Study on Performance And Assessment of RCC Building With Various Load Resisting System Using Different Type of Soil

Sunny Gorivale¹, Prof. V.P Bhusare² ¹Dept of Civil Engineering ²AssistantProfessor, Dept of Civil Engineering ^{1, 2} Savitribai Phule Pune University, Pune

Abstract- The high rise buildings are most commonly being made up of Reinforced concrete. The structural behavior of multi-Storey building such as Regular RCC building, Braced building and Mivan building in accordance with the seismic provisions suggested in IS: 1893-2016 to analyze the performance of existing buildings if exposed to seismic loads. In this modelling of G+40 stores RCC framed building is studied for earthquake load using ETABS2016. Assuming that material property is dynamic analysis is performed. These analyses are carried out by considering at seismic zones III and for zone the behavior is assessed by taking three different types of soils namely soft, Medium and Hard soil. Post analysis of the structure Storey Displacement, time period and Storeyforces results are also computed and compared for all the cases.

Hence the aim of present study is to Analysis of Regular RCC building, Braced building and mivan building and compare seismic performance of G+40 Storey structures situated in earthquake zones III & using soft, medium and hard soil. All frames are designed under same gravity loading. Response spectrum method of analysis used for seismic analysis. ETABS software is used and the results are compared.

Keywords- ETABS, Earthquake loading, high-rise, Storey Drift, response spectrum, mivan, Braced

I. INTRODUCTION

General Introduction

There is rising awareness today that the speed of construction desires to be set superior importance particularly for huge housing projects. This is often crucial for the earlier business of kit investments.

There is a requirement to scale back the housing cost to attain the national objective of making an outsized standard. Luckily, certain progressive technologies providing quicker construction are already available within the country. For e.g. autoclaved blocks, Prefabrication, tunnel formwork, and aluminum formwork (MIVAN Technology) of construction etc.

It's now well-known that the Mivan Technology reduces the price of construction from above analysis, hence the technology is beneficial to the development company and builder. However, what about the top user i.e. the those that are visiting occupy the homes built by mivan technology. In India the occupants of homes built by mivan technology must have experience of living in an exceedingly house constructed by conventional technology as mivan technology has recently came in India. Supported this fact, during this project we've got taken a survey of individuals who are occupied in houses built by mivan technology. By adopting Mivan technology within the project not only it gives the higher quality of construction and but also increases the speed of construction and reduces the value since a number of the development activities are completely eliminated et al are reduced to an extent.

Fig-1 Showing the Mivan technology used for the building

Braced RCC Building:-

As building heights were increased and subjected to higher wind loads, new types ofbracing systems were needed to reinforce the structure which in simple terms had toperform as a very tall cantilever. Where moment resisting beam to

IJSART - Volume 8 Issue 1 – JANUARY 2022

column connections were insufficient, K and X bracing was added. This was typically located internally, near the core, in order to make it as unobtrusive as possible; i.e. having no impact on the design of the façade or the flow of traffic in the building. As requirements for mechanical systems increased, these were often relegated to designated floors at intervals over the height of the building. Truss structures were used at these floors as a stabilization method.

Shear Wall Frame Structure

Reinforced concrete structural frames are one of the mostp opular structural systems. In this system RCC frame is braced with concrete shear wall. The main reason to brace a shear wall with RCC frame is to counter the effects of lateral loads acting on a structure due to earthquake, wind etc. The most convenient place to locate shear wall is an external blank wall on edges or on two parallel edges so that stiffness of structure is maintained in best possible way. It should be spaced symmetrically so that center of gravity (C.G.) of structure remains at center and there is not much eccentricity on application of lateral loads like seismic, wind etc. So, its placement needs special skills and experience because if not placed at proper location it would lead to adverse behavior.

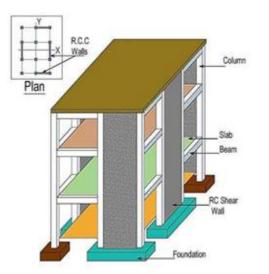


Fig 1.2 Typical shear wall frame structure

RESEARCHMETHODOLOGY

Response spectrum method

This method is applicable for those structures where modes apart from the elemental one affect significantly the response of the structure. during this method the response of multi degree of freedom system is expressed because the superposition of modal response, each modal response being determined from the spectral analysis of single degree of freedom system, which is then combined to match the entire response. Modal analysis of the response history of structure to specified ground motion; however, the strategy is sometimes utilized in conjunction with a response spectrum.

