
IJSART - Volume 8 Issue 12 – DECEMBER 2022 ISSN [ONLINE]: 2395-1052

Page | 229 www.ijsart.com

An Efficient Round-Robin Arbiter
Himashinii M

Dept of ECE
Saveetha Engineering Chennai

Abstract- Round robin arbiter (RRA) is a vital block in these
days designs. it is widely located in machine-on-chips and
community-on-chips. The need of an efficient RRA has
elevated considerably as it's miles a limiting performance
block.In this paper, we supply comparative assessment
between distinctive RRA architec- tures determined in
literature. We also suggest a singular green RRA architecture.
The FPGA implementation consequences of the previous RRA
architectures and our proposed one are given, that display the
improvements of the proposed RRA.

I. INTRODUCTION

Scheduling algorithms are required when multiple
requestors require access to a shared resource. In a System on
Chip (SoC), multiple devices in the chip are needed to work
together. As a result, an SoC may have multiple bus masters.
A fast and powerful arbiter becomes important to service all
the bus masters. Another example of arbitration system
application is network switches. In a network switch, packets
from multiple input ports need to go through a single output
port. As the number of parallel processes increases, accessing
a shared resource becomes the bottleneck in performance.
One of the goals of a scheduler is to maximize throughput.
The advantages of utilizing arbiters include access fairness for
the requestors to the resources, utilization without wasting
cycles, re- usability, arbitration speed, power and resource
overhead.Different types of Round- robin arbiters such as
baseline arbiters, time speculative arbiters, acyclic arbiters,
parallel prefix arbiters, priority based arbiters, etc... are used in
various applications.

In this paper, a Round-robin arbiter is designed using
weight decoder, next grant pre- calculate logic and granting
logic. The weight of each granted requestor is decoded using a
weight decoder logic. Based on the current grant, the next
possible grant is precalculated in Round-robin mechanism.
Finally, the granting logic checks for requests and
precalculated next grant mask to select a single grant.

A Round-robin arbitration mechanism fits the Weight
decoder, next grant precalculator.The number of requestors
and the bit width of the weight can be set before synthesis.

II. ORGANIZATION

This paper is organized as follows:

 Discusses different arbitration algorithms.

 Discusses the design and implementation of weighted
Round-robin arbiter.

 Discusses the test results.

 The conclusion and possible future work.

III. BACKGROUND RESEARCH

Arbiters play an important role when multiple
requests are sent to access a single resource. In a network
switching router, the packets received on input ports are sent
out to the respective output ports. The arbiter acts a middle
man to direct which input gets to send its packet to the
designated output. The arbitration speed of the arbiter has a
large factor in determining the speed of switching
performance. Of the many metrics to benchmark an arbiter,
fairness is a good unit to measure the performance, and there
are a few types typically utilized:

 Weak Fairness

 Weighted Fairness

 Last Served Lowest Priority (LSLP)

Weak Fairness means a request may have to wait
indefinitely until it gets served. There may be higher priority
requestors holding on to the grant. Section 2.1 discusses a
Fixed Priority Arbiter that demonstrates the weak fairness

IJSART - Volume 8 Issue 12 – DECEMBER 2022 ISSN [ONLINE]: 2395-1052

Page | 230 www.ijsart.com

metric. The Lottery Arbiter discussed in Section 2.2 updates
the weight of the lottery ticket as it arbitrates. The weight of
the ticket increases the chances of winning the grant. This
algorithm has the property of Weighted Fairness. The Matrix
Arbiter in Section 2.3 has the property of LSLP. The last
served requestor will have the lowest priority in the arbiter.

Fixed Priority Arbitration

Fixed priority arbiter is the simplest form of arbiter.
It is also known as per-emptive arbiter due to the nature of its
scheduling algorithm. Each master is given a priority from
high to low. As shown in Eqn 2.1, master i − 1 has higher
priority than master i[7, 9]. For master i to get the grant, all the
masters higher priority than master i must not be requesting to
the arbiter.

granti = req0 · req1 · req2 · · · reqi−1 · req

For example, if there are 3 masters, master 0 is given
priority 0, master 1 priority 1 and master 2 priority 2. Grant is
given to the master that has the highest priority. If master 0
and master 1 request at the same time, master 0 will get the
grant since it has higher priority. As a result, a higher priority
master can starve other masters by monopolizing the bus.
However, due to the simplicity of the design, fixed priority
arbiters are very useful in applications where high priority
tasks need immediate servicing and low priority tasks can wait
indefinitely to get grant.

Lottery Arbiter

Lottery arbitration scheduling is based on the
weighted probabilistic distributions. The algorithm utilizes a
lottery manager to mange the drawing of grants. As in Figure
2.1,

lottery manger gives a numbered ticket/request to
each master. The weight of the ticket number is increased each
time a specific master requests

Assuming a non-empty set of weights {w1, w2, ...,
wn}, the probability of winning a ticket can be calculated as in
Eqn 2.2.

