
IJSART - Volume 8 Issue 3 – MARCH 2022 ISSN [ONLINE]: 2395-1052

Page | 254 www.ijsart.com

Threats To Android Security Through Vendor

Customization

Kailash Khatwani

Dept of MCA

Vivekanand Education Society Institute of Technology, Affiliated to

 Mumbai University, Mumbai, India.

Abstract- Android’s popularity is due in part to it being an

open platform. Google produces a baseline version of

Android, and then makes it freely available in the form of the

Android Open-Source Project (AOSP). Manufacturers and

carriers are free to build upon this baseline, adding custom

features in a bid to differentiate their products from their

competitors. These customizations have grown increasingly

sophisticated over time, as the hardware has grown more

capable and the vendors more adept at working with the

Android framework. Flagship devices today often offer a

substantially different look and feel, along with a plethora of

pre-loaded third-party apps. From another perspective,

vendor customizations will inherently impact overall Android

security. Past works have shown that Android devices had

security flaws shipped in their preloaded apps. Note that stock

images include code from potentially many sources: the AOSP

itself, the vendor, and any third-party apps that are bundled

by the vendor or carrier. It is therefore important to attribute

each particular security issue back to its source for possible

bug-fixes or improvements. We aim to study vendor

customizations on stock Android devices and assess the impact

on overall Android security.

Keywords- android, analysis, security, vendor, customization,

analysis, smartphones, threats.

I. INTRODUCTION

 Android is an open-source Operating System created

for mobile phones and other devices led by Google. In 2003,

Andy Rubin and his team invented Android. Later in 2005,

Google acquired the Android operating system. Android is a

software environment built for mobile devices. It is not a

hardware platform. Android includes a Linux kernel-based

OS, a rich UI, end-user applications, code libraries,

application frameworks, multimedia support, and much more.

On the 5th of November in 2007, distribution of Google’s

version was announced with the founding of the Open Handset

Alliance. Open Handset Alliance is a group of device

manufactures, Chipset Manufacturers and Mobile Carriers.

Device Manufacturers include companies like HTC, LG,

Samsung, Motorola and Sony. Chipset makers are Qualcomm,

Texas Instrumental and Intel. Mobile Carrier companies are

represented by companies like Verizon, Sprint, AT&T, T-

Mobile, MetroPCS and lots of other companies all over the

world. Most of the Android platform is released under Apache

2.0 license. Google Android released the entire source code

under an Apache license. With Apache license, a user can

freely download and use Android for personal and commercial

purposes. It allows user to make changes to original software

without having to contribute to the open-source community.

The Linux-based open-source Android platform has

grown into the mainstay of mobile computing, attracting most

phone manufacturers, carriers as well as millions of

developers to build their services and applications (app for

short) upon it. Up to March 2014, Android has dominated

global smartphone shipments with nearly 80% market share.

Such success, however, does not come without any cost. The

openness of the system allows the manufacturers and carriers

to alter it at will, making arbitrary customizations to fit the OS

to their hardware and distinguish their services from what their

competitors offer. Further complicating this situation is the

fast pace with which the Android Open-Source Project

(AOSP) upgrades its OS versions. Since 2009, 19 official

Android versions have been released. Most of them have been

heavily customized, which results in tens of thousands of

customized Android branches coexisting on billions of mobile

phones around the world. This fragmented ecosystem not only

makes development and testing of new apps across different

phones a challenge, but it also brings in a plethora of security

risks when vendors and carriers enrich the system’s

functionalities without fully understanding the security

implications of the changes they make.

Security risks in customizations: For each new Android

version, Google first releases it to mobile phone vendors,

allowing them to add their apps, device drivers and other new

features to their corresponding Android branches. Such

customizations, if not carefully done, could bring in

implementation errors, including those with serious security

consequences. Indeed, recent studies show that many pre-

loaded apps on those images are vulnerable, leaking system

capabilities or sensitive user information to unauthorized

IJSART - Volume 8 Issue 3 – MARCH 2022 ISSN [ONLINE]: 2395-1052

Page | 255 www.ijsart.com

parties. The security risks here, however, go much deeper than

those on the app layer, as what have been customized by

vendors are way beyond apps. Particularly, they almost always

need to modify a few device drivers (e.g., for camera, audio,

etc.) and related system settings to support their hardware.

