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Abstract- This article summarizes the wide scope of aqueous 

organic reactivity from a pedagogical perspective. It is aimed 

at university instructors with the goal of promoting water as a 

solvent in academic institutions. Recently, extensive industrial 

and scholarly research has concerned development of organic 

reactions in aqueous media. Many examples are now possible 

in the student laboratory including carbon–carbon/carbon–

nitrogen bond-forming reactions and functional group 

transformations (e.g. oxidations, reductions, and 

halohydrations). Experiments are summarized from the 

educational literature (journal articles and laboratory 

textbooks) and their green features are described. Using water 

as solvent often promotes significant rate enhancements and 

operational simplicity – both of importance when training 

undergraduates during limited laboratory time. 

Environmental benefits of using water are additionally 

highlighted to students’ first hand in relation to the Twelve 

Principles of Green Chemistry. 
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I. INTRODUCTION 

 

 In introductory college courses, undergraduate 

chemists are often taught that water is a poor solvent in which 

to attempt organic reactivity. This instruction has its basis in 

two observations. The vast majority of organic compounds 

have limited water solubility, and several important reagents 

(e.g. Grignards, LiAlH4, and thionyl chloride) react with 

water, thus requiring an anhydrous environment for desired 

behavior. Yet, H2O is clearly a very high-profile substance 

(the American Chemical Society celebrated Earth Day in 2008 

with the theme “Water: ‘Streaming Chemistry’” 1–3). 

Vigorous effort has shown that many organic reactions can in 

fact be conducted with water as solvent. Articles have focused 

on C–C bond-forming processes 4, organometallic chemistry 5 

and stereoselective reactivity 6 under aqueous conditions. 

Lindström has recently organized a comprehensive review of 

organic reactions in water 7. Some transformations are 

inappropriate for teaching purposes as they employ lengthy 

reaction times and/or expensive catalysts that are difficult to 

prepare. However, pedagogical research has developed many 

student-friendly procedures showcasing water as the reaction 

medium 8. This review, written for university educators, 

summarizes these experiments and encourages their 

incorporation into undergraduate curricula at introductory or 

advanced levels. 

 

Why should students perform reactions in H2O? 

From a green perspective, water has supreme advantages over 

organic solvents. It is environmentally benign, abundant, 

inexpensive and non-flammable. Life itself requires chemical 

bond formation under aqueous conditions. Additionally, 

despite reactant insolubility, water can promote pronounced 

rate enhancements and impressive reaction selectivities with 

concomitant reduced energy requirements. This is often 

attributable to hydrophobic effects 9 10 where non-polar 

reactant molecules are forced together in the rate-determining 

transition state. Exposure to aqueous organic reactivity 

therefore educates undergraduates about the Twelve Principles 

of Green Chemistry 11 and the current drive to “use safer 

solvents and reaction conditions” and “increase energy 

efficiency.” 

 

Experiments highlighted herein utilize water as the 

sole reaction solvent or as a major co-solvent (at least 50% of 

composition). Some date from before the green chemistry 

movement began and are included to illustrate the rich variety 

of chemistry possible. Reactions are organized under two 

broad themes: C–C/C–N bond-forming reactions and 

functional group transformations. Each theme is further sub-

divided as follows: C–C/C–N bond-forming reactions are 

categorized by mechanistic type (nucleophilic addition, 

transition metal catalysis, pericyclic, radical, and electrophilic 

substitution). Functional group transformations are delineated 

by reaction type (oxidation, reduction, halohydration, 

etherification, and dehydration). Reported student yields or 

ranges of yields (where known), reaction times, and 

experimental conditions are highlighted along with other green 

chemistry features of note. 

 

C–C and C–N bond formations in water 

 

Nucleophilic addition reactions 

 

Alkene synthesis 
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Several pedagogical procedures highlight attack of a 

nucleophilic carbon atom at an electrophilic center, often 

leading to alkene and/or alcohol products. Broos et al. 12 

developed a Wittig reaction in water where 4-

carboxybenzyltriphenylphosphonium bromide is deprotonated 

with sodium hydroxide and stirred with aqueous formaldehyde 

at room temperature. The product 4-vinylbenzoic acid is 

isolated in good yield and purity (Scheme 1) and recrystallized 

from aqueous ethanol, engendering another green feature to 

the experiment. 

