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Abstract- This paper introduces the Ridge Regression as an 
effective approach for modeling vehicle crash frequency when 
crash data suffer from multicollinearity. The term collinearity, 
or multicollinearity, refers to the condition in which two or 
more predictors are highly correlated with one another. In 
regression analysis, the essential assumption is that the 
response variables should be independent from each other. 
When multicollinearity exists, the variance of the regression 
estimates will become very large and the standard error goes 
up, the corresponding t-value goes down and hence comes up 
with a high p-value, which could make a significant variable 
insignificant by increasing its standard error. In modeling 
vehicle crash frequency, the crash data in many cases may 
suffer from multicollinearity, and Ridge regression works by 
adding a degree of bias to the regression estimates that 
reduces the standard errors and produce regression estimates 
that are much more reliable. Thispaper uses a fiveyearvehicle 
crash data extending from 2011 to 2015 on the interstate 
highway (I-90) in the state of Minnesota, USA. The data has 
shown multicollinearity between some independent variables. 
Results show that the Ridge regression is an effective 
statistical tool to produce perfectly accurate estimates 
compared to the ordinary least square multiple regression. 
 
Keywords- Ridge Regression, Ordinary Least Square 
Regression, Vehicle Crash Frequency, Multicollinearity. 
 

I. INTRODUCTION 
 
 Vehicle crash data may suffer from multicollinearity 
when some or all independent variables in a regression model 
are correlated. This correlation is anundesirable and should be 
avoided because the explanatory variables are assumed to be 
independent. If the degree of correlation between two or more 
variables is high enough, it can cause problems when fitting 
the model and insufficient results might obtained. Obviously, 
removal of any correlation between independent variables in a 
regression model is highly desirable because the interpretation 
of a regression coefficient is that it represents the mean change 
in the dependent variable for each one unit change in an 
independent variable when holding all other independent 
variables constant. However, when independent variables are 
correlated, it indicates that changes in one variable are 
associated with shifts in another variable. The stronger the 

correlation, the more difficult it is to change one variable 
without changing another. Hence, it becomes difficult for the 
model to estimate the relationship between each independent 
variable and the dependent variable because the independent 
variables tend to change in unison [1] - [5].There are many 
ways to address multicollinearity, and each method has its 
pros and cons. Common methods include: variable selection, 
and ridge regression. Variable selection simply entails 
dropping predictors that are highly correlated with other 
predictors in the model. However, sometimes this is not 
possible, especially when a variable contributing to the 
collinearity might be a main predictor in the model. On the 
other hand, ridge regression allows retention of all explanatory 
variables of interest, even if they are highly collinear. In 
addition, Ridge regression also provides information regarding 
which coefficients are the most sensitive to multicollinearity 
[6] – [13]. 
 