The manager draws the highest numbered ticket as a
winner. The ticket count of the granted master is reset on
winning the lottery. The reset makes the current winner less
likely to be chosen on the next draw. In case of a tie, the
manager may choose any master. If there is only one master
requesting, the manger will choose the trivial solution. As a

result of this pseudo-randomization, the masters get a fair
share of bus time dictated by the weight of the lottery ticket.

Matrix Arbiter

Matrix arbiters are designed to enforce last served
master to have the lowest priority on the shared resources. It
keeps track of the priority in a square matrix form. The rows
and columns of the matrix represents the requestors. The ith

row can be linked to requestor i and jthcolumn requestor j.
Figure 2.2 shows the 4 requestors mapping in a 4 by 4 matrix.

Figure 2.2: Priority Matrix

The rule of the matrix arbiter is if there is a 1 in ith

row and jth column, requestor i has priority over requestor j.
As in Figure 2.3, if requestor 2 sends a request, the grant
will be issued to requestor 2. The elements in row 2 are set to
zero. It forces requestor 2 to have the lowest priority. At the
same time the elements in column 2 are set to 1. It makes
other requestors beat requestor 2 in the next iteration. Matrix
arbiters are useful when the number of inputs are small. If the
number of requests increases, the structure of the arbiter
increases leading to larger area overhead.

IJSART - Volume 8 Issue 12 – DECEMBER 2022 ISSN [ONLINE]: 2395-1052

Page | 231 www.ijsart.com

Weighted Round-Robin Arbiter

Round-robin arbitration has multiple flavors to fit the
desired application. In some applica- tions two-pick Round-
robin arbiters are used instead of one pick arbiters.However,
the final goal, starvation prevention and statistical fairness, is
the same. The algorithms introduced in Chapter give the grant
to the master that has the higher priority. It means a master has
the ability to monopolize the bus for a long time. This causes
bus starvation to the masters with lower priorities. Weighted
Round-robin arbiter design is based on the algorithm that the
scheduling of grants must go on in a Round-robin manner.
This work is based on a two-step approach. The arbiter
monitors the requests and give them grants in the next clock.
In best case condition, the request at time ti will get serviced at
time ti+1. This scheduling algorithm makes sure each master
gets its share of time slice in a fair amount of time. A good
analogy would be if there are 4 masters in x cycle arbiter, each
master will get a quantized time slice of x/4 cycles. However,
in some applications, one bus master may require more bus
time than others. Figure 3.1 shows top level view of Round-
robin arbiter in a network packet switching system.

Figure 3.1: Packet Switching Architecture

This paper introduces another configurable variable
called weight. The weight of each master can be defined as the
grant time slice that the master can configure in the arbiter. If
all the masters have the same amount of weight, each master
will get an equal time share of the pie. If master A requests 20
cycles and master B requests 10 cycles, master A will get
grant 2 times longer than master B. One disadvantage of
letting the masters to configure the weight is a master may
configure a very large weight. To reduce this large weight
monopoly, another global configurable maximum allowed
weight is added. A master may request a very large weight
value, but the arbiter will only grant up to the maximum
allowed weight if there are other masters waiting.

Weight Decoder
Weight decoder decodes one-hot grant to decode the

correct weight of the granted master. As shown in Figure 3.2,
the weight of the masters are concatenated to form a weight
bus. As in Eqn 3.1, the width of the bus can be calculated by
the width of a single weight and the total number of masters in
the arbiter.

Figure 3.2: Weight Bus Size

busWidth = weightW idth ∗ numOf Masters

Weight decoder takes current grant as an one-hot
input. The input grant is decoded to produce an index for
correct bit slice positions of the weight bus. Figure 3.3 shows
the flowchart to produce the correct index. For example, if the
grant is b 0010, the index output is 1. Index of 1 stands for the
master no. 1. The weight of master 1 is decoded as an output.
If the grant is b 0100, index output is 2. The weight of master
2 is decoded as an output.

IJSART - Volume 8 Issue 12 – DECEMBER 2022 ISSN [ONLINE]: 2395-1052

Page | 232 www.ijsart.com

Figure 3.3: One-hot Index Flowchart

Next Grant Precalculator

Next Grant PReCalculator(NGPRC) calculates the
next possible grants mask based on current grant. By
precalculating the next possible grants, NGPRC dictates the
Round- robin arbitration of the arbiter. As in Figure 3.4, if all
4 masters in the arbiter are requesting and current grant is
master 1, next possible grant is restricted to be in the order of
master 2, master 3 and master 0. The arbiter cannot skip
master 2 to grant master 3. It would violate Round-robin
scheme and it is not allowed. By giving next possible grant
priority to the Grant State-machine, it forces the grant to be in
strict Round-robin order.

Figure 3.5 shows the calculation steps NGPRC takes
to compute the next possible grant priority. For example, if
current grant is b 0010, rotate left gives b 0100. After
inversion, the bits become b 1011. After increment by 1, the
next possible grant becomes b 1100. It means the leftmost 2
bits are in line in priority.