 

Scheme 1. Wittig synthesis of 4-vinylbenzoic acid 12. 

 

 
 

Display full size 

 

A variation of the Wittig reaction using phosphonate 

esters as the carbanion source (a Horner–Wadsworth–Emmons 

or Wittig–Horner reaction) proceeds efficiently in aqueous 

media 13. Rapid one-pot preparation of the sunscreen analog 

methyl trans-4-methoxycinnamate 14 15 and 13 other 

aromatic cinnamate esters were realized (Scheme 2). These 

products are purified from ethanol or ethanol:water mixtures. 

The experiment utilizes potassium carbonate as a weak, 

environmentally benign base, avoids use of a phase-transfer 

catalyst 16 and forms trans-alkenes in a stereoselective 

fashion. 

 

Scheme 2. Horner–Wadsworth–Emmons preparation of a 

sunscreen analog 13. 
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Recently, a Knoevenagel condensation between one 

of three aldehydes (furfural, 2-naphthaldehyde, or piperonal) 

and malononitrile was reported under inorganic base-catalyzed 

conditions in water (Scheme 3, 17). No organic solvents are 

required throughout the short procedure. The reaction 

proceeds with very intrinsic high atom economy as H2O is the 

only “wasted” by-product. Fringuelli et al. 18 described a 

related multi-step protocol where consecutive Knoevenagel 

and Pinner reactions followed by alternating basic and acidic 

hydrolysis steps leads to coumarin formation (Scheme 4). 

 

Scheme 3. Alkene syntheses via Knoevenagel condensations 

17. 
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Scheme 4. Coumarin generation via one-pot consecutive 

reactions 18. 
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A similar multi-step condensation progressing in 

water is the Hantzsch 1,4-dihydropyridine synthesis 19. Using 

ethanol as a co-solvent, the potent anti-oxidant diludine 20 21 

is prepared on a multi-gram scale by refluxing ethyl 

acetoacetate, aqueous ammonia, and aqueous formaldehyde 

for one hour (Scheme 5). The solid product is easily 

recrystallized from ethanol. 

 

Scheme 5. Hantzsch synthesis of diludine 19. 
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A popular reaction routinely discussed in 

introductory organic lectures and laboratories is the aldol 

condensation. Two recent experiments outline aldol reactions 

from a green perspective under solvent free 22 and 

organocatalytic conditions 23. A convenient crossed aldol 

condensation featuring an aromatic aldehyde and ketone has 

since been discussed (Scheme 6, 24). This stereoselective 

reaction employing a catalytic amount of sodium carbonate 

affords a trans-chalcone analog on heating in water, which is 

readily identifiable by proton NMR. 

 

Scheme 6. Aldol reaction between 2-acetylpyridine and 4-

nitrobenzaldehyde at 50C 24. 
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Alcohol synthesis 

 

A didactic modification of the aldol condensation 

(Scheme 6) is performance of the same reaction at room 

temperature (Scheme 7, 24). Under weakly basic conditions, 

the initially formed alcohol product (a β-hydroxyketone) is 

isolated in excellent yield. Undertaking both reactions within 

the same laboratory session underscores the role heat has in 

driving the elimination of water and introduces a “discovery” 

element to the experiment. 

 

Scheme 7. Aldol reaction between 2-acetylpyridine and 4-

nitrobenzaldehyde at room temperature 24. 
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Classical organometallic reagents used in synthesis 

include those developed by Grignard and Gilman 25. It is 

often stressed to undergraduates that these species must be 

kept away from moisture (and other protic solvents) until an 

aqueous acidic work up is performed. Although Grignard 

reactions are common in the student laboratory, preparation of 

organometallic can be unreliable and prone to complete failure 

26. However, Breton and Hughey 27 employed an organozinc 

species formed by reaction of allyl bromide with zinc metal in 

aqueous THF. This intermediate reacts efficiently with 

benzaldehyde to form a liquid secondary alcohol (1-phenyl-3-

buten-1-ol) in a similar manner to a Grignard reagent (Scheme 

8). The reaction mechanism is thought to initially involve an 

electron transfer from zinc metal to a molecule of allyl halide, 

forming a radical anion intermediate. This is followed by 

nucleophilic attack at the electrophilic carbon atom of 

benzaldehyde 28. 