Seismic Weight

The seismic weight of the whole building is the sum of the seismic weights of all the floors. The seismic weight of each floor is its full dead load plus the appropriate amount of imposed load, the latter being that part of the imposed loads that may reasonably be expected to be attached to the structure at the time of earthquake shaking. It includes the weight of permanent and movable partitions, permanent equipment, a part of the live load, etc. While computing the seismic weight of each floor, the weight of columns and walls in any Storey should be equally distributed to the floors above and below the Storey. Any weight supported in between stories should be distributed to the floors above and below in inverse proportion to its distance from the floors.

As per IS 1893(Part I):2016, the percentage of imposed load as given in Table 5 should be used. For calculating the design seismic forces of the structure, the imposed load on the roof need not be considered.

PROBLEMFORMULATION

Multi-storied ferroconcrete, moment resisting space frame are analyzed using professional software ETABS 2016. Model G+40 of building frame with three bays in horizontal and three bays in lateral direction is analyzed by Response Spectrum Method. The plan dimensions of buildings are shown in table below. The plan view of building, elevation of various frames is shown in figures below.

Type of structure	Frame structure
Moment-Resisting frame	SMRF
No of Stories	G+40
Height of each Storey	3m
Height of ground Storey	1.2m
Thickness of slab	150mm
Thickness of outer wall	230mm
Thickness of inner wall	150mm
	Fe 415
Density of concrete	25 kN/m3
Density of Brick wall	20 kN/m3
Grade of concrete in slab	M35
	M35
Grade of concrete in column	
Grade of concrete in footing	M35
Seismic Analysis	Dynamic

A. G+40 StoreyBuildingFloor Plan:

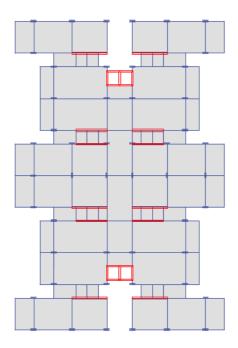


Fig.G+40StoreyBuildingPlan

B. G+40 Storey BuildingModel:

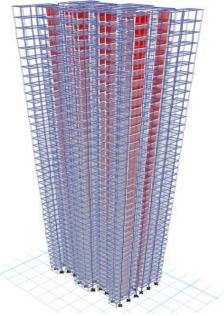


Fig.G+40Storey Building Model

IV. RESULTS

4.1 Storey displacement

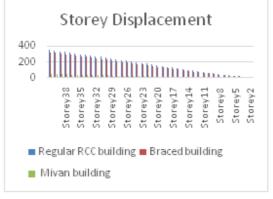
ISSN [ONLINE]: 2395-1052

IJSART - Volume 8 Issue 1 – JANUARY 2022

Table 4.1 Regular RCC building model Storey displacement with Soft soil at zone III.

Storey	Load Case/Combo	Displace-men
		mm
Storey40	0.9DL+1.5WL+X	345.555
Storey39	0.9DL+1.5WL+X	336.868
Storey38	0.9DL+1.5WL+X	328.504
Storey37	0.9DL+1.5WL+X	320.172
Storey36		311.696
Storey35	0.9DL+1.5WL+X	303.103
Storey34		294.395
Storey33	0.9DL+1.5WL+X	285.568
Storey32	0.9DL+1.5WL+X	276.62
Storey31	0.9DL+1.5WL+X	267.551
Storey30		258.371
Storey29		249.08
Storey28	0.9DL+1.5WL+X	239.684
Storey27	0.9DL+1.5WL+X	230.191
Storey26	0.9DL+1.5WL+X	220.61
Storey25	0.9DL+1.5WL+X	210.952
Storey24	0.9DL+1.5WL+X	201.226
Storey23	0.9DL+1.5WL+X	191.444
Storey22		181.621
Storey21		171.769
Storey20	0.9DL+1.5WL+X	161.902
Storey19	0.9DL+1.5WL+X	152.038
Storey18	0.9DL+1.5WL+X	142.191
Storey17		132.38
Storey16		122.625
Storey15		112.944
Storey14		103.361
Storey13	0.9DL+1.5WL+X	93.898
Storey12		84.581
Storeyll		75.439
Storey10		66.502
Storey9	0.9DL+1.5WL+X	57.805
Storey8		49.39
Storey7	0.9DL+1.5WL+X	41.302
Storey6	0.9DL+1.5WL+X	33.6
Storey5	0.9DL+1.5WL+X	26.354
Storey4		19.652
Storey3	0.9DL+1.5WL+X	13.609
Storey2	0.9DL+1.5WL+X	8.38
Storey1	0.9DL+1.5WL+X	4.179

