, etc.) and critical services they provide 

(e.g., GPS navigation). However, with the complexity of 

Android’s layered system architecture and limited device-

related documentations available in the wild, so far, little has 

been done to understand the security risks in such device 

customizations, not to mention any effort that helps detect the 

threats they may pose. To that end, we perform a three-stage 

process to evaluate a given smartphone’s stock firmware 

image. First, we perform provenance analysis, aiming to 

classify each pre-loaded app into three categories: 

 

1. apps originating from the AOSP  

2. apps customized or written by the vendor, and  

3. third-party apps that are simply bundled into the stock 

image. We then analyse, in two different ways, the security 

implications of each app: 

 

(1) Permission usage analysis compares the permissions 

requested by the app with those that it actually uses, looking 

for apps that request more permissions than they use. This 

situation is known as permission over privilege, and it 

indicates a poor understanding of the Android security model  

 

(2) Vulnerability analysis, in comparison, looks for two 

general types of actual security vulnerabilities: permission re-

delegation attacks and content leaks. Permission re-delegation 

attacks allow unprivileged apps to act as though they have 

certain sensitive permissions, while content leaks allow such 

apps to gain (unauthorized) access to private data. 

 

 

 

 

 
Fig. 1 Methodology of Analysis. 

 

II. PROBLEM DEFINITION 

 

The smartphone market has grown explosively in 

recent years, as more and more consumers are attracted to the 

sensor-studded multipurpose devices. Android is particularly 

ascendant; as an open platform, smartphone manufacturers are 

free to extend and modify it, allowing them to differentiate 

themselves from their competitors. However, vendor 

customizations will inherently impact overall Android security 

and such impact is still largely unknown. When Android 

phone manufacturers tweak devices and customize phones 

with special software, apps and code, it has a direct effect on 

the security of each device. In our study, we analyse six 

representative stock Android images from popular smartphone 

vendors. Our goal is to assess the extent of security issues that 

may be introduced from vendor customizations and further 

determine how the situation is evolving over time. In 

particular, we take a three-stage process: First, given a 

smartphone’s stock image, we perform provenance analysis to 

classify each app in the image into three categories: apps 

originating from the AOSP, apps Customized or written by the 

vendor, and third-party apps that are simply bundled into the 

stock image. Such provenance analysis allows for proper 

attribution of detected security issues in the examined Android 

images. Second, we analyze permission usages of pre-loaded 

apps to identify overprivileged ones that unnecessarily request 

more Android permissions than they actually use. Finally, in 

vulnerability analysis, we detect buggy pre-loaded apps that 

can be exploited to mount permission re-delegation attacks or 

leak private information. Our evaluation results are 

worrisome: vendor customizations are significant on stock 

Android devices and on the whole responsible for the bulk of 

the security problems we detected in each device. Specifically, 

our results show that on average 83.15% of all preloaded apps 

in examined stock images are overprivileged with a majority 

of them directly from vendor customizations. In addition, 

64.71% to 85.00% of vulnerabilities we detected in examined 

images from every vendor arose from vendor customizations. 

In general, this pattern held over time – newer smartphones, 

we found, are not necessarily more secure than older ones. 
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III. FACTS AND FINDINGS 

 

Android has a hierarchical architecture. On top of the 

stack are various Android apps, including those from the 

system (e.g. contacts, phone, browser, etc.) and those provided 

by third parties. Supporting these apps are the services running 

on the framework layer, such as Activity Manager, Content 

Providers, Package Manager, Telephone Manager and others. 

Those services mediate individual apps’ interactions with the 

system and enforce security policies when necessary. The nuts 

and bolts for them come from Android C libraries, e.g., SSL, 

Bionic, Web kit, etc. Underneath this layer is the Linux kernel, 

which is ultimately responsible for security protection. The 

Android security model is built upon Linux user and process 

protection. Each app is given a unique user ID (UID) and by 

default, only allowed to touch the resources within its own 

sandbox. Access to system resources requires permissions, 

which an app can ask for at the time of installation. Decisions 

on granting those permissions are made either by the system 

through checking the app’s signatures or by the user. When 

some permissions are given to an app, it is assigned to a Linux 

group corresponding to the permission such as GPS. 