 

Scheme 8. Alcohol preparation by a Grignard-like reaction 

27. 
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Oxazolidinone synthesis 

 

Carbon–nitrogen bond cleavage and formation in 

water is exemplified by preparation of an oxazolidinone from 

1-benzyl-2-methylaziridine (Scheme 9, 29). The three-

membered ring reacts with carbon dioxide and a variety of 

iodide salts under pressure to form isomeric products during 

two laboratory periods. Oxazolidinones are significant as 

chiral auxiliaries, ligands for metal catalysis, and recently as 

anti-bacterial agents 30–32. Students have an opportunity to 

probe the effect that different salts have (LiI, NaI, CsI, NH4I) 

on the ratio of oxazolidinone isomers. 

 

Scheme 9. Conversion of an aziridine to an oxazolidinone 

using carbon dioxide 29. 
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Transition metal-catalyzed reactions 

 

Pd(0)-catalyzed cross-couplings 
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Many transition metal-mediated coupling reactions 

proceed effectively in an aqueous environment 33, a fact 

exploited by several educators. Palladium0-catalyzed 

processes have been of particular interest. The Suzuki reaction 

typically couples an aryl or vinyl halide with a boronic acid or 

boronic ester under basic conditions in the presence of 

catalytic Pd0 34. An undergraduate Suzuki reaction was 

reported in 2001 utilizing Pd(OAc)2 and triphenylphosphine 

in combination with Na2CO3 as base and aqueous isopropanol 

as solvent 35, where Pd0 is generated in situ. Research 

indicates many such reactions are possible in pure water 36. A 

Suzuki cross-coupling reaction was designed to synthesize 4-

phenylphenol, a biaryl component of important non-steroidal 

anti-inflammatory drugs (NSAIDs) 37. This approach employs 

water as the sole reaction solvent, features inexpensive 

palladium on carbon as the active catalyst and solid 

purification by recrystallization from aqueous methanol 

(Scheme 10). 

 

Scheme 10. Pd/C-catalyzed Suzuki synthesis of an NSAID 

analog 37. 
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Leadbeater has designed similar procedures in a 

commercial microwave reactor that have been introduced into 

the undergraduate curriculum 38. Additionally, a group project 

was implemented using an aqueous Suzuki reaction as the 

focal point 39 where students design a research proposal, 

undertake independent practical work, evaluate their results, 

and write a journal-style report. 

 

The closely related Heck reaction 40 couples an aryl 

halide with an electron-deficient alkene in the presence of 

Pd0. Refluxing a mixture of 4-iodoacetophenone and acrylic 

acid with palladium(II) chloride in aqueous Na2CO3 leads to 

stereoselective formation of trans-4-acetylcinnamic acid 

(Scheme 11, 41). 

 

Scheme 11. Heck synthesis of trans-4-acetylcinnamic acid 

41. 
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A Pd0-catalyzed Sonogashira reaction 42 between an 

aryl halide and a terminal alkyne in 4:1 water:N-

methylpyrrolidinone as solvent has been described 43. This 

approach uses palladium(II) acetate with a water-solubilizing 

ligand (TPPTS) and a reaction time of one week at room 

temperature. Interestingly, the initial product cyclizes under 

the reaction conditions to form a benzofuran derivative 

(Scheme 12). Benzofuran rings are components of many 

biologically active substances, both synthetic and natural 44. 

This represents a significantly greener methodology toward 

benzofuran synthesis than more traditional approaches of 

heating reactants in pyridine or dimethylformamide as solvent 

45 46. Similarly, Harper et al. 47 utilized a water-soluble 

Pd(0) complex to catalyze reaction between diethyl phosphite 

and iodobenzene generating diethyl phenylphosphonate and a 

new carbon–phosphorus bond. 