Table 4.2 Braced building model Storey displacement with Soft soil at zone III.


Storey	Load Case/Combo	Displacement
		mm
Storey40	0.9DL+1.5WL+X	315.94
Storey39	0.9DL+1.5WL+X	307.705
Storey38	0.9DL+1.5WL+X	299.485
Storey37	0.9DL+1.5WL+X	291.233
Storey36	0.9DL+1.5WL+X	282.915
Storey35	0.9DL+1.5WL+X	274.519
Storey34	0.9DL+1.5WL+X	266.04
Storey33	0.9DL+1.5WL+X	257.478
Storey32	0.9DL+1.5WL+X	248.833
Storey31	0.9DL+1.5WL+X	240.108
Storey30	0.9DL+1.5WL+X	231.304
Storey29	0.9DL+1.5WL+X	222.43
Storey28	0.9DL+1.5WL+X	213.496
Storey27	0.9DL+1.5WL+X	204.507
Storey26	0.9DL+1.5WL+X	195.471
Storey25	0.9DL+1.5WL+X	186.398
Storey24	0.9DL+1.5WL+X	177.298
Storey23	0.9DL+1.5WL+X	168.185
Storey22	0.9DL+1.5WL+X	159.069

Storey21	0.9DL+1.5WL+X	149.965
Storey20	0.9DL+1.5WL+X	140.887
Storey19	0.9DL+1.5WL+X	131.85
Storey18	0.9DL+1.5WL+X	122.872
Storey17	0.9DL+1.5WL+X	113.969
Storey16	0.9DL+1.5WL+X	105.16
Storey15	0.9DL+1.5WL+X	96.466
Storey14	0.9DL+1.5WL+X	87.907
Storey13	0.9DL+1.5WL+X	79.507
Storey12	0.9DL+1.5WL+X	71.289
Storeyll	0.9DL+1.5WL+X	63.281
Storey10	0.9DL+1.5WL+X	55.51
Storey9	0.9DL+1.5WL+X	48.007
Storey8	0.9DL+1.5WL+X	40.808
Storey7	0.9DL+1.5WL+X	33.952
Storey6	0.9DL+1.5WL+X	27.484
Storey5	0.9DL+1.5WL+X	21.458
Storey4	0.9DL+1.5WL+X	15.942
Storey3	0.9DL+1.5WL+X	11.018
Storey2	0.9DL+1.5WL+X	6.792
Storey1	0.9DL+1.5WL+X	3.367