Resources on Android typically need to be protected on both 

the framework layer and the Linux layer: the former checks an 

app’s permissions and the latter is expected to enforce security 

policies consistent with those on the framework layer to 

mediate the access to the resources. Vendor customization. 

Android is an open system. Google releases the AOSP 

versions as baselines and different manufacturers (e.g., 

Samsung, HTC etc.) and carriers (e.g., AT&T, Airtel etc.) are 

free to tailor it to their hardware and add new apps and 

functionalities. Most of these Android versions from the 

vendors have been heavily customized. For example, prior 

researches show that among all the apps pre-installed by the 

major smartphone vendors (Samsung, HTC, LG, Sony) on 

their phones, only about 18% come from AOSP, and the rest 

are either provided by the vendors (about 65%) or grabbed 

from third parties (17%). Under the current business model, 

those vendors have a small time-window of about 6 months to 

customize the official version. This brings in a lot of security 

issues: it has been reported that over 60% of the app 

vulnerabilities found in a study come from vendor 

customizations [43]. The primary reason for vendors to 

customize Android is to make it work on their hardware. 

Therefore, the most heavy-lifting part of their customization 

venture is always fitting new device drivers to the AOSP 

baseline. This is a delicate operation from the security 

viewpoint: not only should those new drivers be well 

connected to their corresponding framework layer services, so 

that they can serve apps and are still protected by permissions, 

but they also need to be properly guarded on the Linux layer. 

Further complicating the situation is the observation that a 

new device may require its driver to talk to other existing 

drivers. The problem here is that the latter’s permission 

settings on AOSP could block such communication. When this 

happens, the vendor has to change the driver’s security 

settings on Linux to accommodate the new driver. An example 

is the camera device on Galaxy SII that needs to use the UMP 

(Unified Memory Provider) driver to allocate memory; for this 

purpose, Samsung made UMP publicly accessible. Making the 

UMP accessible publicly compromises with the security of the 

device.  

 

IV. AUTOMATED COLLECTION TOOLS 

 

The goal of this research is to study vendor 

customizations on stock Android devices and assess 

corresponding security impact. Note that the software stack 

running in these devices are complex, and their firmware is 

essentially a collaborative effort, rather than the work of a 

single vendor. Therefore, we need to categorize the code 

contained in a stock image based on its authorship and audit it 

for possible security issues. After that, we can attribute the 

findings of the security analyses to the responsible party, 

allowing us to better understand the state of smartphone 

security practices in the industry and spot any evident trends 

over time. Following three technologies were briefly used in 

our research: 

 

1. ES File Manager File Explorer 

2. Android-apktool 

3. ASEF (Android Security Evaluation Framework) 

 

Out of these the first two are simple and widely used 

in the Android domain. The third, however, deserves a little 

enlightenment as will be evident in the succeeding discussion: 

ASEF is designed and developed to simulate the entire 

lifecycle of an Android application in an automated virtual 

environment to collect behavioural data and perform security 

evaluations automatically over ‘n’ number of apps. Android 

Security Evaluation Framework (ASEF) performs this analysis 

while alerting you about other possible issues. It will make 

you aware of unusual activities of your apps, will expose 

vulnerable components and help narrow down suspicious apps 

for further manual research. The framework will take a set of 

apps (either pre-installed on a device or as individual APK 

files) and migrate them to the test suite where it will run it 

through test cycles on a pre-configured Android Virtual 

Device (AVD). During the test cycles the apps will be 

installed and launched on the AVD. ASEF will trigger certain 

behaviours by sending random or custom gestures and later 

uninstall the app automatically. It will capture log events, 

network traffic, kernel logs, memory dump, running processes 

and other parameters at every stage which will later be utilized 
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by the ASEF analyser. The analyser will try to determine the 

