Analysis And Design of Transmission Tower Using STADD- PRO

Prof. Shreyas Cholachgud¹, Mr.Rushikesh Kamble², Mr. Shubham Borikar³, Mrs. Pooja Shinde⁴, Mr.Taxal Dhale⁵

¹Assistant Professor, Dept of Civil Engineering ^{2, 3, 4, 5}Dept. of Civil Engineering ^{1, 2, 3, 4, 5}Dhole Patil College of Engineering, Pune

Pune

Abstract- In this project, the design of steel lattice tower prescribed for transmission of electricity by the categorized gravity and lateral loads has been studied and analyzed for the employment of the project. The analysis has been done by taking different combination of loads and then the design has been come into picture using the code module IS 800:2007. The present work describes the analysis and design of transmission line tower of 22meter height viz. various parameters. In design of tower for weight optimization some parameters are considered such as; base width, height of tower, outline of tower. Using STAAD. Pro analysis of transmission towers has been carried out as a 3-D structure.

Keywords- Design of steel Structure, Analysis of Steel Tower, Wind Pressure Analysis, Transmission Tower Line, Modelling in Stadd-Pro, Analysis by Stadd-Pro

I. INTRODUCTION

The large population residing all over the globe and the electricity supply need of this population creates requirement of a large transmission and distribution system. The disposition of the primary resources for electrical power generation viz., coal, hydro potential is quite uneven hence again adding to the transmission requirements. It is an integrated system consisting of conductor subsystem, ground wire subsystem and one subsystem for each category of support structure. About 28 to 42 % of the total cost of the Transmission Lines is taken up by the towers. The increasing demand for electrical energy can be met more economical by developing different light weight configurations of transmission line towers.

A transmission tower known as a power transmission tower, power tower, or electricity pylon is a tall structure used to support an overhead power line. Also, In electrical grids, they are used to carry high voltage transmission lines that transport bulk electric power from generating stations to electrical substations; utility poles are used to support lowervoltage sub-transmission and distribution lines that transport power from substations to electric customers. Transmission towers need to carry the heavy transmission conductors at a sufficient safe height from the ground including, all towers have to sustain all kinds of natural calamities. Hence transmission tower design is an important engineering job where civil, mechanical, and electrical engineering concepts are equally applicable. A power transmission tower is a key part of a power transmission system.

High-voltage direct current (HVDC) transmission lines are either monopolar or bipolar systems. With bipolar systems, a conductor arrangement with one conductor on each side of the tower is used. On some schemes, the ground conductor is used as electrode line or ground return. In this case, it had to be installed with insulators equipped with surge arrestors on the pylons in order to prevent electrochemical corrosion of the pylons.

Transmission Tower Parts:

A power transmission tower consists of the following parts:

- 1. The peak of the transmission tower
- 2. The cross arm of the transmission tower
- 3. The boom of transmission tower
- 4. Cage of transmission tower
- 5. Transmission Tower Body
- 6. Leg of transmission tower
- 7. Stub/Anchor Bolt and Baseplate assembly of the transmission tower.

1. Peak of Transmission Tower

The portion above the top cross arm is called peak of transmission tower. Generally earth shield wire connected to the tip of this peak.

2. Cross Arm of Transmission Tower

Cross arms of transmission tower hold the transmission conductor. The dimension of cross arm depends

on the level of transmission voltage, configuration and minimum forming angle for stress distribution.

3. Cage of Transmission Tower

The portion between tower body and peak is known as cage of transmission tower. This portion of the tower holds the cross arm.

4. Transmission Tower Body

The portion from the bottom cross arms up to the ground level is called the transmission tower body. This portion of the tower plays a vital role in maintaining the required ground clearance of the bottom **conductor of the transmission line.**

5. Importance of Transmission Line towers

The structures of overhead transmission lines, comprising essentially the supports and foundations, have the role of keeping the conductors at the necessary distance from one another and form earth, with the specified factor of safety to facilitate the flow of power through conductor form one point to another with reliability, security and safety.

Electrical energy, being the most convenient and cleanest form of energy, is finding the maximum usage the world over for development and growth of economy and therefore generation, transmission and utilization of the same in ever increasing quantities as economically as the latest technological advancements permit, are receiving great attention.