Table 4.3 Mivan building model Storey displacement with Soft soil at zone III

Storey	Load Case/Combo	Displacement		
		mm		
Storey40	0.9DL+1.5WL+X	47.241		
Storey39	0.9DL+1.5WL+X	45.751		
Storey38	0.9DL+1.5WL+X	44.271		
Storey37	0.9DL+1.5WL+X	42.797		
Storey36	0.9DL+1.5WL+X	41.327		
Storey35	0.9DL+1.5WL+X	39.865		
Storey34	0.9DL+1.5WL+X	38.41		
Storey33	0.9DL+1.5WL+X	36.951		
Storey32	0.9DL+1.5WL+X	35.489		
Storey31	0.9DL+1.5WL+X	34.026		
Storey30	0.9DL+1.5WL+X	32.564		
Storey29	0.9DL+1.5WL+X	31.103		
Storey28	0.9DL+1.5WL+X	29.647		
Storey27	0.9DL+1.5WL+X	28.195		
Storey26	0.9DL+1.5WL+X	26.757		
Storey25	0.9DL+1.5WL+X	25.327		
Storey24	0.9DL+1.5WL+X	23.908		
Storey23	0.9DL+1.5WL+X	22.502		
Storey22	0.9DL+1.5WL+X	21.112		
Storey21	0.9DL+1.5WL+X	19.74		
Storey20	0.9DL+1.5WL+X	18.387		
Storey19	0.9DL+1.5WL+X	17.057		
Storey18	0.9DL+1.5WL+X	15.751		
Storey17	0.9DL+1.5WL+X	14.472		
Storeyl6	0.9DL+1.5WL+X	13.224		
Storey15	0.9DL+1.5WL+X	12.01		
Storey14	0.9DL+1.5WL+X	10.832		
Storey13	0.9DL+1.5WL+X	9.7		
Storey12	0.9DL+1.5WL+X	8.612		
Storeyll	0.9DL+1.5WL+X	7.57		
Storey10	0.9DL+1.5WL+X	6.578		
Storey9	0.9DL+1.5WL+X	5.641		
Storey8	0.9DL+1.5WL+X	4.761		
Storey7	0.9DL+1.5WL+X	3.943		
Storey6	0.9DL+1.5WL+X	3.191		
Storey5	0.9DL+1.5WL+X	2.51		
Storey4	0.9DL+1.5WL+X	1.905		
Storey3	0.9DL+1.5WL+X	1.381		
Storey2	0.9DL+1.5WL+X	0.944		
Storeyl	0.9DL+1.5WL+X	0.593		

ISSN [ONLINE]: 2395-1052

Graph: 4.1 Storey Displacement V/s. Different type of building in Soft soil.

4.2 Modal Time Period Results

Table 4.4 Regular RCC building modal time period with soft

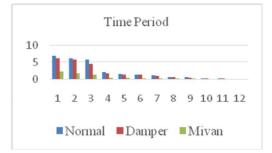

	ods and H	requencies
1 1		requencies
Mode	Period	Frequency
	sec	cyc/sec
1	6.836	0.146
2	6.258	0.16
3	5.723	0.175
4	2.172	0.46
5	1.7	0.588
6	1.506	0.664
7	1.187	0.842
8	0.748	1.338
9	0.615	1.625
10	0.412	2.428
11	0.404	2.476
12	0.154	6.497
	1 2 3 4 5 6 7 8 9 10 11	sec 1 6.836 2 6.258 3 5.723 4 2.172 5 1.7 6 1.506 7 1.187 8 0.748 9 0.615 10 0.412 11 0.404

Table 4.5Braced building modal time period with soft soil at zone III

TABLE: Modal Periods and Frequencies				
Case	Mode	Period	Frequency	
		sec	<u>çxç</u> /sec	
IS 1893 2016	1	6.105	0.164	
IS 1893 2016	2	5.885	0.17	
IS 1893 2016	3	4.613	0.217	
IS 1893 2016	4	1.87	0.535	
IS 1893 2016	5	1.493	0.67	
IS 1893 2016	6	1.359	0.736	
IS 1893 2016	7	1.016	0.984	
IS 1893 2016	8	0.684	1.463	
IS 1893 2016	9	0.532	1.881	
IS 1893 2016	10	0.402	2.488	
IS 1893 2016	11	0.35	2.854	
IS 1893 2016	12	0.149	6.725	

	zone III						
TABLE: Mo	odal Peri	ods and I	Frequencies				
Case	Case Mode Period Frequenc						
		sec	Cycle/sec				
IS 1893 2016	1	2.235	0.448				
IS 1893 2016	2	1.683	0.594				
IS 1893 2016	3	1.273	0.786				
IS 1893 2016	4	0.468	2.139				
IS 1893 2016	5	0.433	2.309				
IS 1893 2016	6	0.228	4.395				
IS 1893 2016	7	0.198	5.044				
IS 1893 2016	8	0.197	5.083				
IS 1893 2016	9	0.166	6.023				
IS 1893 2016	10	0.117	8.531				
IS 1893 2016	11	0.089	11.182				
IS 1893 2016	12	0.065	15.449				