aggressive bandwidth usage, interaction with any command 

and control (C&C) servers using Google's safe browsing API, 

permission mappings and known security flaws. ASEF can 

easily be integrated with other open-source tools to capture 

sensitive information, such as SIM cards, phone numbers and 

others. ASEF is an Open Source tool for scanning Android 

Devices for security evaluation. Users will gain access to 

security aspects of android apps by using this tool with its 

default settings. An advanced user can fine-tune this, expand 

upon this idea by easily integrating more test scenarios, or 

even find patterns out of the data it already collects. ASEF 

will provide automated application testing and facilitate a plug 

and play kind of environment to keep up with the dynamic 

field of Android Security.  

 

 
Fig 2. The ASEF Framework 

 

V. RESEARCH METHOLOGY 

 

The overall architecture of the ASEF system is 

explained in the following figure. Our system takes a stock 

phone image as its input, pre-processing each app and 

importing the results into a database. This database, initially 

populated with a rich set of information about pre-loaded apps 

(including information from their manifest files, signing 

certificates, as well as their code, etc.), is then used by a set of 

subsequent analyses. Each analysis reads from the database, 

performs its analysis, and stores its findings in the database. 

To study the impact of vendor customizations on the security 

of stock Android smartphones, we performed three such 

analyses. 

 

First, to classify each app based on its presumed 

authorship, we perform provenance analysis. This analysis is 

helpful to measure how much of the baseline AOSP is still 

retained and how much customizations have been made to 

include vendor specific features or third-party apps. 

 

To further get a sense of the security and privacy 

problems posed by each app, we use two different analyses:  

Permission usage analysis assesses whether an app 

requests more permissions than it uses, while Vulnerability 

analysis scans the entire image for concrete security 

vulnerabilities that could compromise the device and cause 

damage to the user. Ultimately, by correlating the results of 

the security analyses with the provenance information we 

collected, we can effectively measure the impact of vendor 

customizations. 

 

 
Fig 3. RESEARCH Methology 

 

VI. PROVENANCE ANALYSIS 

 

The main purpose of provenance analysis is to study 

the distribution of pre-loaded apps and better understand the 

customization level by vendors on stock devices. specifically, 

we classify preloaded apps into three categories: 

 

 AOSP app: the first category contains apps that exist 

in the AOSP and may (or may not) be customized by 

the vendor.  

 Vendor app: the second category contains apps that 

do not exist in the AOSP and were developed by the 

vendor.  

 Third-party app: the last category contains apps that 

do not exist in the AOSP and were not developed by 

the vendor. 

 

The idea to classify pre-loaded apps into the above 

three categories is as follows. 

 

First, we collect AOSP app candidates by searching 

the AOSP, then we exclude these AOSP apps from the pre-

loaded ones. After that, we can classify the remaining apps by 

examining their signatures (i.e., information in their certificate 

files) based on a basic assumption: third-party apps shall be 

private and will not be modified by vendors. Therefore, they 

will not share the same signing certificates with vendor apps. 

In practice, this process is however not trivial. Since AOSP 

apps may well be customized by vendors, their signatures are 

likely to be changed as well. Although in many cases, the app 

names, package names or component names are unchanged, 

there do exist exceptions. For example, Sony’s Conversations 

app, with package name com. sony ericsson. conversations, is 
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actually a customized version of the AOSP Mms app named 

com.android.mms. In order to solve this problem, we perform 

a call graph similarity analysis, which has been demonstrated 

to be an effective technique even to assist malware clustering 

and provenance identification. To generate the call graph 

required by any such analysis, we add all method calls that can 

be reached starting from any entry point method accessible to 

other apps or the framework itself. However, we are hesitant 

to use graph isomorphism techniques to compare these call 

graphs, as they are complex and have undesirable performance 

characteristics. Instead, we notice that later analysis will use 

paths, sequences of methods that start at an entry point and 

flow into a sink (i.e., API or field which may require sensitive 

permissions, lead to dangerous operations or meet other 

special needs). Therefore, we choose to pre-process each app, 

extract and compare the resulting paths, a much more 

straightforward process that still compare the parts of each app 

that we are most concerned with. 