II. OBJECTIVES

The technical, environmental and economic considerations involve in sitting and development of power generation projects required for meeting the demand for electrical energy are gradually resulting in longer transmission distances and introduction of higher and higher transmission voltages, and use of high voltage direct current transmission systems.

- 1. analyze and design self- supporting transmission line tower with different types of bracings using hot- rolled steel sections using STAAD Pro Software.
- 2. To do the cost analysis of transmission line tower.
- 3. To compare different towers for their structural stability at varied wind loads.

ISSN [ONLINE]: 2395-1052

- 1. Height of the Tower: 22 m
- 2. Centre to Centre spacing between the footings: 4m Centre to Centre between legs of tower on both side.
- 3. Length of the cross arm: 3 m
- 4. Support type: Fixed
- 5. Height of the cross arm from the ground: 15 m

III. METHODOLOGY

STAAD. Pro Software has been used for the analysis of Transmission Tower. Then loads like Dead Load and Wind Load will be calculated for the designed structure. The models with different type of bracing are observed for the analysis of cost cutting. Different bracing models are analyzed for the safety and stability of the structure.

STEP 1: Project planning with collection of required data.

STEP 2: Designing & analysis of transmission tower under various load using STAAD. Pro.

STEP 3: Manual calculations under different wind speed for analysis of safety and stability.

STEP 4: Study and comparison for different types of Bracings of transmission tower.

STEP 5: Proper study and analysis of transmission tower to go for the Conclusion.

FLOWCHART:

DATA:

- Height of tower: 22m
- Centre to centre spacing of footings: 4m
- Length of cross arms: 3m
- Support type: Fixed
- Height of cross arms from ground: 15m
- Wind speed: 39m/s, 44m/s, 49m/S

Data:

Page | 276

Figure 1 Design model of transmission tower in STADD PRO

IV. MODELLING IN STAAD.PRO

Data:

- Height of the Tower: 22 m
- Centre to Centre spacing between the footings: 4m Centre to Centre between legs of tower on both side.
- Length of the cross arm: 3 m
- Support type: Fixed
- Height of the cross arm from the ground: 15 m

Figure 2 Isometric view of the Staad. Pro Model

Figure 3 Self-weight Assigned to the structure

Figure 4 Wind Load Application in X direction

The wind load applied here is based upon the direction in which the wind flows.

Figure 5 Wind Load Application in Y direction

The wind load applied here is based upon the direction in which the wind flows.

Figure 6:- Bending Moment Diagram of the model

- D De	finitions	
D	Vehicle Definitiona	
D	Time History Definitions	
D	Wind Definitions	
1 由	D TYPE 1 WIND LOAD	
	- D INTENSITY	
D	Snow Definition	
[D]	Reference Load Definitio	ns
D	Seiamic Definitiona	
D	Pushover Definitions	
(D)	Direct Analysis Definition	
🖻 🛄 Lo	ad Cases Details	
- II	1 : DEAD LOAD	
1 1 4-4	SELFWEIGHT Y-1	
🛱 🖬	2 : WIND LOAD X	
2 Beer	" WIND LOAD X 1 TYPE 1	
A	" WIND LOAD X -1 TYPE	1.
- L	3 : WIND LOAD Z	
1	WIND LOAD Z 1 TYPE 1	
-	WIND LOAD Z -1 TYPE	1.5
L LO	ad Envelopes	

Figure 7 Shear Force Diagram of the model

Figure 8 Graphs for the beam selected in the model with its value

Figure 9:- Beam stresses

Table 1: Support Reactions Extracted from the software

		Horizoutal	Vertical	Horizoutal	Moment		
Node	L/C	FxkN	FykN	FzkN	Mx kN-m	My kN-m	MzkN-
1	l DEAD LOAD	4.825	59.97	4.807	-0.628	0	0.63
	7 WIND LOAD X	94 51	765 641	71 744	611	14.523	8 7 7 8
	WIND LOAD	20.029	198 399	-124.26	0.039	0.024	0.23
2	1 DEAD LOAD	-4.822	59.965	4.801	-0.628	0	-0.63
	2 WIND LOAD	198.928	-7 <mark>66.6</mark> 6	-66.356	-1.286	2.411	0.832
	WIND LOAD Z	-14.804	147.988	-44.135	-8.727	11.712	2.557
3	1 DEAD LOAD	4.848	60.435	-4.804	0.628	0.001	0.629
	WIND LOAD	143.20	850 170	-75 22	1 1 75	-2 0.69	-2 666
	WIND LOAD	-15.891	198.349	36.828	1.775	-5.056	-1.869
4	1 DEAD LOAD	-4.852	60.44	-4.805	0.628	-0.001	-0.629
	2 WIND LOAD	218.508	858.161	69.831	-1.925	17.012	10.390
	WIND LOAD Z	10.666	148.038	-30.3	-0.618	0.495	-0.717