Table 4.6 Mivan building modal time period with soft soil at

Graph 4.2 Modal time period v/s. Different type of building in soft soil

4.3 Building Storey Force Results

zone III				
Storey 18	1.2(DL+LL+EQ+X)	298674.87	-2930.25	7218932.8
Storey 17	1.2(DL+LL+EQ+X)	311958.52	-2975.84	7539960.3
Storey 16	1.2(DL+LL+EQ+X)	325242.16	-3016.506	7860987.9
Storey 15	1.2(DL+LL+EQ+X)	338525.81	-3052.528	8182015.5
Storey 14	1.2(DL+LL+EQ+X)	351809.46	-3084.188	8503043.1
Storey 13	1.2(DL+LL+EQ+X)	365093.11	-3111.767	8824070.6
Storey 12	1.2(DL+LL+EQ+X)	378376.75	-3135.547	9145098.2
Storey 11	1.2(DL+LL+EQ+X)	391660.4	-3155.809	9466125.8
Storey 10	1.2(DL+LL+EQ+X)	404944.05	-3172.835	9787153.4
Storey 9	1.2(DL+LL+EQ+X)	418227.69	-3186.906	10108181
Storey 8	1.2(DL+LL+EQ+X)	431511.34	-3198.304	10429209
Storey 7	1.2(DL+LL+EQ+X)	444794.99	-3207.309	10750236
Storey 6	1.2(DL+LL+EQ+X)	458078.63	-3214.204	11071264
Storey 5	1.2(DL+LL+EQ+X)	471362.28	-3219.27	11392291
Storey 4	1.2(DL+LL+EQ+X)	484645.93	-3222.788	11713319
Storey 3	1.2(DL+LL+EQ+X)	497929.57	-3225.039	12034346
Storey 2	1.2(DL+LL+EQ+X)	511218.71	-3226.306	12355443
Storey 1	1.2(DL+LL+EQ+X)	524507.84	-3226.868	12676540
Ground storey	1.2(DL+LL+EQ+X)	537796.97	-3227.009	12997636

Table 4.7Regular RCC building Storey force with soft soil at

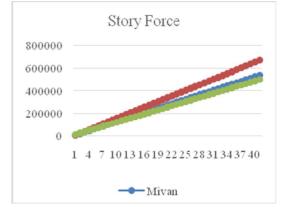

Storey 18	1.2(DL+LL+EQ+X)	373934.6476	-0.00002827	9037698.258
Storey 17	1.2(DL+LL+EQ+X)	390564.9043	-0.00002854	9439592.832
Storey 16	1.2(DL+LL+EQ+X)	407195.161	-0.00002882	9841487.406
Storey 15	1.2(DL+LL+EQ+X)	423825.4178	-0.000002931	10243382
Storey 14	1.2(DL+LL+EQ+X)	440455.6741	-0.00000295	10645277
Storey 13	1.2(DL+LL+EQ+X)	457085.9306	-0.00002984	11047171
Storey 12	1.2(DL+LL+EQ+X)	473716.1896	-0.00003004	11449066
Storey 11	1.2(DL+LL+EQ+X)	490346.445	-0.00003027	11850960
Storey 10	1.2(DL+LL+EQ+X)	506976.7024	-0.000003021	12252855
Storey 9	1.2(DL+LL+EQ+X)	523606.9601	-0.000003043	12654749
Storey 8	1.2(DL+LL+EQ+X)	540237.2185	-0.000003051	13056644
Storey 7	1.2(DL+LL+EQ+X)	556867.4749	-0.0000306	13458539
Storey 6	1.2(DL+LL+EQ+X)	573497.7314	-0.00003063	13860433
Storey 5	1.2(DL+LL+EQ+X)	590127.9886	-0.000003077	14262328
Storey 4	1.2(DL+LL+EQ+X)	606758.2457	-0.000003077	14664222
Storey 3	1.2(DL+LL+EQ+X)	623388.503	-0.000003081	15066117
Storey 2	1.2(DL+LL+EQ+X)	640025.6168	-0.00003082	15468098
Storey 1	1.2(DL+LL+EQ+X)	656662.7311	-0.00000308	15870079
Groud storey	1.2(DL+LL+EQ+X)	673302.7783	-0.000003081	16272130