 

From our prototype, we observe that such a path-

based similarity analysis is implementation-friendly and 

effective. Particularly, we use the return type and parameters 

(number, position and type) of each method in the path as its 

signature. If the similarity between two paths exceeds a certain 

threshold, we consider these two paths are matching. And the 

similarity between two apps is largely measured based on the 

number of matched paths. In our prototype, to determine 

which apps belong to the AOSP, we accordingly take the 

approach: 

 

1. by matching app names and package names 

2. by matching component names in the manifest file, 

and 

3. then by calculating the similarity between paths and 

apps. 

 

We point out that a final manual verification is 

always performed to guarantee the correctness of the 

classification, which can also confirm the effectiveness of our 

heuristics. During this stage, we also collect one more piece of 

information: the code size of pre-loaded apps measured by 

their lines of code (LOC)[38]. Although it is impossible for us 

to get all the source code of the pre-loaded apps, we can still 

roughly estimate their size based on their decompiled smali 

code. Therefore, we can draw a rough estimate of vendor 

customization from provenance analysis because the number 

and code size of apps are important indicators. 

 

VII. PERMISSION USAGE ANALYSIS 

 

Our next analysis stage is designed to detect 

instances of permission over privilege, where an app requests 

more permissions than it uses. ASEF applies permission usage 

analysis to measure the adoption of the principle of least 

privilege in app development. Note that here it is only possible 

to get the usage of permissions defined in the standard AOSP 

framework. The usage of vendor-specific permissions cannot 

be counted because of the lack of related information. There 

are four types of permissions in Android: 

 

 normal 

 dangerous 

 system 

 system Or Signature.  

 

The latter three are sensitive, because normal 

permissions are not supposed to be privileged enough to cause 

damage to the user. Specifically, we define permissions 

declared by element uses-permission in the manifest file as 

requested permissions, and permissions which are actually 

used (e.g., by using related APIs) as used permissions 

respectively. An over declared permission is a permission 

which is requested but not used. Over privileged apps contain 

at least one over declared permission. In permission usage 

analysis, from the database, we have the initial requested 

permission set of apps (as it is in the manifest information), 

and our goal is to find the over declared permission set. 

Despite the initial requested permission set, we find it still 

needs to be augmented. Especially, there is a special manifest 

file attribute, sharedUserId, which causes multiple apps signed 

by the same developer certificate to share a user identifier, 

thus sharing their requested permission sets. (As permissions 

are technically assigned to a user identifier, not an app, all 

such apps will be granted the union of all the permissions 

requested by each app. Accordingly, apps with the same 

sharedUserId require extra handling to get the complete 

requested permission set. Next, we leverage the known 

permission mapping built by earlier work to determine which 

permissions are actually used. Having built both the requested 

permission set and the used permission set, we can then 

calculate the over declared permission set. 

 

Our approach to calculate the over declared 

permission set is conservative. Notice that some permissions 

declared in the manifest file may be deprecated in the 

corresponding standard Android framework. An example is 

the permission READ_OWNER_DATA that was removed 

after API level 8 (i.e., Android version 2.2), but still declared 

by one app in the Nexus 4 (API level 17, or Android 4.2). We 

do not consider them as over declared permissions, because 

the vendor may retain deprecated permissions in the 

customized framework for its own usage. Some studies 

concerned themselves only with those permissions that are 

available to third-party apps. In our study, we need to cover 
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additional permissions defined at system and system Or 

Signature levels, which may not be well documented. After 

obtaining the over declared permission set, we then analyse 

the overall permission usage of each device, and classify 

results by provenance. The distributions of over privileged 

apps as well as over declared permissions can then both be 

studied. Further, we also perform horizontal and vertical 

analysis, i.e., cross-vendor, same generation, vs. cross-

generation, same-vendor comparisons. 