 

Scheme 12. Sonogashira coupling using catalytic Pd(OAc)2 

43. 
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Ru(III) catalysis 

 

Ring-Opening Metathesis Polymerization (ROMP) 

reactions proceed readily and near quantitatively in water if 

the appropriate catalyst is selected 48. Ruthenium(III) salts, 
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such as RuCl3 and K2RuCl5 are often utilized 49. The Diels–

Alder adduct of furan and maleic anhydride (exo-7-

oxabicyclo[2.2.l]hept-5-ene-2,3-dicarboxylic anhydride) 

undergoes an aqueous ROMP reaction in 40 minutes (Scheme 

13). A functionalized polymer with high carboxyl content is 

formed that is soluble in polar solvents and characterized by 

IR, proton NMR, DSC and molecular weight measurements. 

The cis:trans polymeric ratio can be determined by 13C NMR. 

Water is thought to behave as a co-catalyst by dramatically 

decreasing the initiation period required for reaction. 

 

Scheme 13. ROMP of exo-7-oxabicyclo[2.2.l]hept-5-ene-2,3-

dicarboxylic anhydride 49. 
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Pericyclic reactions 

 

A 1,3-dipolar cycloaddition 

 

“Click chemistry” is a process-driven approach to 

organic synthesis involving many green principles of 

pedagogical importance 50. “Click” reactions must proceed 

under simple conditions (e.g. in water or the absence of 

solvent) with high yields/stereospecificities and generation of 

easily removed, benign by-products. Products of “click” 

reactions must be physiologically stable and purified by 

straightforward methods, such as recrystallization. A 1,3-

dipolar cycloaddition between terminal alkynes and phenyl 

azide (Scheme 14, 51) fulfills many such criteria. These Cu(I)-

catalyzed reactions are undertaken with water:t-butanol as 

solvent, easily monitored by TLC, require no chromatographic 

purification and very high yielding. Nearly all the 1,2,3-

triazoles precipitate as solids, allowing different students to 

synthesize different “clicked” products. 

 

 

 

 

 

 

 

Scheme 14. “Click” synthesis of 1,2,3-triazole derivatives 51. 
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A Diels–Alder cycloaddition 

 

Aqueous Diels–Alder reactions have been a focus of 

attention for almost 30 years. Rideout and Breslow reported a 

large rate of acceleration on reacting anthracene-9-methanol 

with N-ethylmaleimide in water compared to other solvents 9. 

This was ascribed as a hydrophobic effect and extended to 

other reactions having a negative volume of activation. Design 

of an undergraduate experiment utilizing N-methylmaleimide 

as the dienophile took place (Scheme 15, 52). Diels–Alder 

reactions are highly atom efficient and exceptional examples 

of environmentally friendly chemistry. This procedure 

illustrates how a greener solvent can be used both for its 

benign characteristics and ability to significantly enhance the 

rate of an important carbon–carbon bond-forming reaction. 

Scheme 15. Diels–Alder reaction between anthracene-9-

methanol and N-methylmaleimide 52. 
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Hetero Diels–Alder cycloadditions 

 

Two published experiments highlight hetero Diels–

Alder reactions in aqueous environments 53 54 which also 

benefit from the hydrophobic effect. In the first example, 

aqueous glyoxylic acid is heated and stirred with 

cyclopentadiene and copper(II) sulfate for three hours 

(Scheme 16). The initial Diels–Alder adduct rearranges to 

form a racemic mixture of lactones in moderate yield with the 

endo product predominating over the exo (65:35). 2D NMR 

can be used to determine the nature of the major lactone by 

interpretation of NOESY spectra. 
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Scheme 16. Hetero Diels–Alder preparation of lactones 53. 
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A similar one-pot protocol has very recently been 

reported, where the iminium ion formed from benzylamine 

hydrochloride and aqueous formaldehyde is reacted in situ 

with cyclopentadiene (Scheme 17). The product 2-

azanorbornene is isolated in excellent yield after extraction as 

a pale yellow oil suitable for IR and NMR analyses. 

Scheme 17. Hetero Diels–Alder synthesis of N-benzyl-2-

azanorbornene 54. 
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Radical reactions 

 

Oxidative biaryl synthesis 

 

The aromatic compound apocynin (4-hydroxy-3-

methoxyacetophenone) has been oxidized to diapocynin in 

60% yield on heating with iron(II) sulfate and sodium 

peroxydisulfate in water for five minutes (Scheme 18, 55 56). 