Table 4.8Braced building Storey force with soft soil at zone III

Table 4.9 Mivan building Storey force with soft soil at zone III

Storey	Load Case/Combo	P	VX	MX
		kN	kN	kN-m
Storey40	1.2(DL+LL+EQ+X)	9071.2148	-217.7521	218378.8957
Storey39	1.2(DL+LL+EQ+X)	21312.4633	-584,2878	513237.3827
Storey38	1.2(DL+LL+EQ+X)	33553.7174	-932.7261	808095.9533
Storey37	1.2(DL+LL+EQ+X)	45791.3615	-1263.4153	1102901.001
Storey36	1.2(DL+LL+EQ+X)	58029.0064	-1576.9288	1397706.059
Storey35	1.2(DL+LL+EQ+X)	70266.6511	-1873.7246	1692511.114
Storey34	1.2(DL+LL+EQ+X)	82504.2959	-2154.2609	1987316.169
Storey33	1.2(DL+LL+EQ+X)	94741.9404	-2418.9955	2282121.222
Storey32	1.2(DL+LL+EQ+X)	106979.5849	-2668.3864	2576926.274
Storey31	1.2(DL+LL+EQ+X)	119217.2289	-2902.8918	2871731.32
Storey30	1.2(DL+LL+EQ+X)	131454.8732	-3122.9696	3166536.369
Storey29	1.2(DL+LL+EQ+X)	143692.5176	-3329.0778	3461341.421
Storey28	1.2(DL+LL+EQ+X)	155930.162	-3521.6745	3756146.472
Storey27	1.2(DL+LL+EQ+X)	168167.8073	-3701.2177	4050951.535
Storey26	1.2(DL+LL+EQ+X)	180405.4519	-3868.1653	4345756.588
Storey25	1.2(DL+LL+EQ+X)	192643.0959	-4022.9755	4640561.634
Storey24	1.2(DL+LL+EQ+X)	204880.7402	-4166.1062	4935366.683
Storey23	1.2(DL+LL+EQ+X)	217118.3845	-4298.0155	5230171.733
Storey22	1.2(DL+LL+EQ+X)	229356.0291	-4419.1614	5524976.786
Storey21	1.2(DL+LL+EQ+X)	241593.6727	-4530.0018	5819781.828
Storey20	1.2(DL+LL+EQ+X)	253831.3176	-4630.9948	6114586.885
Storey19	1.2(DL+LL+EQ+X)	266068.962	-4722.5985	6409391.936
Storey18	1.2(DL+LL+EQ+X)	278306.6064	-4805.2708	6704196.988
Storey17	1.2(DL+LL+EQ+X)	290544.2505	-4879,4697	6999002.034
Storey16	1.2(DL+LL+EQ+X)	302781.895	-4945.6534	7293807.086
Storey15	1.2(DL+LL+EQ+X)	315019.539	-5004.2797	7588612.132
Storey14	1.2(DL+LL+EQ+X)	327257.1836	-5055.8068	7883417.186
Storey13	1.2(DL+LL+EQ+X)	339494.828	-5100.6926	8178222.235
Storey12	1.2(DL+LL+EQ+X)	351732.4722	-5139.3951	8473027.284
Storey11	1.2(DL+LL+EQ+X)	363970.1164	-5172.3724	8767832.332
Storey10	1.2(DL+LL+EQ+X)	376207.7608	-5200.0825	9062637.383
Storey9	1.2(DL+LL+EQ+X)	388445.4049	-5222.9834	9357442.429
Storey8	1.2(DL+LL+EQ+X)	400683.0491	-5241.5332	9652247.478
Storey7	1.2(DL+LL+EQ+X)	412920.6935	-5256.1898	9947052.528
Storey6	1.2(DL+LL+EQ+X)	425158.3377	-5267.4112	10241858
Storey5	1.2(DL+LL+EQ+X)	437395.982	-5275.6555	10536663
Storey4	1.2(DL+LL+EQ+X)	449633.626	-5281.3808	10831468
Storey3	1.2(DL+LL+EQ+X)	461871.2702	-5285.0449	11126273
Storey 2	1.2(DL+LL+EQ+X)	474111.3748	-5287.1063	11421099
Storey 1	1.2(DL+LL+EQ+X)	486351.4794	-5288.0224	11715925
Ground store	T 1.2(DL+LL+EQ+X)	498591.5841	-5288.2515	12010752

Graph 4.3Storey Force Vs. Different Type of Building in soft Soil

V. CONCLUSION

In the present study, comparative analysis of RCC building with Regular RCC building, Mivan wall building and braced building it has been carried out for different number of storey. The buildings are analyses for earthquake zone III with soft soil, medium soil and hard soil. Comparison has been made on different structural parameters viz. base shear, time period and storey force etc.