II. BACKGROUND LITERATURE 
 
The ridge regression technique proposed by Hoerl 

and Kennard in 1970 has become a common tool for analysis 
of data characterized with high multicollinearity. The Ridge 
regression method provides improved efficiency in parameter 
estimation problems in exchange for a tolerable amount of 
bias [14] [15]. The ridge regression was investigated by 
(Pasha and shah, 2004) in multicollinear data, together with 
the ridge estimator’s properties. By regressing the number of 
persons on five variables, the eigen values, variance inflation 
factors and standardization problem were studied through 
empirical comparison of OLS with ridge regression model, 
and some methods have been proposed for identifying the bias 
parameter, k[16]. In a study conducted by (Al-Hassan, 2008), 
seven approaches to estimation of the ridge parameter were 
examined. This research suggested a simulation approach on 
the basis of the minimal MSE measure. Based on the 
simulation approach, two estimators were proposed and found 
to be effective under specific conditions [17]. Other estimators 
of the Ridge parameter, k, have been introduced in the study of 
(Mansson et al., 2010). This study considered three 
approaches: (i) The prediction sum of square (PRESS), MSE 
and maximum MSE were considered as the performance 
criteria; (ii) Various error variances were employed (with 
sigma between 0.5 and 5) and (iii) The number of regressors 
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considered ranged from 4-12. Based on results of the 
simulation, it was confirmed that augmenting correlations 
between independent variables leads to negative effects on the 
PRESS and MSE. However, raising the number of regressors 
has positive effects on both the PRESS and MSE. The MSE 
decreases as sample size is increased, even if associations 
between independent variables are high [18]. In spatial context 
where usually data have many irregularities, a study by 
(Lauridsen and Mur, 2006) mainly aimed at investigating this 
situation, and investigated the effect of multicollinearity. 
These researchers planned and solved a Monte Carlo 
simulation. It was illustrated that the extra impacts on tests of 
adding extra variable in general disappear for growing 
multicollinearity [19].Chopra et al. (2013) employed ridge 
regression to predict the compressive strength of concrete. 
Values of the regression coefficients have been varied and 
data were reduced. They found that the traditional least 
squares method did not prove to be useful for forecasting the 
compressive strength of concrete. They concluded that the 
ridge regression work better in their research [20]. (Zaka and 
Akhter, 2013) used Relative Least Squares Method (RLSM), a 
ridge regression method and least squares (LSM) method to 
determine the parameters of power function distribution. This 
study employed Total Deviation and the MSE to determine the 
finest of the three estimators investigated. They determined 
the optimum estimation method on the basis of different 
sample sizes and values of parameters and recommended the 
use of the LSM method for estimating parameters of the 
power function distribution [21]. 
 

III. RIDGE REGRESSION VS. ORDINARY LEAST 
SQUARES LINEAR REGRESSION 

 
Ridge regression is a statistical approach to create a 

parsimonious model when the number of predictor variables in 
a set exceeds the number of observations, or when a data set 
has multicollinearity (correlations between predictor 
variables).Ordinary least squares linear regression will not 
produce accurate estimates when the number of predictors 
exceeds the number of observations. This leads to overfitting a 
model and failure to produce unique solutions. More 
importantly, ordinary least squares also have undesirable 
issues dealing with multicollinearity in data. Ridge regression 
works in part because it does not require unbiased estimators; 
while least squares produce unbiased estimates, and variances 
can be so large that they may be inaccurate. Ridge regression 
adds enough bias to make the estimates reasonably reliable 
approximations to real data values. Ridge regression uses a 
type of shrinkage estimator called a ridge estimator or 
shrinkage estimator, which theoretically produce new 
estimators that are shrunk closer to the real parameters. The 
ridge estimator works particularly good at improving the least-

squares estimate when multicollinearity is present. A ridge 
parameter (k) controls the strength of the penalty term. When k 
= 0, ridge regression equals least squares regression. If k = ∞, 
all coefficients are shrunk to zero. The ideal penalty is 
therefore somewhere in between zero and infinity (∞). 

 
Ordinary least squares linear regression (OLS) 

requires that the inverse of the matrix X’X exists. X’X is 
arranged so that it represents a correlation matrix of all 
predictors. However, in certain situations (X’X)-1 may not 
exist. Specifically, if the determinant of X’X is equal to 0, 
then the inverse of X’X does not show up. Thus, if the inverse 
of X’X cannot be calculated, the OLS coefficients 
are indeterminate. In other words, the parameter estimates will 
have remarkably high variances and, consequently, will not be 
interpretable. The causes that make the (X’X)-1to be 
indeterminate, could be due to the number of parameters in the 
model exceeds the number of observations or the 
multicollinearity between the predictors.Ridge regression 
estimates tend to be more stable than the OLS estimates 
because they are little affected by small changes in the data on 
which the fitted model is based[22] – [28]. 
 

IV. MULTICOLLINEARITY 
 

Multicollinearity is the existence of linear 
relationships among the independent variables that would 
create inaccurate estimates of the regression coefficients, 
inflate the standard errors of the regression coefficients, give 
false, non-significant p-values, and degrade the predictability 
of the model. The source of the multi-collinearity might come 
from the following [29] [30]: 

 Data collection. When the data are collected from a 
narrow population of the independent variables, then 
the multicollinearity might be created by the 
sampling methodology. Obtaining more data on an 
expanded range would cure this multicollinearity 
problem. An example of this situation is when you 
try to fit a line to a single point. 

