The Study of Mass Irregularities With Floating Column

Harsha Chandrakant More¹, Ganesh Chandrakant Jawalkar²

¹Professor,Dept of Civil Engineering ²Dept of Civil Engineering ^{1, 2} N.B.Navale Singhagad College Of Engineering Solapur, Maharashtra, India.

Abstract- This paper is concerned with the effects of various vertical irregularities with floating column on the seismic response of a structure. The objective of the project is to carry out Response spectrum analysis (RSA) of vertically irregular RC building frames.

Keywords- Responce Spectrum Analysis, Seismic Static Analysis.

I. INTRODUCTION

The behavior of a building during earthquakes depends critically on its overall shape, size and geometry, in addition to how the earthquake forces are carried to the ground.Buildings with columns that hang or float on beams at an intermediate storey and do not go all the way to the foundation, have discontinuities in the load transfer path.

FLOATING COLUMN CONCEPT

A column is supposed to be a vertical member starting from foundation level and transferring the load to the ground. The term floating column is also a vertical element which (due to architectural design/ site situation) at its lower level (termination Level) rests on a beam which is a horizontal member. The beams in turn transfer the load to other columns below it.

- 3. Modeling of the selected structures.
- 4. Performing dynamic analysis on selected building models and comparison of the analysis results.

Table -1: The building following specifications are adoptedfor study.

Specification of Building Modeling					
Live Load	2KN/m ²	Height of swimming pool	1.8 m		
		· ·			
Density of RCC considered	25KN/m ⁻³	Weight of swimming	18 KN/m ²		
-		tank(Mass irregularity)			
Steel	HYSD 500	Earthquake Zone	IV		
Thickness of slab	125mm	Damping Ratio	5%		
Width of beam	230mm	Type of Soil	Medium		
Dimension of column	400x500m	Type of structure	Special Moment Resisting		
	m		Frame		
Density of brick masonry	20 kN/m ⁻³	Response reduction Factor	5		
		-			
Thickness of outside wall	230mm	Number of floor	18 floor		
Thickness of inner partition wall	150mm	Number of modes	Each floor 3 no of modes		
_					
Height of each floor	3m	Type of diaphragms	Rigid		
-			-		
Plinth height	lm	Type of irregularity	mass irregularity		
-					
Depth of foundation	1.5m	Location of soft storey	9 ^m storey and 18 ^m storey		
			,		
Depth of footing	0.6	Location of swimming tank	9"storey and 18"storey		
Weight of wall on external plinth	16.33 KN/m	Direction of lateral force	X direction		
beam (0.23m thick)					
``´´					
Weight of wall on internal plinth	7.65 KN/m	Load combination	All load combination are		
beam (0.15m thick)			taken from IS 1893-2016		
Weight of wall on internal plinth	7.65 KN/m	Type of support at base	Fixed		
heam (0 15m thick)		appear support at pase			
Com (C. Com three)					
Weight of wall on soft story floor	18.63 KN/m	Modal combination	SRSS		
external (0.23 thick)	10.00 111/11	and the bland of			
Weight of wall on soft storey floor	12.15 KN/m				
internal wall (0.15 thick)					

II. METHODOLOGY

- 1. Review of existing literatures by different researchers.
- 2. Selection of types of structures.

1.2Modelling

1.3Without Irregularity Case Overall Results

Case no	1	2	3	4
	Without FC(normal regular building)	Corner FC at 1¤storey	4 FC at center of 1storey	8 FC at center of 1storey
Maximum Modal Displacement mm	0.01590	0.0165	0.015969	0.0163
Base Shear KN	1032.7	997.38	995.49	1010.18
Natural Period sec	0.016	0.014	0.013	0.013
Frequency	63.99	72.217	79.087	78.76

1.4 There are different types of earthquake analysis methods calculation.

Comparison of Displacement,Base shear,Frequancy, Time periods of without floating column.