A sulfate radical anion (SO4 •–) generates a carbon-based 

radical ortho to the hydroxy group in apocynin and coupling 

occurs to form the product, which may have anti-oxidative and 

anti-inflammatory properties 57. Mak adopted a similar 

approach during preparation of racemic 1,1′-bi-2-naphthol 

from 2-naphthol 58. In this case the oxidant is iron(III) 

chloride (Scheme 19). The racemic product is subsequently 

resolved by treatment with (-)-N-benzylcinchonidinium 

chloride to isolate solid (S)-BINOL and (R)-BINOL after 

acidic hydrolysis. These two compounds and their derivatives 

are useful chiral ligands for asymmetric catalysis 59. 

 

Scheme 18. Diapocyanin synthesis via aryl radical coupling 

55. 
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Scheme 19. Synthesis of racemic 1,1′-bi-2-naphthol 58. 
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Electrophilic substitution reactions 

 

Dipyrromethane preparation 

 

A one-pot preparation of meso-diethyl-2,2′-

dipyrromethane via an electrophilic aromatic substitution 

mechanism has been documented 60. The reaction involves 

refluxing 3-pentanone with two equivalents of pyrrole in 

aqueous HCl for 50 minutes (Scheme 20). This green 

synthesis involves little product purification as the 

dipyrromethane separates as large crystals from the aqueous 

medium and does not require recrystallization. 

Dipyrromethanes are important intermediates in both natural 

and artificial syntheses of tetrapyrrolic macrocycles. Pyrrole 

rings are particularly well known as porphyrin components 61. 

 

Scheme 20. Aromatic substitution reaction between pyrrole 

and 3-pentanone 60. 
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Aromatic nitration 

 

Jones-Wilson et al. reported an experiment where the 

amino acid tyrosine is nitrated under standard conditions 

(HNO3/H2SO4) in water to form 3-nitrotyrosine (Scheme 21, 

62). Tyrosine represents a naturally occurring and non-toxic 

aromatic reactant with the added benefit of being water 

soluble, and the product is recrystallized from water after 

washing with ethyl acetate. 

 

Scheme 21. Aromatic nitration of tyrosine 62. 
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Functional group transformations in water 

Oxidation reactions 

 

Epoxide synthesis 

 

The terpene geraniol ((E)-3,7-dimethylocta-2,6-dien-

1-ol) reacts smoothly with hydrogen peroxide in the presence 

of catalytic methyltrioxorhenium and nicotinamide to form 

6,7-epoxygeraniol (Scheme 22, 63). This epoxidation is 

performed in aqueous ethanol and exhibits good atom 

economy with water as the only by-product. Other green 

advantages are use of 3% hydrogen peroxide (rather than the 

“normal” 30% solution) and nicotinamide (derived from a 

commercial vitamin tablet) instead of pyridine. The 

experiment represents an impressive alternative to alkene 

epoxidations undertaken with m-chloroperoxybenzoic acid 

(MCPBA) which are considerably less atom efficient and 

typically require chlorinated solvents. 

 

Scheme 22. Hydrogen peroxide-mediated epoxidation of 

geraniol 63. 
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The strong and versatile oxidizing agent, Oxone 

(potassium peroxymonosulfate, 2KHSO5 •KHSO4 •K2SO4) 

64 has several applications in the organic teaching laboratory. 

In the presence of acetone it generates dimethyldioxirane 

which is the active epoxidant of cyclohexene, norbornylene, 

and β-pinene 65. Near quantitative yields are achieved after a 

30-minute reaction time under basic conditions in a 

water:acetone solvent (Scheme 23). 

 

Scheme 23. Preparation of cyclohexene oxide using Oxone 

65. 
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Carboxylic acid synthesis 

 

Gandhari et al. 66 have also employed Oxone for 

oxidation of aromatic aldehydes to carboxylic acids. Benzoic 

acid is synthesized from benzaldehyde in excellent yield on 

heating with Oxone in water with no organic co-solvent 

present (Scheme 24). The product is recrystallized from water 

making this a particularly green oxidation approach, 

eliminating use of harsh and toxic oxidizing agents (KMnO4, 

K2Cr2O7) in strongly acidic media. Five other benzaldehyde 

derivatives (2-Cl, 4-Cl, 4-NO2, 4-Br and 3-OCH3) also react 

under such conditions utilizing aqueous ethanol as solvent. 