 Physical constraints of the model or population. This 
source of multicollinearity will exist no matter what 
sampling technique is used. For example, some 
manufacturing or service processes have constraints 
on independent variables (as to their range), either 
physically, politically, or legally, which will create 
multicollinearity in the dataset. 

 Over-defined model. In this case, there will be more 
variables than observationsand, hence causing 
multicollinearity. So, this situation should be 
avoided. 

 Model choice or specification. This may cause 
multicollinearity that comes from using independent 
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variables that are powers or interactions of an 
original set of variables.  

 Outliers. Extreme values or outliers can cause 
multicollinearity as well as hide it. This should be 
corrected by removing the outliers before ridge 
regression is applied. 

 
V. DETECTION OF MULTICOLLINEARITY IN THE 

DATA 
 
The Detection of the multicollinearity in the data can be 
achieved by several ways as follows [31] [32] [33]:  
 

 Visual inspection of pairwise scatter plots of 
independent variables and looking for near-perfect 
linear relationships between them. 

 Considering the Variance Inflation Factors (VIF), 
which provide an index that measures how much the 
variance (the square of the estimate's standard 
deviation) of an estimated regression coefficient is 
increased because of collinearity. (VIFs) start at a 
value of (1) and have no upper limit. A value of (1) 
indicates that there is no correlation between this 
independent variable and any others. (VIFs) between 
(1) and (5) suggest that there is a moderate 
correlation, but it is not severe enough to warrant 
corrective measures. (VIFs) greater than (10) 
represent critical levels of multicollinearity where the 
coefficients are poorly estimated, and the p-values 
are questionable. 

 Considering the Eigenvalues of the correlation matrix 
of the independent variables, if they are near zero, 
then this indicates multicollinearity. 

 Checking for large condition numbers (CNs) of the 
independent variables. The CN is calculated by 
taking the maximum eigenvalue and dividing it by 
the minimum eigenvalue. As a rule of thumb, CN>5 
indicates moderate multicollinearity. However, 
CN>30 indicates severe multicollinearity. 

 Investigating the signs of the regression coefficients 
that are produced from the ordinary least square 
regression, if they are opposite in sign from what one 
would expect, then this may indicate 
multicollinearity.  

 
  Depending on what the source of multicollinearity is, 
the solutions will vary. For example, if the multicollinearity 
has been created by the data collection, then try to collect 
additional data over a wider population. If the choice of the 
linear model has increased the multicollinearity, then simplify 
the model by using variable selection techniques. If an outlier 
or two has induced the multicollinearity, remove those 

observations. When these steps are not possible, one might try 
the ridge regression.  
 
VI. THE DERIVATION OF THE RIDGE REGRESSION 

MODEL 
 
Ridge regression can analyze data even when severe 

multicollinearity is present and helps prevent overfitting. This 
type of regression reduces the large, problematic variances 
that multicollinearity causes by introducing a small bias in the 
regression estimates, which produces much more accurate 
coefficient estimates when multicollinearity is present. Ridge 
regression solves the multicollinearity problem through a 
shrinkage parameter k. The assumptions of the ridge 
regression are the same as those used in regular multiple 
regression model (i.e., linearity, constant variance (no 
outliers), and independence of variables). Since ridge 
regression does not provide confidence limits, normality need 
not be assumed. 

 
Let us say, Y is regressed against X1 and X2 where X1 

and X2 are highly correlated. Then the effect of X1 on Y is 
hard to distinguish from the effect of X2 on Y because any 
increase in X1 tends to be associated with an increase in X2. In 
addition, individual t-tests and p-values can be misleading. 
This means a p-value can be high which indicates that the 
variable is not significant, even though the variable is 
important and significant.The linear multiple regression 
equation in matrix form is [34] – [40]: 
 

 = XB + ԑ(1) 
 

where, 

: the dependent variable,  
X: the vector of the independent variables, 
B: the vector of the regression coefficients to be estimated,  
ԑ: represents the residual errors.  
The regression coefficients (B hat) are estimated by using the 
matrix formula as follows: 
 