	Displaceme nt	Base Shear	Frequan cy	Time Periods
Sr,no	1	1	1	1
Caseno	1	1	1	1
Withou	0.0159	1032	63.99	0.016
tFC				
regular				
Caseno	2	2	2	2
Corner	0.0165	997.3	72.21	0.014
F.C		8		
% Diff.	3.77	-3.48	12.85	-12.5
Caseno	3	3	3	3
4FC	0.0159	995	79.08	0.013
regular				
% Diff.	0.43	-3.60	23.59	-18.75
Caseno	4	4	4	4
8FC	0.0163	1010	78.76	0.013
regular				
% Diff.	2.51	-2.18	23.08	-18.75
Locatio	FC at 1st	FC at	FC at 1st	FC at 1st
n of F.C	storey	1 st	storey	storey
	-	storey	-	-

Observation

From the table percentage difference of without irregularity G+ 18 stories building following points are observed.

DISPLACEMENT -

- The modal displacement is increased up to 3.77% when floating column are considered at corner of 1ststorey, 0.43% when 4 floating column are considered at center of 1ststorey, to 2.51% when 8 floating column are considered at center of 1ststorey
- 2. The modal displacement is increased when corner column are considered as compared to 4floating column at center,8 floating column at center and without floating column normal regular building.

Base Shear -

- The base shear is decreased up to 3.48% when floating column are considered at corner of 1ststorey, The base shear is decreased up to 3.6% when 4 floating column are considered at center of 1ststorey, The base shear is shear is decreased up to 2.18% when 8 floating column are considered at center of 1ststorey.
- 2. The base shear is decreased when 8 floating column are considered at center as compared to corner floating column, 4 floating column at center and without floating column normal regular building

Frequency –

- 1. The frequency is increased up to **12.85%** when floating column are considered at corner of 1ststorey, The frequency is increased up to **23.59%** when the frequency is shear is increased up to 23.08% when 8 floating column are considered at center of 1ststorey en 4 floating column are considered at center of 1ststorey.
- 2. The frequency is increased when 4 floating column are considered at center as compared to corner floating column, 8 floating column at center and without floating column normal regular building.

Time Periods -

 The time period is decreased up to 12.5% when floating column are considered at corner of 1ststorey, The time period is decreased up to 18.75% when 4 floating column are considered at center of 1ststorey, The time period is decreased up to to18.75% when 8 floating column are considered at center of 1ststorey. 2. The time period is decrease when 8 FC are consider at center as compare to corner FC,4 FC at center and without FC normal building.

Case no	1	2	3	4
	Without FC(nor mal regular building)	Corner FC at l ^{at} store y	4 FC at center of l ^{at} store y	8 FC at center of l ^{at} store y
Maximum Displacemen t mm	0.0153	0.0159	0.0153	0.0153
Base Shear KN	1069.41	1042.70	1052.39	1051.44 8
Natural Period sec	0.016	0.014	0.013	0.013
Frequency Cycle/sec	64.01	72.21	79.042	74.31

1.5 Mass Irregularity at 9th Storey Overall Case Result

Comparison of Displacement, Base shear, Frequancy, Time periods of mass irregularity.

	Displaceme nt	Base Shear	Frequan cy	Time Periods
Sr,no	1	1	1	1
Withoui ng F.C regular	0.0159	1032. 7	63.99	0.016
Case no	1	1	1	1
Withou t 9thFC mass	0.0153	1069. 4	64.00	0.015
% Diff.	-3.77	3.55	0.031	-6.25
Case no	2	2	2	2
Corner 9thF.C mass	0.01591	1042. 7	72.21	0.014
% Diff.	0.0628	0.96	12.85	-12.5
Case no	3	3	3	3
4FC regular	0.0153	1052. 3	79.08	0.013
% Diff.	-3.77	1.90	23.59	-18.75
Case no	4	4	4	4
8FC regular	0.0153	1051	74.31	0.013
% Diff.	-3.77	1.81	16.12	-18.75
Locatio n of F.C	FC at 1st storey	FC at 1ª storey	FC at 1st storey	FC at 1st storey

Observation

From the table percentage difference mass irregularities 9th stories building following points are observed.