 

VIII. VULNERABILITY ANALYSIS 

 

While our permission usage analysis aims to measure 

the software development practices used in the creation of 

each pre-loaded app, vulnerability analysis is concerned with 

finding real, actionable exploits within those apps. 

Specifically, we look for two representative types of 

vulnerabilities in the Android platform which stem from 

misunderstanding or misusing Android’s permission system. 

First, we identify permission re-delegation attacks, which are a 

form of the classic confused deputy attack. Such an attack 

exists if an app can gain access to an Android permission 

without actually requesting it. A typical example is an app 

which is able to send Short Message Service (SMS) messages 

without acquiring the (supposedly required) SEND_SMS 

permission. For the second kind of vulnerability, we consider 

content leaks, which essentially combine the two types of 

content provider vulnerabilities: passive content leaks and 

content pollution. An unprotected content provider (i.e., one 

that takes no sensitive permission to protect its access) is 

considered to have a passive content leak if it is world-

readable, and to have content pollution if it is world-writable. 

We extend this definition to cover both open and protected 

content providers. The protected ones are also interesting as 

there may also exist unauthorized accesses to them through the 

other three types of components which could serve as 

springboards for exploitation. For ease of presentation, we call 

these vulnerabilities content leaks. As our main goal is to 

accurately locate possible vulnerabilities, we in this study 

consider the following adversary model: a malicious app, 

which is compatible with the phone, may be installed on the 

phone by the user. We do not expect the malicious app will 

request any sensitive permission during installation, which 

means it, will only rely on vulnerable apps to accomplish its 

goals: either steal money from the user, gather confidential 

data, or maliciously destroy data. In other words, we limit the 

attacker to only unprivileged third-party apps to launch their 

attacks. Keeping this adversary model in mind, we focus our 

analysis on security-critical permissions – the ones that protect 

the functions that our adversary would most like to gain access 

to. Specifically, for permission re-delegation attacks, we focus 

on permissions that are able to perform dangerous actions, 

such as SEND_SMS and MASTER_CLEAR, because they 

may lead to serious damage to the user, either financially or in 

terms of data loss. As for content leaks, we ignore those whose 

exposures are likely to be intentional. Note that some apps 

may be vulnerable to low-severity content leaks; for example, 

publicly-available information about a network TV schedule is 

not as sensitive as the user’s banking credentials. In other 

words, we primarily consider serious content leaks whose 

exposures are likely to cause critical damages to the user. To 

actually find these vulnerabilities, we rely on a few key 

techniques. An essential one is reachability analysis, which is 

used to determine all feasible paths from the entry point set of 

all Android components, regardless of whether we consider 

them to be protected by a sensitive permission. To better 

facilitate vulnerability analysis, we define two varieties of 

sinks: 

 

 sensitive-sinks: sensitive Android APIs which are related 

to sensitive permissions (e.g., MASTER_CLEAR) of our 

concern 

 bridge-sinks: invocations that are able to indirectly trigger 

another (vulnerable) component, e.g., sendBroadcast. 

 

Note that any path reachable from an open entrypoint 

or component can be examined directly to see if it has a 

sensitive-sink. Meanwhile, we also determine whether it could 

reach any bridgelink that will trigger other protected 

components (or paths). The remaining paths, whose entry 

points are protected, are correlated with paths that contain 

bridge-sinks to form the complete vulnerable path, which is 

likely cross-component or even cross different apps. This is 

essentially a reflection-based attack. All calculated 

(vulnerable) paths will subject to manual verification. We 

stress that unlike some previous works which mainly focus on 

discovery of vulnerabilities; this analysis stage primarily 

involves a more contextual evaluation of vulnerabilities, 

including distribution, evolution and the impact of 

customization. Especially, we use the distribution of 

vulnerable apps as a metric to assess possible security impact 

from vendor customizations. Note the detected vulnerabilities 

are classified into different categories by their provenance and 

leveraged to understand the corresponding impact of 

customization. As mentioned earlier, both horizontal and 

vertical impact analyses are performed. 