Figure 3.5: NGPRC Calculation Steps

Grant State Machine

Grant state machine is the logic to calculate which
master gets the grant and for how long based on the weight.
The grant logic is based on the requests and next grant priority
mask created by NGPRC. Figure 3.6 shows the state flow
diagram of grant state machine. “Grant Process” state masks
requests using precalculated mask to grant the next requesting
master. After the grant is decided, it moves to “Get Weight”
state to fetch the weight of the grant from Weight Decoder.
After that, it moves to “Count” state to count the clock cycles
until local counter reaches the desired weight.

Figure 3.6: Grant State Machine

IJSART - Volume 8 Issue 12 – DECEMBER 2022 ISSN [ONLINE]: 2395-1052

Page | 233 www.ijsart.com

Tests and Results

This section discusses the simulation results of the
arbiter, as well as the area and power overhead of the top level
design.

IV. SIMULATION

Weight Decoder

Figure 4.1: Weight Decoder

Figure 4.1 shows the simulation of weight decoder.
Input dataInBus contains the weights of the channels
preconfigured. Input selOneHot port/grant the input used to
decode the weight of current grant. The decoded weight is
outputted to the dataOut port.

Next Grant PreCalculator

Figure 4.2: Next Grant PreCalculator

Figure 4.2 shows the simulation waveform of Next
Grant PreCalculator. Based on the input request and grant,
next grant mask is created to dictate Round-robin order to
restrict the grant order.

Round-Robin Top Level/Grant State Machine

Figure 4.3: Top Level Simulation

The Figure 4.3 shows the simulation top level Round-
Robin Arbiter. Grant is serviced based on the requests and
precalculated mask from NGPRC. The grant is given the
access time for the number of weight cycles before servicing
the next request.

V. FUTURE WORK

Since the arbiter are application specific, for future
work, this implementation of Round- robin arbiter can be
modified to suit the intended usage. One of the applications of
Round-robin arbiter is system-on-chip shared memory. In this
application, two independent Round-robin arbiters are used,
one for address and one for data. For read access, the two
arbiters can operate independently.However, for write back
operations, both the data and address needs to go together. It
might be beneficial to implement a modified version that is
aware of the condition when address or data arbiter needs to
freeze in order to write back.

Another applications is communication arbiter for
Network-On-Chip (NOC), where communication between IP
cores are usually non-uniform or hot-spot in traffic.The arbiter
in this work only allow a fixed time slice preconfigured. It
would be beneficial to implement logic to detect the load of
the inputs and adjust priority dynamically. By adjusting
priority or grant time based on the traffic would make sure that
busy master/re- questor traffic is well balanced and not
starved.

REFERENCES

[1] K. Warathe, D. Padole, and P. Bajaj, “A Design Approach
to AMBA (Advanced Microcontroller Bus Architecture)
Bus Architecture with Dynamic Lottery Arbiter,” in 2009
Annual IEEE India Conference, Dec 2009, pp. 1–4.

[2] Z. Fu and X. Ling, “The design and implementation of
arbiters for Network-on-chips,” in 2010 2nd International
Conference on Industrial and Information Systems, vol. 1,
July 2010, pp. 292–295.

[3] C. Spear, SystemVerilog for Verification: A Guide to
Learning the Testbench Language Features. New York
NY: Springer, 2006.

[4] Y. Li, N. Zeng, W. N. N. Hung, and X. Song, “Enhanced
symbolic simulation of a round-robin arbiter,” in 2011
IEEE 29th International Conference on Computer Design
(ICCD), Oct 2011, pp. 102–107.

[5] S. Q. Zheng and M. Yang, “Algorithm-Hardware
Codesign of Fast Parallel Round- Robin Arbiters,” IEEE
Transactions on Parallel and Distributed Systems, vol.
18, no. 1, pp. 84–95, Jan 2007.

[6] M. Abdelrasoul, M. Ragab, and V. Goulart, “Impact of
Round Robin Arbiters on router’s performance for NoCs
on FPGAs,” in 2013 IEEE International Conference on
Circuits and Systems (ICCAS), Sept 2013, pp. 59–64.

[7] Y. Yang, R. Wu, L. Zhang, and D. Zhou, “An
Asynchronous Adaptive Priority Round- Robin Arbiter

IJSART - Volume 8 Issue 12 – DECEMBER 2022 ISSN [ONLINE]: 2395-1052

Page | 234 www.ijsart.com

Based on Four-Phase Dual-rail Protocol,” Chinese
Journal of Electron- ics, vol. 24, no. 1, pp. 1–7, 2015.

[8] K. A. Helal, S. Attia, T. Ismail, and H. Mostafa, “Priority-
select arbiter: An efficient round-robin arbiter,” in 2015
IEEE 13th International New Circuits and Systems
Conference (NEWCAS), June 2015, pp. 1–4.

[9] R. Kamal and J. M. M. Arostegui, “RTL implementation
and analysis of fixed pri- ority, round robin, and matrix
arbiters for the NoC’s routers,” in 2016 International
Conference on Computing, Communication and
Automation (ICCCA), April 2016, pp. 1454–1459.

[10]E. S. Shin, V. J. Mooney, and G. F. Riley, “Round-robin
Arbiter Design and Gener- ation,” in 15th International
Symposium on System Synthesis, 2002., Oct 2002, pp.
243–248.