DISPLACEMENT -

- The modal displacement is increased up to 0.0628% when floating column are considered at corner of 1ststorey, The modal displacement is decreased up to 3.77% when 4 floating column are considered at center of 1ststorey, The modal displacement is decreased up to 3.77% when 8 floating column are considered at center of 1ststorey.
- 2. The modal displacement is increased when corner floating column are considered as compared to 8 floating column at center, 4 floating column at center, without floating column with soft storey and without floating column normal regular building.

Base Shear -

- The base shear is increased up to 0.96% when floating column are considered at corner of 1ststorey, The base shear is increased up to 1.9% when 4 floating column are considered at center of 1ststorey, The base shear is shear is is increased up to 1.81% when 8 floating column are considered at center of 1ststorey.
- 2. The base shear is increased when 8 floating column are considered at center as compared to corner floating column, 4 floating column at center and without floating column normal regular building.

Frequency -

- The frequency is increased up to 12.84% when floating column are considered at corner of 1ststorey, The frequency is decreased up to 23.52% when 4 floating column are considered at center of 1ststorey, 5.25% at 2ndstorey, The frequency is decreased up to 16.12% when 8 floating column are considered at center of 1ststorey,
- The frequency is decreased when corner floating column are considered as compared to 8 floating column at center, 4 floating column at center and without floating column building.

Time Periods -

- The time period is decreased up to 12.5% when floating column are considered at corner of 1ststorey, The time period is decreased up to18.75% when 4 floating column are considered at center of 1ststorey, The time period is decreased up to18.75% when 8 floating column are considered at center of 1ststorey
- The time period is increased when corner floating column are considered as compared to 8 floating column at center, 4 floating column at center and without floating column building but when 4 floating column considered at

2ndstorey time period increased than corner floating column.

1.6 Mass Irregularity at 18thStorey Overall Case Result

Case no	1	2	3	4
	Without FC(nor mal regular building)	Corner FC at l ^{at} store y	4 FC at center of l ^{2t} store y	8 FC at center of l ^{2t} store y
Maximum Displacemen t mm	0.0152	0.0156	0.0152	0.0155
Base Shear KN	1053.33	1042.70	1052.39	1050.35
Natural Period sec	0.015	0.014	0.013	0.013
Frequency Cycle/sec	64.079	72.21	79.055	78.59

	Displacemen	Base	Frequan	Time
	t	Shear	cy	Periods
Sr,no	1	1	1	1
Withoui	0.0159	1032.7	63.99	0.016
ng F.C regular				
Case no	1	1	1	1
Withou	0.0152	1053.3	64.00	0.015
t 9thEC	0.0152	1055.5	04.00	0.015
mass				
06 D:ff	4.40	1.00	0.0120	6.25
% Dill.	-4.40	1.99	0.0139	-0.25
Case no	2	2	2	2
Corner	0.0156	1042.3	72.21	0.014
9thF.C				
mass				
% Diff.	-1.88	0.96	12.85	-12.5
Case no	3	3	3	3
4FC	0.0152	1052.3	79.08	0.013
regular				
% Diff.	-4.40	1.90	23.59	-18.75
Case no	4	4	4	4
8FC	0.0155	1050	78.59	0.013
regular				
% Diff.	-2.51	1.70	22.81	-18.75
Locatio	FC at 1st	FC at	FC at 1st	FC at 1 st
n of F.C	storey	1 st	storey	storey
	-	storey	-	-

Observation

From the table percentage difference mass irregularities 18th stories building following points are observed.