 

IX. REACHABILITY ANALYSIS 

 

It is performed in two steps. The first step is intra-

procedural reachability analysis, which involves building 

related call graphs and resolving it by conventional def-use 

analysis. The resolution starts from the initial state (pre-

computed when the database is initially populated) and then 
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gradually seeks a fixed point of state changes with iteration 

(due to various transfer functions). However, as the state space 

might be huge (due to combinatorial explosion), the 

convergence progress could be slow or even unavailable. In 

practice, we have to impose additional conditional constraints 

to control the state-changing iteration procedure. We call the 

result of intra-procedural analysis, i.e., the states of variables 

and fields, a summary. The second step is inter-procedural 

reachability analysis that is used to propagate states between 

different methods. After each propagation, method summaries 

might be changed. In such cases, intra-procedural reachability 

analysis is performed again on each affected method to 

generate a new summary. Inter-procedural reachability 

analysis is also an iterative process, but takes longer and 

requires more space to converge; therefore, we use some 

heuristics to reduce the computational and space overhead. For 

instance, if a variable or field we are concerned with has 

already reached a sink, there is no need to wait for 

convergence. Paths of apps from different vendors but with 

similar functionality may share something in common, 

especially for those apps inherited from the standard AOSP 

framework. Here “common” does not mean that their source 

code is exactly the same, but is similar from the perspective of 

structure and functionality. Many devices reuse the code from 

the AOSP directly, without many modifications. If we have 

already performed reachability analysis on such a common 

path, there is no need to do it on its similar counterparts. It 

improves system performance since reachability analysis is 

time consuming (especially when the state space is huge). 

Therefore, we also perform a similarity analysis as a part of 

the reachability analysis to avoid repetitive efforts. 

 

X. REFLECTION ANALYSIS 

 

To facilitate our analysis, we classify vulnerable paths into the 

following three types: 

 

 in-component: a vulnerable path that starts from an 

unprotected component to a sink that is located in the 

same component. 

 cross-component: a vulnerable path that starts from an 

unprotected component, goes through into other 

components within the same app, and then reaches a sink. 

 cross-app: a vulnerable path that starts from an 

unprotected component of one app, goes through into 

another app’s components, and eventually reaches a sink.  

   

The in-component vulnerable paths are relatively 

common and have been the subject of recent studies. 

However, the latter two, especially the cross-app ones, have 

not been well studied yet, which is thus the main focus of our 

reflection analysis. Note that a reflection-based attack 

typically involves with multiple components that may not 

reside in the same app. Traditional reachability analysis has 

been effective in detecting in-component vulnerable paths. 

However, it is rather limited for other cross-component or 

cross-app vulnerable paths. (A cross-app execution path will 

pass through a chain of related apps to ultimately launch an 

attack.) In order to identify them, a comprehensive analysis of 

possible “connection” between apps is necessary. To achieve 

that, our approach identifies not only possible reachable paths 

within each component, but also the invocation relationship 

for all components. The invocation relationship is essentially 

indicated by sending intent from one component to another, 

explicitly or implicitly. An explicit intent specifies the target 

component to receive it and is straightforward to handle. An 

implicit intent, on the other hand, may be sent anonymously 

without specifying the receiving component, thus requiring 

extra handling (i.e., intent resolution in Android) to determine 

the best one from the available components. In our system, 

ASEF essentially mimics the Android intent resolution 

mechanism by matching an intent against all possible <intent-

filter> manifest declarations in the installed apps. However, 

due to the offline nature of our system, we have limited 

available information about how the framework behaves at 

run-time. Therefore, we develop the following two heuristics: 

 

 A component from the same app is preferable to 

components from other apps. 

 A component from a different app which shares the 

same shared UserId is preferable to components from 

other apps. 