B^ = (X'X) −1X'Y                    (2) 
 

The ridge regression penalizes the size of the 
regression coefficients, and since the variables in ridge 
regression are standardized then: 
 

X’X = R                                    (3) 
 
where, 
 
R: the correlation matrix of the independent variables.  
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The variance-covariance matrix of the estimates in ridge 
regression is: 
 

V (B^) = σ2 R −1                    (4) 
 
For the standardized variables, σ2 = 1, and therefore: 
 

V (B^)  = (5) 
 
where, 
R2j : the R-squared value obtained from regressing Xj on the 
other independent variables.  
Ridge regression proceeds by adding a small value, k, to the 
diagonal elements of the correlation matrix (Marquardt and 
Snee 1975) as follows: 
 

B ~ = (R + kI) −1 X' Y              (6) 
 
where, 
k: the shrinkage parameter of the ridge regression, 0 <k< 1.0.  
I: the identity matrix. 
The estimated ridge coefficient and the amount of bias in this 
estimator is given by: 
 

E (B ~ − B) = [(X' X + kI)−1X' X − I]B       (7) 
 
The ridge regression has the effect of shrinking the 

estimates toward zero introducing bias but reducing the 
variance of the estimate. The ridge covariance matrix can now 
be written as: 
V (B ~) = (X' X + kI) −1 X' X (X' X + kI) −1(8) 
 

In order to choose an appropriate value of k, Hoerl 
and Kennard (1970), the inventors of ridge regression, 
suggested using a graphic which they called the ridge trace. 
This plot shows the ridge regression coefficients as a function 
of k. When viewing the ridge trace, the analyst picks a 
valuefor k for which the regression coefficients have 
stabilized. Hoerl and Kennard (1970) proved that there is 
always a value of k>0 such that the mean square error (MSE) 
is smaller than the MSE obtained using OLS. Often, the 
regression coefficients will vary widely for small values of k 
and then stabilize. Choose the smallest value of k possible 
(which introduces the smallest bias) after which the regression 
coefficients have seem to remain constant. Note that 
increasing k will eventually drive the regression coefficients to 
zero. To obtain the first value of k, we can use the least 
squares coefficients. This produces a new value of k. Using 
this new k, a new set of coefficients is found, and so on. This 
method involves that the estimated coefficients and (VIFs) are 

plotted against a range of specified values of k. From this plot, 
Hoerl and Kennard suggest selecting the value of k that [14] 
[15]: 
 

1. Stabilizes the system such that it reflects an 
orthogonal system. 

2. Leads to coefficients with reliable values 
3. Ensures that coefficients with improper signs at k=0 

have switched to the proper sign 
4. Ensures that the residual sum of squares is not 

inflated to an unreasonable value 
 
However, these criteria are very subjective. 

Therefore, it is best to use another method in addition to the 
ridge trace plot. A more reliable method is generalized cross 
validation (GCV). Cross validation simply entails looking at 
subsets of data and calculating the coefficient estimates for 
each subset of data, using the same value of k across subsets. 
This is then repeated multiple times with different values of k. 
The value of k that minimizes the differences in coefficient 
estimates across these data subsets is then selected [41] - [45].  
The value of k that minimizes this equation can be computed 
using R, SAS, or other software’s such as NCSS. 
 

VII. DATA SOURCE AND METHODOLOGY 
 
Data were obtained from the Highway Safety 

Information System (HSIS) database maintained by the 
Federal Highway Administration (FHWA) of the United 
States Department of Transportation. This 
paper used a 5-year crash period extending from 2011 to 2015 
on the interstate highway (I-90) in the state of Minnesota. The 
interstate I-90 is a multi-lane divided highway that connects 
the eastern and western coasts of the US, and it passes through 
the southern part of Minnesota with a length of 444 km (276 
mile).All crashes that occurred on the I-90 during the 
studyperiod were considered in the analysis including fatal, 
different levels of severity injury, andproperty damage 
crashes. Different risk factorsrelated to the road geometry, the 
driver behavior, the environment, and the vehicles involved in 
thecrashes were carefully examined, classified, and selected. 
Table 1 shows the summary statistics of the selected risk 
factors, their name interpretation, their sub-classifications, 
their means, and their standard deviations. 
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Table 1: Risk factors included in the study with Summery 
Statistics 