DISPLACEMENT -

- The modal displacement is decreased up to 1.88 % when floating column are considered at corner of 1ststorey, The modal displacement is decreased up to4.4 % when 4 floating column are considered at center of 1ststorey, The modal displacement is decreased up to2.51 % when 8 floating column are considered at center of 1ststorey.
- 2. The modal displacement is decreased when without floating column with swimming pool at 18th and 4 floating column are considered at center as compared to corner floating column, 8 floating column at center, and without floating column normal regular building.

Base Shear -

- The base shear is increased up to 0.96 % when floating column are considered at corner of 1ststorey, The base shear is increased up to 1.9 % when 4 floating column are considered at center of 1ststorey, The base shear is shear is increased up to 1.7 % when 8 floating column are considered at center of 1ststorey.
- The base shear is decreased when corner floating column are considered as compared to 8 floating column at center, 4 floating column at center and without floating column normal regular building.

Frequency -

- The frequency is increased up to 12.84 % when floating column are considered at corner of 1ststorey, The frequency is increased up to 23.53 % when 4 floating column are considered at center of 1ststorey, The frequency is increased up to 22.81% when 8 floating column are considered at center of 1ststorey.
- 2. The frequency is decreased when without floating column with mass at 18thstorey is considered as compared to corner floating column, 4 floating column at center, 8 floating column at center.

Time Periods -

- The time period is decreased up to 12.5 % when floating column are considered at corner of 1ststorey, The time period is decreased up to 18.75 % when 4 floating column are considered at center of 1ststorey, The time period is decreased up to18.75% when 8 floating column are considered at center of 1ststorey.
- The time period is decreased when 8th floating column at center considered as compared to corner floating column, 4 floating column at center, without floating column

III. CONCLUSIONS

DISPLACEMENT -

As per result obtained in that, displacement for the case of 4 floating column at center is less as compared to corner floating column and 8 floating column at center. However, highest displacement value is observed when corner floating column is considered because of cantilever beams large stiffness acting on building as compared to other cases.

Base Shear -

As per result obtained in that, Base Shear for the case of 8 floating column at center is less as compared to corner floating column and 4 floating column at center. However, highest base shear value is observed when 4 floating columns at center and corner floating column are considered.

Frequency -

As per result obtained in that frequency for the case of 4 floating column at center and 8 floating column at center is higher as compared to corner floating column.

Time Periods -

As per result obtained in that time period for the case of 8 floating column at center 4 floating column at center are less as compared to corner floating column.

IV. ACKNOWLEDGEMENT

It is with a feeling of great pleasure that I would like to express my most sincere heartfelt gratitude to my guides, Prof. Ganesh Chandrakant Jawalkar Assistance professor, of Civil Engineering, NBNSCOE Solapur for their encouragement, advice, mentoring and research support throughout my studies. Their technical and editorial advice was essential for the completion of this dissertation. Their ability to teach, depth of knowledge and ability to achieve perfection will always be my inspiration.

I express my sincere thanks to Dr. S. D. Navale Principal of NBNSCOE Solapur & Prof. P. P. Tapkire, Head of Department, of Civil Engineering NBNSCOE, Solapur for providing me the necessary facilities in the department.

I would also take this opportunity to express my gratitude and sincere thanks to all faculty members of structural engineering, for their invaluable advice, encouragement, inspiration and blessings during the project.

REFERENCES

- Karavallis, Bazeos and Beskos, 2008, Estimation of seismic inelastic deformation demands in plane steel MRF with vertical mass irregularities, Engineering Structures 30(2008) 3265–3275.
- [2] Athanassiadou C.J, 2008, Seismic performance of R/C plane frames irregular in elevation, Engineering Structures 30 (2008):1250–1261.
- [3] HaijuanDuana, Mary Beth D. Hueste, 2012, Seismic performance of a reinforced concrete frame building in China, Engineering Structures 41 (2012):77–89.
- [4] Lee Han Seon ,Dong Woo Kee, 2007, Seismic response characteristics of high-riseRC wall buildings having different irregularities in lower stories, Engineering Structures29 (2007):3149–3167.