 

XI. RESULTS 

 

We have implemented ASEF (Android Security 

Evaluation Framework), a mix of Java code and Python 

scripts. This category contains apps that exist in the AOSP and 

may (or may not) be customized by the vendor. In our 

evaluation, we examined six representative phones (Table 1) 

released after 2012 by six popular vendors: Google, Samsung, 

HTC, LG, Motorola and Sony. The selected phone model 

either has great impact and is representative, or has huge 

market share. For example, Google’s phones are designed to 

be reference models for their whole generation; Samsung is 

the market leader which occupies 39.6%of smartphone market 

share in 2013. To analyse these phone images, our system 

requires on average 80 minutes to process each image (i.e., 

around 40 seconds per app) and then reports vulnerable paths 

for us to manually verify. Considering the off-line nature of 

our tool, we consider this acceptable, even though our tool 

could be optimized further to speed up our analysis.  
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Fig 4. Six android devices we have used. 

 

XII. PROVENANCE ANALYSIS 

 

As mentioned earlier, the provenance analysis 

collects a wide variety of information about each device and 

classifies pre-loaded apps into three different categories. In 

Table 2, we summarize our results. Overall, these six devices 

had 546 pre-loaded apps, totalling 3,67,34,925 lines of code 

(in terms of decompiled .smali code). A further break-down of 

these apps show that, among these devices, there are on 

average 18.67 (20.5%), 57 (62.63%), and 15.33 (16.84%) apps 

from the categories of AOSP, vendor and third-party, 

respectively. Note that the apps in the AOSP category may so 

be customized or extended by vendors. As a result, the figures 

in the AOSP column of Table 2 should be considered an upper 

bound for the proportion of code drawn from the AOSP. 

Accordingly, on average, vendor customizations account for 

more than 83.15% of apps (or 78.34% of LOC) on these 

devices. In our study, we selected one phone model for each 

vendor, from the current crop of Android 4.x phones. Table 1 

shows the initial release date of each phone model, as reported 

by GSM Arena. As it turns out, these devices can be readily 

classified by their release dates. Some devices were released 

in the year 2012 and the rest were released in 2013. Such 

classification is helpful to lead to certain conclusions. For 

example, as one might expect, the complexity these devices 

are clearly increasing over time. In all cases, the 2013 

products contain more apps and LOC than their 2012 

counterparts. Specifically, the Redmi 4A has 87 apps with 

81,54,224 LOC, and the HTC One V has 91 apps with 

4660940 LOC. The number of apps and LOC increase 90.47% 

and 103.49%, respectively. The HTC One V had the greatest 

number of vendor specific apps (80.21%) followed by Sony 

Xperia M (74.78%), Redmi 4A (62.8%), LG Optimus L5 

(60.02%), One Plus 6 (57.47%) and Google Nexus 5 (39%). 

Interesting fact is that vendor specific apps in Google Nexus 5 

accounted only 39% of the total apps, least amongst the 

devices studied. 

 

The stat is quite interesting and understandable 

because Nexus 5 is the flagship phone of Google which owns 

the Android OS and hence least vendor customization was 

expected in this phone. Our analysis also shows that, though 

the baseline AOSP is indeed getting more complicated over 

time – but vendor customizations are at least keeping pace 

with the AOSP. This trend is not difficult to understand, as 

vendors have every incentive to add more functionality to their 

newer products, especially in light of their competitors doing 

the same. The Google-branded phone (Nexus 5) is particularly 

interesting. It has relatively few apps, as it is designed to be 

reference design with only minor alterations to the core 

AOSP. The Nexus 5 has 100 apps counting to 71,70,961 LOC. 

The Nexus 5 is the 2ndmost complex – only the Redmi 4A, 

which is well known for its extensive customization, has more 

LOC. We attribute this to the fact that the Nexus 5 includes 

newer versions of vendor-specific apps (e.g., Gmail, Maps, 

YouTube etc.) that have more functionality with larger code 

size. Meanwhile, we also observe these devices experience 

slow update cycles: the average interval between two updates 

for a phone model is about half a year! Redmi 4A got an 

update after 14 months of its release, the highest timeframe for 

any phone in our study. Sony Xperia M got it in the least time 

(9 months). Overall, official updates can hardly be called 

timely, which thereby seriously affects the security of these 

devices. 