Most customizations on the Android kernel layer are actually

related to those devices, and they are extremely error-prone,

due to the complexity of Android architecture and the security

mechanism built upon it. Android is a layered system, with its

app layer and framework layer built with Java sitting on top of

a set of C libraries and the Linux kernel. Device drivers work

on the Linux layer and communicate with Android users

through framework services such as Location Service and

Media Service. Therefore, any customization on an Android

device needs to make sure that it remains well protected at

both the Linux and framework layers, a task that can be hard

to accomplish within the small-time window the vendors have

to develop their own OS version. Any lapses in safeguarding

these devices can have devastating consequences, giving a

malicious app access to sensitive user information (e.g.,

photos, audio, location, etc.) and critical services they provide

(e.g., GPS navigation). However, with the complexity of

Android’s layered system architecture and limited device-

related documentations available in the wild, so far, little has

been done to understand the security risks in such device

customizations, not to mention any effort that helps detect the

threats they may pose. To that end, we perform a three-stage

process to evaluate a given smartphone’s stock firmware

image. First, we perform provenance analysis, aiming to

classify each pre-loaded app into three categories:

1. apps originating from the AOSP

2. apps customized or written by the vendor, and

3. third-party apps that are simply bundled into the stock

image. We then analyse, in two different ways, the security

implications of each app:

(1) Permission usage analysis compares the permissions

requested by the app with those that it actually uses, looking

for apps that request more permissions than they use. This

situation is known as permission over privilege, and it

indicates a poor understanding of the Android security model

(2) Vulnerability analysis, in comparison, looks for two

general types of actual security vulnerabilities: permission re-

delegation attacks and content leaks. Permission re-delegation

attacks allow unprivileged apps to act as though they have

certain sensitive permissions, while content leaks allow such

apps to gain (unauthorized) access to private data.

Fig. 1 Methodology of Analysis.

II. PROBLEM DEFINITION

The smartphone market has grown explosively in

recent years, as more and more consumers are attracted to the

sensor-studded multipurpose devices. Android is particularly

ascendant; as an open platform, smartphone manufacturers are

free to extend and modify it, allowing them to differentiate

themselves from their competitors. However, vendor

customizations will inherently impact overall Android security

and such impact is still largely unknown. When Android

phone manufacturers tweak devices and customize phones

with special software, apps and code, it has a direct effect on

the security of each device. In our study, we analyse six

representative stock Android images from popular smartphone

vendors. Our goal is to assess the extent of security issues that

may be introduced from vendor customizations and further

determine how the situation is evolving over time. In

particular, we take a three-stage process: First, given a

smartphone’s stock image, we perform provenance analysis to

classify each app in the image into three categories: apps

originating from the AOSP, apps Customized or written by the

vendor, and third-party apps that are simply bundled into the

stock image. Such provenance analysis allows for proper

attribution of detected security issues in the examined Android

images. Second, we analyze permission usages of pre-loaded

apps to identify overprivileged ones that unnecessarily request

more Android permissions than they actually use. Finally, in

vulnerability analysis, we detect buggy pre-loaded apps that

can be exploited to mount permission re-delegation attacks or

leak private information. Our evaluation results are

worrisome: vendor customizations are significant on stock

Android devices and on the whole responsible for the bulk of

the security problems we detected in each device. Specifically,

our results show that on average 83.15% of all preloaded apps

in examined stock images are overprivileged with a majority

of them directly from vendor customizations. In addition,

64.71% to 85.00% of vulnerabilities we detected in examined

images from every vendor arose from vendor customizations.

In general, this pattern held over time – newer smartphones,

we found, are not necessarily more secure than older ones.

IJSART - Volume 8 Issue 3 – MARCH 2022 ISSN [ONLINE]: 2395-1052

Page | 256 www.ijsart.com

III. FACTS AND FINDINGS

Android has a hierarchical architecture. On top of the

stack are various Android apps, including those from the

system (e.g. contacts, phone, browser, etc.) and those provided

by third parties. Supporting these apps are the services running

on the framework layer, such as Activity Manager, Content

Providers, Package Manager, Telephone Manager and others.

Those services mediate individual apps’ interactions with the

system and enforce security policies when necessary. The nuts

and bolts for them come from Android C libraries, e.g., SSL,

Bionic, Web kit, etc. Underneath this layer is the Linux kernel,

which is ultimately responsible for security protection. The

Android security model is built upon Linux user and process

protection. Each app is given a unique user ID (UID) and by

default, only allowed to touch the resources within its own

sandbox. Access to system resources requires permissions,

which an app can ask for at the time of installation. Decisions

on granting those permissions are made either by the system

through checking the app’s signatures or by the user. When

some permissions are given to an app, it is assigned to a Linux

group corresponding to the permission such as GPS.

Resources on Android typically need to be protected on both

the framework layer and the Linux layer: the former checks an

app’s permissions and the latter is expected to enforce security

policies consistent with those on the framework layer to

mediate the access to the resources. Vendor customization.