 
 

The total observed crash frequency of I-90 from 2011 
to 2015 is 994. The I-90 in the State of Minnesota was 
disaggregated equally into 276 sections, each section of one 
mile length. The vehicle crashes were counted at each section, 
and it range from 0 to 7 crashes as shown in Table 2. For 
example, sections with zero crash frequency are 545, sections 
with only one crash frequency are 332, sections with only two 
crash frequency are 49 and so on. 
 
Table 2: Sections of crash frequency at I-90 in MN from 2011 

– 2015 

 
 

Table 3 shows the descriptive statistics of the 
dependent variable (crash frequency) at the I-90 in Minnesota 
(2011-2015). 
 

Table 3: I-90 Descriptive Statistics of Crash Frequency on the 
I-90 in MN, USA (2011-2015) 

 
 

First step is to examine the correlation between all 
the explanatory (independent) variables in the model. First, the 
Pearson correlationtest is used in order to identify the highly 
correlated variables (i.e., correlation of 50% or more)as shown 
in Table 4. The highly correlated variables are highlighted in 
yellow in Table 4, which are the road characteristics, road 
surface, AADT, weather, and light. 

 
Table 4: Pearson Correlation matrix of the explanatory 

variables used in the analysis 

 
 

In addition to the Pearson correlation test, other 
methods are also used to find the correlated variables as 
shown in Table 5 including the variance inflation factor (VIF), 
the eigen values, and the Condition Numbers for the 
independent variables (risk factors) included in the model. 
 
Table 5: the variance inflation factors (VIFs), the eigen values, 

and the Condition Numbers for the independent variables. 

 
 

It can be seen from Table 5 that the VIFs of (rd_char, 
rdsurf, aadt, weather, and light) are critical as these values are 
bigger than 10. The Eigenvalues of (rd_char, rdsurf, aadt, 
weather, and light) are also critical as they are near zero. The 
Condition Factors of the same independent variables are also 
critical as they are greater than 30. All these checks indicate 
that the risk factors (rd_char, rdsurf, aadt, weather, and light) 
are the most important variables in the data. The other 
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variables (drv_age, drv_sex, and vehtype) are less important in 
the data. 
 

VIII. DISCUSSION OF FINDINGS 
 
Using the R software, the coefficient’s estimates of 

the explanatory variables for the data from both the Ordinary 
Least Squared (OLS) Multiplelinear regression, and the Ridge 
regression models were run. The t- statistics obtained is a good 
way of testing the significance of the explanatory variables 
used in the models. If the t- statistics is significant for any 
variable (as indicated by the associated p-value), then this 
variable is significant, and should be kept in the model, and if 
not, then this variable can be omitted from the model. Table 6 
shows the coefficient estimates, t-statistics, and p-values of all 
independent variables for both Multiple Regression and the 
Ridge Regression models. 
 

Table 6: Results of the analysis for both Multiple Linear 
Regression and Ridge Regression Models 

 
 

Table 7: The R Squared value and the standard errors of the 
Ridge Regression and OLS Multiple Linear Regression 

Models 

 