Based on the analysis results following conclusions have been drawn.

- Analysis of building i. e Regular RCC, Braced and Mivan building with soft soil condition with zone III. The Max. Storey Displacement, Mivan building structure Storey Displacement is decreased to 86% as compare toRegular RCC and Braced Building.
- 2. Comparing Regular RCC building, Braced RCC building and mivan building with soft soil condition the modal time period is maximum in normal and Braced RCC building as compare to mivan building. The modal time period increase 2.690 times as compare Normal and Braced RCC building, but quite shows good performance in time periods.
- Analysis of Regular RCC, Damper and Mivan building in zone III with soft soil, the Storey Forces of Braced Building is 20-25% more than Regular RCC Building and the Storey Forces of Regular RCC Building is 11-13% more than Mivan Building.
- 4. Analysis of Regular RCC, Damper and Mivan building in zone III with soft soil but overall performance of Mivan building is better than Normal and Braced RCC building.

ISSN [ONLINE]: 2395-1052

REFERENCES

- [1] Nandeesh K C, Geetha K, "Comparative study of a hyperbolic circular diagrid steel structure rehabilitated at core with shear wall and steel braced frames," International Journal of Research in Engineering and Technology, Volume 05 Issue 07, July 2016.
- [2] Nimisha. P, Namitha Krishnan, "Structural Comparison of Diagrid Building with Tubular Building," International Journal of Engineering Research & Technology, Volume 5, Issue 04, April 2016.
- [3] Deepa Varkey, Manju George, "Dynamic Analysis of Diagrid System with Complex Shape," International Journal of Innovative Science, Engineering & Technology, Volume 3, Issue 8, August 2016.
- [4] Shahana E, Aswathy S Kumar, "Comparative study of a hyperbolic circular diagrid steel structure rehabilitated at core with shear wall and steel braced frames," International Journal of Science and Research, Volume 5, Issue 7, July 2016.
- [5] Avnish Kumar Rai & Rashmi Sakalle, "Comparative analysis of a high rise building frame with and without diagrid effects under seismic zones III & V," International Journal of Engineering Sciences & Research Technology, September 2017.
- [6] Sarvaswini H.C, Ranjith A, Sanjith J, "A comparative study on the performance of tall structures with diagrid systems and exterior braced frame systems subjected to seismic loading," International Journal for Research Trends and Innovation, Volume 2, Issue 8, 2017.
- [7] Parth B. Patel, Dimple Desai, Bansree More, "A review on analysis of various geometrical patterns for diagrid structure," International Journal of Advance Engineering and Research Development, Volume 4, Issue 11, November 2017.
- [8] U. A. Nawale, D. N. Kakade, "Analysis of Diagrid Structural System by E-Tab," International Advanced Research Journal in Science, Engineering and Technology, Volume 4, Issue 6, June 2017.
- [9] Pattan Venkatesh, Sujay Deshpande, Shweta Patil, "A Comparative Study on the Structural Analysis of Diagrid Structural Systems with Conventional Structural Systems for various Plan Configurations," International Journal for Research in discipline & Engineering Technology, Volume 6, Issue VI, June 2018.
- [10] IS 13920-1993," Ductile detailing of concrete structure subjected to seismic forces code of practice".
- [11] IS 875(part 1-5)1987 -code of practice for structural safety of Building loading standards.
- [12] IS 875-1987, "Code of practice for design loads (other than earthquake) for building and structures Part 2:

Imposed loads", Bureau of Indian Standards, New Delhi, 1987.

- [13] IS 456-2000, "Indian Standard Code of Practice for Plain and Reinforced Concrete", Bureau of Indian Standards, New Delhi.
- [14] IS 1893-2016(Part I), "Criteria for Earthquake Resistant Design of Structures", Bureau of Indian Standards, New Delhi.