Android is an open system. Google releases the AOSP

versions as baselines and different manufacturers (e.g.,

Samsung, HTC etc.) and carriers (e.g., AT&T, Airtel etc.) are

free to tailor it to their hardware and add new apps and

functionalities. Most of these Android versions from the

vendors have been heavily customized. For example, prior

researches show that among all the apps pre-installed by the

major smartphone vendors (Samsung, HTC, LG, Sony) on

their phones, only about 18% come from AOSP, and the rest

are either provided by the vendors (about 65%) or grabbed

from third parties (17%). Under the current business model,

those vendors have a small time-window of about 6 months to

customize the official version. This brings in a lot of security

issues: it has been reported that over 60% of the app

vulnerabilities found in a study come from vendor

customizations [43]. The primary reason for vendors to

customize Android is to make it work on their hardware.

Therefore, the most heavy-lifting part of their customization

venture is always fitting new device drivers to the AOSP

baseline. This is a delicate operation from the security

viewpoint: not only should those new drivers be well

connected to their corresponding framework layer services, so

that they can serve apps and are still protected by permissions,

but they also need to be properly guarded on the Linux layer.

Further complicating the situation is the observation that a

new device may require its driver to talk to other existing

drivers. The problem here is that the latter’s permission

settings on AOSP could block such communication. When this

happens, the vendor has to change the driver’s security

settings on Linux to accommodate the new driver. An example

is the camera device on Galaxy SII that needs to use the UMP

(Unified Memory Provider) driver to allocate memory; for this

purpose, Samsung made UMP publicly accessible. Making the

UMP accessible publicly compromises with the security of the

device.

IV. AUTOMATED COLLECTION TOOLS

The goal of this research is to study vendor

customizations on stock Android devices and assess

corresponding security impact. Note that the software stack

running in these devices are complex, and their firmware is

essentially a collaborative effort, rather than the work of a

single vendor. Therefore, we need to categorize the code

contained in a stock image based on its authorship and audit it

for possible security issues. After that, we can attribute the

findings of the security analyses to the responsible party,

allowing us to better understand the state of smartphone

security practices in the industry and spot any evident trends

over time. Following three technologies were briefly used in

our research:

1. ES File Manager File Explorer

2. Android-apktool

3. ASEF (Android Security Evaluation Framework)

Out of these the first two are simple and widely used

in the Android domain. The third, however, deserves a little

enlightenment as will be evident in the succeeding discussion:

ASEF is designed and developed to simulate the entire

lifecycle of an Android application in an automated virtual

environment to collect behavioural data and perform security

evaluations automatically over ‘n’ number of apps. Android

Security Evaluation Framework (ASEF) performs this analysis

while alerting you about other possible issues. It will make

you aware of unusual activities of your apps, will expose

vulnerable components and help narrow down suspicious apps

for further manual research. The framework will take a set of

apps (either pre-installed on a device or as individual APK

files) and migrate them to the test suite where it will run it

through test cycles on a pre-configured Android Virtual

Device (AVD). During the test cycles the apps will be

installed and launched on the AVD. ASEF will trigger certain

behaviours by sending random or custom gestures and later

uninstall the app automatically. It will capture log events,

network traffic, kernel logs, memory dump, running processes

and other parameters at every stage which will later be utilized

IJSART - Volume 8 Issue 3 – MARCH 2022 ISSN [ONLINE]: 2395-1052

Page | 257 www.ijsart.com

by the ASEF analyser. The analyser will try to determine the

aggressive bandwidth usage, interaction with any command

and control (C&C) servers using Google's safe browsing API,

permission mappings and known security flaws. ASEF can

easily be integrated with other open-source tools to capture

sensitive information, such as SIM cards, phone numbers and

others. ASEF is an Open Source tool for scanning Android

Devices for security evaluation. Users will gain access to

security aspects of android apps by using this tool with its

default settings. An advanced user can fine-tune this, expand

upon this idea by easily integrating more test scenarios, or

even find patterns out of the data it already collects. ASEF

will provide automated application testing and facilitate a plug

and play kind of environment to keep up with the dynamic

field of Android Security.

Fig 2. The ASEF Framework

V. RESEARCH METHOLOGY

The overall architecture of the ASEF system is

explained in the following figure. Our system takes a stock

phone image as its input, pre-processing each app and

importing the results into a database. This database, initially

populated with a rich set of information about pre-loaded apps

(including information from their manifest files, signing

certificates, as well as their code, etc.), is then used by a set of

subsequent analyses. Each analysis reads from the database,

performs its analysis, and stores its findings in the database.

To study the impact of vendor customizations on the security

of stock Android smartphones, we performed three such

analyses.

First, to classify each app based on its presumed

authorship, we perform provenance analysis. This analysis is

helpful to measure how much of the baseline AOSP is still

retained and how much customizations have been made to

include vendor specific features or third-party apps.