Since the t-statistics shown in table  6 are significant 
at the 95% confidence level for all the explanatory variables 
used in the Ridge Regression model (i.e., their p-values are 
less than 0.05), then these factors are significant, and should 
be kept in the model. However, the t-statistics for all the 
explanatory variables are insignificant in the OLS Multiple 
Linear Regression model (i.e., their p-values are greater than 
0.05). This clearly indicates that the Ridge Regression can 
effectively be used to identify the significant independent 
variables in crash data, whereas the OLS Multiple Regression 
can make the significant variables to be insignificant as shown 
in Table 6. Therefore, using Ridge Regression is paramount in 
crash data modeling that suffers from multicollinearity. Also, 
the coefficient’s estimates and their signs for the data shown 
in Table 6 can be used to explore the contribution of each 
explanatory variable to the resulting dependent variable (i.e., 
crash frequency). The positive sign of the estimate indicates 
that the associated explanatory variable would increase the 
likelihood of the crash occurrence, and the negative sign 
indicates negative contribution of the variable to the crash 
occurrence. For example, when inspecting the road 
characteristics factors in both the MultipleRegression and 
Ridge Regression models, the positive sign of the upgrade, 
downgrade, and horizontal curves means that the occurrence 
of crashes at road segments with these features are more likely 
to happen than at the straight portions of the road. The grades 
and curves affect the operation of vehicles and their speed, and 
this obviously could increase the probability of the vehicle 
accidents. The wet, and muddy conditions of the road surface 
would decrease the coefficient of friction between the tires and 
the road surface, and hence would increase the crash 
probabilities, as indicated by the positive sign of the wet and 
muddy coefficient estimates compared to the negative sign of 
the dry condition estimate. For the weather factors estimates, 
the positive sign of the snow, and fog conditions indicates 
increased crash frequency at these conditions, as the driver 
vision within the fog could decrease, and the friction 
coefficient within the snow could substantially decrease, and 
hence, causing the increased probability of more accidents. 
The accidents could also increase in the dark with no light, as 
indicated by the positive sign of the (No light) factor estimate 
in the table. The driver age group of (21 to 65 years) has 
negative estimate, indicating that this group is less likely to 
increase the crash occurrence, whereas the young drivers (less 
than 21 years), and the elderly (more than 65 years) can 
positively contribute to the increased crash frequency, as 
indicated by their positive sign estimates. The driver sex has 
negative estimates for both males and females, indicating no 
preferences on crash occurrence in term of driver sex. The 
vehicle type factors show that both the passenger cars and 
vans or mini vans have negative sign estimates, meaning that 
their contribution to the accidents is less likely to increase, 
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compared to the buses and trucks with positive estimates that 
can increase the crash occurrence likelihood. The annual 
average daily traffic (AADT) has positive estimate sign, 
indicating that the increased daily traffic volume at any section 
can increase the crash frequency as vehicles are more likely to 
interact with each other in higher volume conditions. 

 
In addition, Table 7 shows the R-squared value, the 

Adjusted R-squared, and Standard Errors of both the Ridge 
Regression and OLS Multiple Linear Regression models. The 
R-squared is 0.762 for Ridge Regression and 0.276 for OLS 
Multiple Linear Regression. R-squared can range from 0 to 
100%. The higher the R-squared, the better the fit. Clearly the 
Ridge Regression modelfits much better the data than the OLS 
Multiple Linear Regression. The residual standard error is 
used to measure how well a regression model fits a dataset. 
The smaller the residual standard error, the better a regression 
model fits a dataset. The standard error of the Ridge 
Regression is 0.572, which is smallerthan the value of 0.987 
that belongs to the OLS Multiple Linear Regression 
model.These values indicate an excellent fit of the Ridge 
Regression model into the crash data. 
 

IX. CONCLUSION 
 
Ridge Regression is presented in this paper as an 

effective statistical technique for analyzing vehicle crash data 
that suffer from multicollinearity. When multicollinearity 
occurs, least squares estimates are unbiased, but their 
variances are large so they may be far from the true value. By 
adding a degree of bias to the regression estimates, ridge 
regression reduces the standard errors and produces accurate 
estimates compared to the ordinary least squared multiple 
regression. It In this paper two crash prediction methods were 
chosen for the analysis of the crash data on the interstate 
highway I-90 in Minnesota, namely; the Ridge Regression 
Model, and the OLS Multiple Linear Regression Model. The 
analysis showed that the OLS Multiple linear regression 
model might not be well suited to fit the crash data because of 
the multicollinearity between the independent variables in the 
crash data. The Ridge regression model can take the 
multicollinearity into account, and hence, can produce much 
better prediction results. Hence, this paper recommends 
employing the Ridge regression in crash frequency modeling 
so that the correlation problems between the explanatory 
variables would not be a concern, as it can effectively handle 
the correlation problem without affecting the output.  
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