 

 
Fig 5. Provenance analysis of representative devices 
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XIII. PERMISSION USAGE ANALYSIS 

 

After determining the provenance of each pre-loaded 

app, our next analysis captures the instances of permission 

over-privilege, where an app request more  permissions than it 

uses. The results are as:  

 

 
Fig 6. Permission Usage Analysis 

 

On average, there is an alarming fact that across the 

six devices, 86.64% of apps are over-privileged. The most 

over privileged are the vendor customized apps (51.93%) 

followed by AOSP apps (18.59%). The 3rd party apps are 

least over privileged and contribute only 16.12%. The LG 

Optimus L5 has the most over privileged apps (92.61%) and 

Samsung Galaxy Note II has the least (78.71%). Even 

Google’s reference device, Nexus 5, does not necessarily 

perform better than the others; the Nexus 5 has the third most 

over privileged apps of all the devices. Note that the situation 

does not appear to be getting better as time goes on. The 

average percentage of over privileged apps in the 2013 devices 

has decreased to 85.61%, compared to 87.96% of all apps on 

2012 devices. The decrease is of a very lesser margin and is 

still hardly reassuring. Interestingly, our results show that the 

proportion of over privileged pre-loaded apps is more than the 

corresponding result of third-party apps. The highest 

percentage of 3rd party over privileged apps is in LG Optimus 

L5 (27.45%) and least is in Google Nexus 5 (8.79%). On the 

other hand, vendor customized over privileged apps account 

for 61.08% in Motorola Moto G, the most, and 40.44% in LG 

Optimus L5, the least. The interesting fact is that the least 

value of vendor customized apps (40.44%) is nowhere close to 

the highest value of 3rd party apps (27.45%). We believe there 

are two main reasons: 

 

1) Pre-loaded apps are more privileged than third-party apps, 

as they can request certain permissions not available to third-

party ones. 

 

2) Pre-loaded apps are more frequent in specifying the 

sharedUserId property, thereby gaining much (possibly 

unnecessary) permission set. 

 

Specifically, if we take into account the provenance 

of each app, a different story emerges. Looking over the 

breakdowns in Table 3, both modest gains over time appear to 

be primarily attributable to a reduction in app over privilege 

among AOSP apps; vendors appear to be responsible for 

roughly the same amount of over privileged apps in each 

image (57.82% of both 2012 apps, vs. 55.96% of all 2013 

apps). In this sense the vendors themselves do not appear to 

care significantly more about the least privilege principle than 

third-party app developers do, despite being, on average, much 

larger corporate entities. Note that pre-loaded apps have 

access to certain permissions that are not available to third-

party apps. Therefore, these over declared permissions, if 

exploited, can lead to greater damage. For example, our results 

demonstrate that both REBOOT and MASTER_CLEAR are 

among over declared permissions that can allow for changing 

(important) device status or destroying user data without 

notification. 

 

XIV. CONCLUSION 

 

The Telecom industry is a mercurial entity. The 

smartphone era started with a loud bang, and it has made the 

users of formerly used feature phone devices consider 

switching to this advanced technology. Android started with a 

2% market share in 2008, and now it has more than 60% 

smartphone users. Android provides an extremely user-

friendly experience with a very supportive ecosystem of 

applications being continually updated and enhanced by 

developers from the parent company as well as other extension 

developers all around the world. There are certain 

inadequacies which I have come across as a user and 

researcher, but they could be subjective. There are certain 

features and enhancements which I would expect to be 

included in future versions, and new ones might be added as 

they become available or, rather invented. 

 

My research covers the basics of Android, its 

functioning as a system and logging and debugging 

mechanism. In conclusion, Android’s future is happening 

now, and further enhancements to this already diverse and this 

multifunctional platform will only take software engineering 

to the next level. 
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