To further get a sense of the security and privacy

problems posed by each app, we use two different analyses:

Permission usage analysis assesses whether an app

requests more permissions than it uses, while Vulnerability

analysis scans the entire image for concrete security

vulnerabilities that could compromise the device and cause

damage to the user. Ultimately, by correlating the results of

the security analyses with the provenance information we

collected, we can effectively measure the impact of vendor

customizations.

Fig 3. RESEARCH Methology

VI. PROVENANCE ANALYSIS

The main purpose of provenance analysis is to study

the distribution of pre-loaded apps and better understand the

customization level by vendors on stock devices. specifically,

we classify preloaded apps into three categories:

 AOSP app: the first category contains apps that exist

in the AOSP and may (or may not) be customized by

the vendor.

 Vendor app: the second category contains apps that

do not exist in the AOSP and were developed by the

vendor.

 Third-party app: the last category contains apps that

do not exist in the AOSP and were not developed by

the vendor.

The idea to classify pre-loaded apps into the above

three categories is as follows.

First, we collect AOSP app candidates by searching

the AOSP, then we exclude these AOSP apps from the pre-

loaded ones. After that, we can classify the remaining apps by

examining their signatures (i.e., information in their certificate

files) based on a basic assumption: third-party apps shall be

private and will not be modified by vendors. Therefore, they

will not share the same signing certificates with vendor apps.

In practice, this process is however not trivial. Since AOSP

apps may well be customized by vendors, their signatures are

likely to be changed as well. Although in many cases, the app

names, package names or component names are unchanged,

there do exist exceptions. For example, Sony’s Conversations

app, with package name com. sony ericsson. conversations, is

IJSART - Volume 8 Issue 3 – MARCH 2022 ISSN [ONLINE]: 2395-1052

Page | 258 www.ijsart.com

actually a customized version of the AOSP Mms app named

com.android.mms. In order to solve this problem, we perform

a call graph similarity analysis, which has been demonstrated

to be an effective technique even to assist malware clustering

and provenance identification. To generate the call graph

required by any such analysis, we add all method calls that can

be reached starting from any entry point method accessible to

other apps or the framework itself. However, we are hesitant

to use graph isomorphism techniques to compare these call

graphs, as they are complex and have undesirable performance

characteristics. Instead, we notice that later analysis will use

paths, sequences of methods that start at an entry point and

flow into a sink (i.e., API or field which may require sensitive

permissions, lead to dangerous operations or meet other

special needs). Therefore, we choose to pre-process each app,

extract and compare the resulting paths, a much more

straightforward process that still compare the parts of each app

that we are most concerned with.

From our prototype, we observe that such a path-

based similarity analysis is implementation-friendly and

effective. Particularly, we use the return type and parameters

(number, position and type) of each method in the path as its

signature. If the similarity between two paths exceeds a certain

threshold, we consider these two paths are matching. And the

similarity between two apps is largely measured based on the

number of matched paths. In our prototype, to determine

which apps belong to the AOSP, we accordingly take the

approach:

1. by matching app names and package names

2. by matching component names in the manifest file,

and

3. then by calculating the similarity between paths and

apps.

We point out that a final manual verification is

always performed to guarantee the correctness of the

classification, which can also confirm the effectiveness of our

heuristics. During this stage, we also collect one more piece of

information: the code size of pre-loaded apps measured by

their lines of code (LOC)[38]. Although it is impossible for us

to get all the source code of the pre-loaded apps, we can still

roughly estimate their size based on their decompiled smali

code. Therefore, we can draw a rough estimate of vendor

customization from provenance analysis because the number

and code size of apps are important indicators.

VII. PERMISSION USAGE ANALYSIS

Our next analysis stage is designed to detect

instances of permission over privilege, where an app requests

more permissions than it uses. ASEF applies permission usage

analysis to measure the adoption of the principle of least

privilege in app development. Note that here it is only possible

to get the usage of permissions defined in the standard AOSP

framework. The usage of vendor-specific permissions cannot

be counted because of the lack of related information. There

are four types of permissions in Android:

 normal

 dangerous

 system

 system Or Signature.

The latter three are sensitive, because normal

permissions are not supposed to be privileged enough to cause

damage to the user. Specifically, we define permissions

declared by element uses-permission in the manifest file as

requested permissions, and permissions which are actually

used (e.g., by using related APIs) as used permissions

respectively. An over declared permission is a permission

which is requested but not used. Over privileged apps contain

at least one over declared permission. In permission usage

analysis, from the database, we have the initial requested

permission set of apps (as it is in the manifest information),

and our goal is to find the over declared permission set.