Scheme 24. Oxidation of benzaldehyde to benzoic acid 66. 
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Adipic acid (1,6-hexanedioic acid) is an important 

chemical necessary for synthesis of Nylon 6,6, a polymer 

often made by students in undergraduate laboratories. Adipic 

acid is prepared industrially via vigorous oxidation of 

cyclohexanol or cyclohexanone with nitric acid 67, generating 

nitrous oxide as an ozone-depleting agent. A greener approach 

to adipic acid synthesis has been described 68. Cyclohexene is 

oxidized by hydrogen peroxide using catalytic sodium 

tungstate and a phase-transfer catalyst (Aliquat 336) in water 

(Scheme 25). The environmentally benign feature is 

underscored by recycling the aqueous reaction mixture for 

subsequent runs. Adipic acid crystallizes on cooling the 

reaction mixture and is readily recrystallized from water in 

good to excellent yields. 

 

Scheme 25. Phase-transfer catalytic synthesis of adipic acid 

68. 
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Alcohol oxidation 

 

A similar set of conditions is used to oxidize five 

secondary alcohols to corresponding ketones (Scheme 26, 69). 

Both solid and liquid carbonyl products are isolated by either 

vacuum filtration or ether extraction/evaporation with high 

purity (typically 94–98%). In the former cases washing solid 

ketones with water is all the purification needed. 

 

Scheme 26. Conversion of secondary alcohols to ketones with 

hydrogen peroxide 69. 
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Reduction reactions 

 

Alcohol preparation using sodium borohydride 

 

Hudak and Sholes reported an undergraduate 

experiment involving cyclohexanone reduction with sodium 

borohydride in 1986 70. Although commonly used in alcohol 

solvents, NaBH4 is soluble and stable enough in aqueous 

alkali to effectively reduce many aldehydes and ketones. A 

revision made by Zaczek (Scheme 27, 71) is more energy 

efficient (a 15-minute reaction time in ice compared to a 30-

minute reflux) and has an environmental benefit of using less 

basic solution and less ether for extraction. 

 

Scheme 27. Cyclohexanone reduction using sodium 

borohydride 71. 
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A microscale NaBH4 reduction of vanillin (4-

hydroxy-3-methoxybenzaldehyde) to vanillyl alcohol in 1-M 

aqueous NaOH has since been described 72. More recently 

Miles et al. 73 outlined reduction of ethyl vanillin under 

related conditions (Scheme 28). The product ethyl vanillyl 

alcohol is converted to Methyl Diantilis (3-ethoxy-4-

hydroxybenzyl methyl ether) which has found use in 

shampoos and fragrances 74. 

 

Scheme 28. Synthesis of 2-ethoxy-4-(hydroxymethyl) phenol 

73. 
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Alcohol preparation using baker's yeast 

 

It is possible to reduce the ketone group in ethyl 

acetoacetate in a stereoselective and chemoselective fashion to 

generate (S)-ethyl 3-hydroxybutanoate (Scheme 29, 75 76). 
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This profiles use of enzymes in organic synthesis by adding 

baker's yeast to a fermenting aqueous sugar solution of the β-

ketoester in the presence of Na2HPO4. Incubation at 35°C 

leads to product formation with, after ether extraction, a 

reported ee of 85% 77. The achiral reducing agent NaBH4 

would form ethyl 3-hydroxybutanoate as a racemate. 

 

Scheme 29. Enzymatic reduction of ethyl acetoacetate 75, 76. 
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Halohydration reactions 

 

Alkene halohydration 

 

Bromohydration of the heterocycle 3-sulfolene is 

conveniently achieved in water using N-bromosuccinimide as 

a controlled source of Br2 78, representing a simple example 

of an often-discussed reaction. The white solid product forms 

in good to excellent yield on heating for 30 minutes (Scheme 

30) and is readily recrystallized from pure water. The 

bromohydrin trans configuration is apparent from the coupling 

constant of protons at C3 and C4 (J=3 Hz). 