Despite the initial requested permission set, we find it still

needs to be augmented. Especially, there is a special manifest

file attribute, sharedUserId, which causes multiple apps signed

by the same developer certificate to share a user identifier,

thus sharing their requested permission sets. (As permissions

are technically assigned to a user identifier, not an app, all

such apps will be granted the union of all the permissions

requested by each app. Accordingly, apps with the same

sharedUserId require extra handling to get the complete

requested permission set. Next, we leverage the known

permission mapping built by earlier work to determine which

permissions are actually used. Having built both the requested

permission set and the used permission set, we can then

calculate the over declared permission set.

Our approach to calculate the over declared

permission set is conservative. Notice that some permissions

declared in the manifest file may be deprecated in the

corresponding standard Android framework. An example is

the permission READ_OWNER_DATA that was removed

after API level 8 (i.e., Android version 2.2), but still declared

by one app in the Nexus 4 (API level 17, or Android 4.2). We

do not consider them as over declared permissions, because

the vendor may retain deprecated permissions in the

customized framework for its own usage. Some studies

concerned themselves only with those permissions that are

available to third-party apps. In our study, we need to cover

IJSART - Volume 8 Issue 3 – MARCH 2022 ISSN [ONLINE]: 2395-1052

Page | 259 www.ijsart.com

additional permissions defined at system and system Or

Signature levels, which may not be well documented. After

obtaining the over declared permission set, we then analyse

the overall permission usage of each device, and classify

results by provenance. The distributions of over privileged

apps as well as over declared permissions can then both be

studied. Further, we also perform horizontal and vertical

analysis, i.e., cross-vendor, same generation, vs. cross-

generation, same-vendor comparisons.

VIII. VULNERABILITY ANALYSIS

While our permission usage analysis aims to measure

the software development practices used in the creation of

each pre-loaded app, vulnerability analysis is concerned with

finding real, actionable exploits within those apps.

Specifically, we look for two representative types of

vulnerabilities in the Android platform which stem from

misunderstanding or misusing Android’s permission system.

First, we identify permission re-delegation attacks, which are a

form of the classic confused deputy attack. Such an attack

exists if an app can gain access to an Android permission

without actually requesting it. A typical example is an app

which is able to send Short Message Service (SMS) messages

without acquiring the (supposedly required) SEND_SMS

permission. For the second kind of vulnerability, we consider

content leaks, which essentially combine the two types of

content provider vulnerabilities: passive content leaks and

content pollution. An unprotected content provider (i.e., one

that takes no sensitive permission to protect its access) is

considered to have a passive content leak if it is world-

readable, and to have content pollution if it is world-writable.

We extend this definition to cover both open and protected

content providers. The protected ones are also interesting as

there may also exist unauthorized accesses to them through the

other three types of components which could serve as

springboards for exploitation. For ease of presentation, we call

these vulnerabilities content leaks. As our main goal is to

accurately locate possible vulnerabilities, we in this study

consider the following adversary model: a malicious app,

which is compatible with the phone, may be installed on the

phone by the user. We do not expect the malicious app will

request any sensitive permission during installation, which

means it, will only rely on vulnerable apps to accomplish its

goals: either steal money from the user, gather confidential

data, or maliciously destroy data. In other words, we limit the

attacker to only unprivileged third-party apps to launch their

attacks. Keeping this adversary model in mind, we focus our

analysis on security-critical permissions – the ones that protect

the functions that our adversary would most like to gain access

to. Specifically, for permission re-delegation attacks, we focus

on permissions that are able to perform dangerous actions,

such as SEND_SMS and MASTER_CLEAR, because they

may lead to serious damage to the user, either financially or in

terms of data loss. As for content leaks, we ignore those whose

exposures are likely to be intentional. Note that some apps

may be vulnerable to low-severity content leaks; for example,

publicly-available information about a network TV schedule is

not as sensitive as the user’s banking credentials. In other

words, we primarily consider serious content leaks whose

exposures are likely to cause critical damages to the user. To

actually find these vulnerabilities, we rely on a few key

techniques. An essential one is reachability analysis, which is

used to determine all feasible paths from the entry point set of

all Android components, regardless of whether we consider

them to be protected by a sensitive permission. To better

facilitate vulnerability analysis, we define two varieties of

sinks:

 sensitive-sinks: sensitive Android APIs which are related

to sensitive permissions (e.g., MASTER_CLEAR) of our

concern

 bridge-sinks: invocations that are able to indirectly trigger

another (vulnerable) component, e.g., sendBroadcast.

Note that any path reachable from an open entrypoint

or component can be examined directly to see if it has a

sensitive-sink. Meanwhile, we also determine whether it could

reach any bridgelink that will trigger other protected

components (or paths). The remaining paths, whose entry

points are protected, are correlated with paths that contain

bridge-sinks to form the complete vulnerable path, which is

likely cross-component or even cross different apps. This is

essentially a reflection-based attack. All calculated

(vulnerable) paths will subject to manual verification. We

stress that unlike some previous works which mainly focus on

discovery of vulnerabilities; this analysis stage primarily

involves a more contextual evaluation of vulnerabilities,

including distribution, evolution and the impact of

customization. Especially, we use the distribution of

vulnerable apps as a metric to assess possible security impact

from vendor customizations. Note the detected vulnerabilities

are classified into different categories by their provenance and

leveraged to understand the corresponding impact of

customization. As mentioned earlier, both horizontal and

vertical impact analyses are performed.

IX. REACHABILITY ANALYSIS

It is performed in two steps. The first step is intra-

procedural reachability analysis, which involves building

related call graphs and resolving it by conventional def-use

analysis. The resolution starts from the initial state (pre-

computed when the database is initially populated) and then

IJSART - Volume 8 Issue 3 – MARCH 2022 ISSN [ONLINE]: 2395-1052

Page | 260 www.ijsart.com

gradually seeks a fixed point of state changes with iteration

(due to various transfer functions). However, as the state space

might be huge (due to combinatorial explosion), the

convergence progress could be slow or even unavailable. In

practice, we have to impose additional conditional constraints

to control the state-changing iteration procedure. We call the

result of intra-procedural analysis, i.e., the states of variables

and fields, a summary. The second step is inter-procedural

reachability analysis that is used to propagate states between

different methods. After each propagation, method summaries

might be changed. In such cases, intra-procedural reachability

analysis is performed again on each affected method to

generate a new summary. Inter-procedural reachability

analysis is also an iterative process, but takes longer and

requires more space to converge; therefore, we use some

heuristics to reduce the computational and space overhead. For

instance, if a variable or field we are concerned with has

already reached a sink, there is no need to wait for

convergence. Paths of apps from different vendors but with

similar functionality may share something in common,

especially for those apps inherited from the standard AOSP

framework. Here “common” does not mean that their source

code is exactly the same, but is similar from the perspective of

structure and functionality. Many devices reuse the code from

the AOSP directly, without many modifications. If we have

already performed reachability analysis on such a common

path, there is no need to do it on its similar counterparts. It

improves system performance since reachability analysis is

time consuming (especially when the state space is huge).

Therefore, we also perform a similarity analysis as a part of

the reachability analysis to avoid repetitive efforts.

X. REFLECTION ANALYSIS

To facilitate our analysis, we classify vulnerable paths into the

following three types:

 in-component: a vulnerable path that starts from an

unprotected component to a sink that is located in the

same component.

 cross-component: a vulnerable path that starts from an

unprotected component, goes through into other

components within the same app, and then reaches a sink.

 cross-app: a vulnerable path that starts from an

unprotected component of one app, goes through into

another app’s components, and eventually reaches a sink.

The in-component vulnerable paths are relatively

common and have been the subject of recent studies.

However, the latter two, especially the cross-app ones, have

not been well studied yet, which is thus the main focus of our

reflection analysis. Note that a reflection-based attack

typically involves with multiple components that may not

reside in the same app. Traditional reachability analysis has

been effective in detecting in-component vulnerable paths.

However, it is rather limited for other cross-component or

cross-app vulnerable paths. (A cross-app execution path will

pass through a chain of related apps to ultimately launch an

attack.) In order to identify them, a comprehensive analysis of

possible “connection” between apps is necessary. To achieve

that, our approach identifies not only possible reachable paths

within each component, but also the invocation relationship

for all components. The invocation relationship is essentially

indicated by sending intent from one component to another,

explicitly or implicitly. An explicit intent specifies the target

component to receive it and is straightforward to handle. An

implicit intent, on the other hand, may be sent anonymously

without specifying the receiving component, thus requiring

extra handling (i.e., intent resolution in Android) to determine

the best one from the available components. In our system,

ASEF essentially mimics the Android intent resolution

mechanism by matching an intent against all possible <intent-

filter> manifest declarations in the installed apps. However,

due to the offline nature of our system, we have limited

available information about how the framework behaves at

run-time. Therefore, we develop the following two heuristics:

 A component from the same app is preferable to

components from other apps.

 A component from a different app which shares the

same shared UserId is preferable to components from

other apps.

XI. RESULTS

We have implemented ASEF (Android Security

Evaluation Framework), a mix of Java code and Python

scripts. This category contains apps that exist in the AOSP and

may (or may not) be customized by the vendor. In our

evaluation, we examined six representative phones (Table 1)

released after 2012 by six popular vendors: Google, Samsung,

HTC, LG, Motorola and Sony. The selected phone model

either has great impact and is representative, or has huge

market share. For example, Google’s phones are designed to

be reference models for their whole generation; Samsung is

the market leader which occupies 39.6%of smartphone market

share in 2013. To analyse these phone images, our system

requires on average 80 minutes to process each image (i.e.,

around 40 seconds per app) and then reports vulnerable paths

for us to manually verify. Considering the off-line nature of

our tool, we consider this acceptable, even though our tool

could be optimized further to speed up our analysis.