 

Scheme 30. Bromohydrin formation from 3-sulfolene 78. 
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Halolactone synthesis 

 

Crouch et al. 79 proposed a discovery-oriented 

experiment, where 4-pentenoic acid is reacted with aqueous 

potassium iodide and Oxone at room temperature (Scheme 

31). Molecular iodine is generated which forms an iodonium 

ion from the alkene. Subsequent Markovnikov attack of an 

oxygen atom at the more highly substituted carbon leads to a 

five-membered iodolactone, which is challenging to predict. 

Absence of an O–H absorption in the product IR spectrum 

rules out formation of an iodohydrin and indicates a 

carboxylic acid is no longer present. The proton NMR 

unambiguously indicates nucleophilic attack at the tertiary 

carbon of the iodonium ion. 

 

Scheme 31. Synthesis of an iodolactone from 4-pentenoic 

acid 79. 
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An etherification reaction 

 

Williamson ether synthesis via phase-transfer catalysis 

 

Preparation of an ether under phase-transfer catalytic 

conditions was reported by Hill and Corredor 80. Scheme 32 

shows the Williamson synthesis of benzyl butyl ether by this 

approach. The reaction proceeds in good yield and utilizes 

aqueous sodium hydroxide as base in the presence of 

tetrabutyl ammonium salts to facilitate phase transfer. 

 

Scheme 32. An etherification reaction under phase-transfer 

catalysis 80. 
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A dehydration reaction 

 

Acetal synthesis 

 

Although seemingly counterintuitive, a dehydration 

reaction (generating water) is achievable under aqueous 

conditions 81. Reaction of benzaldehyde with pentaerythritol 

and catalytic HCl leads to cyclic acetal formation (Scheme 

33), known as a benzal. The process proceeds in water due to 

product insolubility in the aqueous medium. The equilibrium 

product is removed by precipitation (driving reaction to 

completion) and the two remaining hydroxyl groups in 

pentaerythritol do not react with a second equivalent of 

benzaldehyde to generate the dibenzal. Temperature control is 

important (above 35°C leads to increased dibenzal formation, 
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and pentaerythritol precipitates from solution below 35°C). 

Opportunities exist to highlight use of acetals as protecting 

groups for aldehydes/ketones and optimization of reaction 

conditions to maximize yield of the desired product. 

 

Scheme 33. Conversion of benzaldehyde into a cyclic acetal 

82. 
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II. CONCLUSIONS 

 

Water is a viable solvent for many organic reactions 

undergraduates learn in introductory and advanced courses. 

Reproducible, safe procedures illustrate utility of aqueous 

media and (very often) the practical simplicity afforded. Most 

experiments can be completed in a single three-hour 

laboratory period. Indeed, considering reactivity and operative 

mechanisms possible, one could envisage development of a 

synthetic laboratory curriculum where no organic solvents are 

used before product purification. Some experiments require 

only water as both reaction solvent and recrystallization 

medium 66 68 78, or produce solids not requiring 

recrystallization 17 49 52 60. However, it remains important 

that students learn to handle organic solvents and the risks 

associated with them as part of their chemical training. 

Institutional integration of several experiments highlighting 

water as a solvent (and rotation of such experiments from year 

to year) would suffice as an introduction to the field. 

 

Although benefits of water are conspicuously 

apparent, there is a notable drawback. Despite being an 

exceptionally safe solvent, water is often more challenging to 

purify on reaction completion than many organic alternatives, 

due to its relatively high-boiling point. Any by-products or 

impurities must be removed as aqueous waste streams will 

eventually reach aquifers, with attendant risk of human 

exposure 82. Indeed, Blackmond et al. have asserted “water is 

only a truly green solvent if it can be directly discharged to a 

biological effluent treatment plant” 83. Significantly, students 

should be taught that there is no single “ideal solvent” and that 

much research continues to develop new media that improve 

upon existing technologies 84 85. Related green chemistry 

principles 11 need addressing in the context of each reaction 

undertaken, as implementing water alone does not render a 

process environmentally friendly. Several reactions 

incorporate excess reagents 13 19 66 leading to reduced 

experimental atom economies. High temperatures are required 

for long times in some cases 66 68 69 and many reactions do 

not employ catalytic species. Introducing water as the solvent 

of choice in the undergraduate organic curriculum is simply “a 

step in the green direction” 23. 
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