IJSART - Volume 8 Issue 3 – MARCH 2022 ISSN [ONLINE]: 2395-1052

Page | 261 www.ijsart.com

Fig 4. Six android devices we have used.

XII. PROVENANCE ANALYSIS

As mentioned earlier, the provenance analysis

collects a wide variety of information about each device and

classifies pre-loaded apps into three different categories. In

Table 2, we summarize our results. Overall, these six devices

had 546 pre-loaded apps, totalling 3,67,34,925 lines of code

(in terms of decompiled .smali code). A further break-down of

these apps show that, among these devices, there are on

average 18.67 (20.5%), 57 (62.63%), and 15.33 (16.84%) apps

from the categories of AOSP, vendor and third-party,

respectively. Note that the apps in the AOSP category may so

be customized or extended by vendors. As a result, the figures

in the AOSP column of Table 2 should be considered an upper

bound for the proportion of code drawn from the AOSP.

Accordingly, on average, vendor customizations account for

more than 83.15% of apps (or 78.34% of LOC) on these

devices. In our study, we selected one phone model for each

vendor, from the current crop of Android 4.x phones. Table 1

shows the initial release date of each phone model, as reported

by GSM Arena. As it turns out, these devices can be readily

classified by their release dates. Some devices were released

in the year 2012 and the rest were released in 2013. Such

classification is helpful to lead to certain conclusions. For

example, as one might expect, the complexity these devices

are clearly increasing over time. In all cases, the 2013

products contain more apps and LOC than their 2012

counterparts. Specifically, the Redmi 4A has 87 apps with

81,54,224 LOC, and the HTC One V has 91 apps with

4660940 LOC. The number of apps and LOC increase 90.47%

and 103.49%, respectively. The HTC One V had the greatest

number of vendor specific apps (80.21%) followed by Sony

Xperia M (74.78%), Redmi 4A (62.8%), LG Optimus L5

(60.02%), One Plus 6 (57.47%) and Google Nexus 5 (39%).

Interesting fact is that vendor specific apps in Google Nexus 5

accounted only 39% of the total apps, least amongst the

devices studied.

The stat is quite interesting and understandable

because Nexus 5 is the flagship phone of Google which owns

the Android OS and hence least vendor customization was

expected in this phone. Our analysis also shows that, though

the baseline AOSP is indeed getting more complicated over

time – but vendor customizations are at least keeping pace

with the AOSP. This trend is not difficult to understand, as

vendors have every incentive to add more functionality to their

newer products, especially in light of their competitors doing

the same. The Google-branded phone (Nexus 5) is particularly

interesting. It has relatively few apps, as it is designed to be

reference design with only minor alterations to the core

AOSP. The Nexus 5 has 100 apps counting to 71,70,961 LOC.

The Nexus 5 is the 2ndmost complex – only the Redmi 4A,

which is well known for its extensive customization, has more

LOC. We attribute this to the fact that the Nexus 5 includes

newer versions of vendor-specific apps (e.g., Gmail, Maps,

YouTube etc.) that have more functionality with larger code

size. Meanwhile, we also observe these devices experience

slow update cycles: the average interval between two updates

for a phone model is about half a year! Redmi 4A got an

update after 14 months of its release, the highest timeframe for

any phone in our study. Sony Xperia M got it in the least time

(9 months). Overall, official updates can hardly be called

timely, which thereby seriously affects the security of these

devices.

Fig 5. Provenance analysis of representative devices

IJSART - Volume 8 Issue 3 – MARCH 2022 ISSN [ONLINE]: 2395-1052

Page | 262 www.ijsart.com

XIII. PERMISSION USAGE ANALYSIS

After determining the provenance of each pre-loaded

app, our next analysis captures the instances of permission

over-privilege, where an app request more permissions than it

uses. The results are as:

Fig 6. Permission Usage Analysis

On average, there is an alarming fact that across the

six devices, 86.64% of apps are over-privileged. The most

over privileged are the vendor customized apps (51.93%)

followed by AOSP apps (18.59%). The 3rd party apps are

least over privileged and contribute only 16.12%. The LG

Optimus L5 has the most over privileged apps (92.61%) and

Samsung Galaxy Note II has the least (78.71%). Even

Google’s reference device, Nexus 5, does not necessarily

perform better than the others; the Nexus 5 has the third most

over privileged apps of all the devices. Note that the situation

does not appear to be getting better as time goes on. The

average percentage of over privileged apps in the 2013 devices

has decreased to 85.61%, compared to 87.96% of all apps on

2012 devices. The decrease is of a very lesser margin and is

still hardly reassuring. Interestingly, our results show that the

proportion of over privileged pre-loaded apps is more than the

corresponding result of third-party apps. The highest

percentage of 3rd party over privileged apps is in LG Optimus

L5 (27.45%) and least is in Google Nexus 5 (8.79%). On the

other hand, vendor customized over privileged apps account

for 61.08% in Motorola Moto G, the most, and 40.44% in LG

Optimus L5, the least. The interesting fact is that the least

value of vendor customized apps (40.44%) is nowhere close to

the highest value of 3rd party apps (27.45%). We believe there

are two main reasons:

1) Pre-loaded apps are more privileged than third-party apps,

as they can request certain permissions not available to third-

party ones.

2) Pre-loaded apps are more frequent in specifying the

sharedUserId property, thereby gaining much (possibly

unnecessary) permission set.

Specifically, if we take into account the provenance

of each app, a different story emerges. Looking over the

breakdowns in Table 3, both modest gains over time appear to

be primarily attributable to a reduction in app over privilege

among AOSP apps; vendors appear to be responsible for

roughly the same amount of over privileged apps in each

image (57.82% of both 2012 apps, vs. 55.96% of all 2013

apps). In this sense the vendors themselves do not appear to

care significantly more about the least privilege principle than

third-party app developers do, despite being, on average, much

larger corporate entities. Note that pre-loaded apps have

access to certain permissions that are not available to third-

party apps. Therefore, these over declared permissions, if

exploited, can lead to greater damage. For example, our results

demonstrate that both REBOOT and MASTER_CLEAR are

among over declared permissions that can allow for changing

(important) device status or destroying user data without

notification.

XIV. CONCLUSION

The Telecom industry is a mercurial entity. The

smartphone era started with a loud bang, and it has made the

users of formerly used feature phone devices consider

switching to this advanced technology. Android started with a

2% market share in 2008, and now it has more than 60%

smartphone users. Android provides an extremely user-

friendly experience with a very supportive ecosystem of

applications being continually updated and enhanced by

developers from the parent company as well as other extension

developers all around the world. There are certain

inadequacies which I have come across as a user and

researcher, but they could be subjective. There are certain

features and enhancements which I would expect to be

included in future versions, and new ones might be added as

they become available or, rather invented.

My research covers the basics of Android, its

functioning as a system and logging and debugging

mechanism. In conclusion, Android’s future is happening

now, and further enhancements to this already diverse and this

multifunctional platform will only take software engineering

to the next level.

IJSART - Volume 8 Issue 3 – MARCH 2022 ISSN [ONLINE]: 2395-1052

Page | 263 www.ijsart.com

REFERENCES

[1] F. ABLESON, C. COLLINS, AND R. SEN, Unlocking

Android, A Developer Guide, Manning Publications,

Greenwich, Connecticut, 2009.

[2] OPEN HANDSET ALLIANCE, Mobile operators.

Open handsetAlliance,https://www.openhandsetalliance.c

om/oha_members.html, accessed August 2012, n.d.

[3] A. HOOG, Android Forensics: Investigation, Analysis

and Mobile Security for Google, Syngress, Waltham,

Massachusetts, 2011.

[4] ANDROID BLOG, The Android boot process from

power on Android

Blog,https://www.androidenea.com/2009/06/android-

boot-process-from-power-on.html, accessed October

2012, June 2009.

[5] C. GERIGAN AND P. OGRUTAN, AT Commands in

Project based Learning, Bull. Transylvania University of

Braşov Ser. I: Eng. Sciences, 4 (2011), pp. 115-122.

[6] TELIT COMMUNICATIONS, AT Commands Reference

Guide, Telit Communications, Sgonico, Italy, 2012.

[7] ANDROID OPEN-SOURCE PROJECT, Radio interface

layer. Android Open Source Project,

http://www.kandroid.org/onlinepdk/guide/telephony.html,

accessed October 2012, n.d.

[8] TELECOM4U, Android: Radio Interface Layer (RIL).

Telecom4u, http://telecom4u.in/home/androidradio-

interface-layerril, accessed October 2012, n.d.

[9] ANDROID DEVELOPERS, Using DDMS. Android

Developers,

http://developer.android.com/tools/debugging/ddms.html,

accessed September 2012, n.d.

[10] ANDROID DEVELOPERS, Android debug bridge.

Android Developers,

http://developer.android.com/tools/help/adb.html accessed

August 2012, n.d.

[11] ANDROID DEVELOPERS, Reading and writing the

logs. Android Developers,

http://developer.android.com/tools/debugging/debugging-

log.html, accessed October 2012, n.d.