		×		Horizontal	Vertical	Horizoutal	Resultant
	Beam	L/C	Node	X mm	Ymm	Zmm	Resultant mm
Max X	41	2 WIND LOAD	46	1.02	-0.595	0.315	1222
Min X	9	2 WIND LOAD	13	-43.499	0.712	-0.097	43.505
Max Y	163	2 WIND LOAD	70	-28.999	10.967	-0.278	31.004
Min Y	167	2 WIND LOAD X	71	-28.656	-9.626	0.167	30.23
Max Z	66	3 WIND LOAD Z	55	-0.191	-0.393	2.101	2.145
Min Z	9	3 WIND LOAD Z	13	-0.216	0.619	-14.176	14.192
Max Rst	9	2 WIND LOAD	13	-43.499	0.712	-0.097	43.505

Table 2:- Maximum Beam end Displacments

Table 3: Governing Beam End forces

	Bes	rc	Nod	FxkN	Fyk N	FikN	Mx kN-	My kN-m	MzkN -m
Ma x Fx	30	2 WIND LOA D X	23	750.93	0.973	0.048	0.03	168.0	0.712
Min Fx	35	2 WIND LOA D X	28	- 785.73 9	1.102	-2.313	0.00 3	5.343	-0.786
Ma x Fy	114	I DEA D LOA D	6	131	4.622	0.849	0	-0.527	4.426
Min Fy	156	2 WIND LOA D X	67	43.316	-3.47	-2.082	0.02 4	-0.237	-1.43
Ma x Fz	174	2 WIND LOA D X	73	-2.568	2.628	41.32	0.02 5	33.79 4	-2.056
Min Fr	80	2 WIND LOA D X	31	16.68	0.617	38.16 6	0.08	25.96 3	-0.351
Ma x Mx	31	2 WIND LOA D X	24	332.38 5	-0.55	-1.217	0.11	2.478	-0.172
Min Mx	32	2 WIND LOA D X	25	461.96 1	0.309	3.656	-0.11	-3.956	-0.745
Ma x My	69	3 WIND LOA D.Z	56	-3.624	0.955	30.10 3	0.02 8	37,43	+1.643
Min My	142	2 WIND LOA D X	59	20.152	2.441	40.48 3	0.08	-50.46	-1.587
Ma X Mz	114	DEA D LOA D	6	3.31	4.622	0.849	0	-0.527	4.426
Min Mz	39	2 WIND LOA	33	715.07 9	2.993	2.322	0.06	3.484	-4.329

V. DESIGN OF THE TOWER

The steel design of the transmission line tower is done using IS 802:1995. Hence the Section chosen is ISA $200 \times 200 \times 20$

	be	am no 109 s	ection: ISA 20	00×200×20	
					10.020 0.180
		Ler	ath = 2		
	Node	X-Coord	Y-Coord	Z-Coord	UNIT:m
	7	3	15	3	
	38	5	15	3	
Additional Inf	to		Releas	es	
Beta Angle:	0	Change Beta	Gat		
Member			Stort.		
			ena:		
Fire Proofing				Change Rei	leases At Start
Samma Ancie	value	den		Change De	ferrare Bit Tool
	5.0	ueg		unange His	100905 //1. 1010-1111

Figure 10:- Geometry of the beam

					L	
		Lengt	th = 2			
Physical	Properties (1)	loit m)				
Ax	0.00763	bx	1.04e-	006		
Ay	0.0026666	57 ly	4.5755	4e-00	Anning	Chargen Dunnadar
Az	0.0026666	37 1z	1.1846	8e-00	Assign	incritating an indextal
D	0.2	W	0.2]		
Material I	Properties					
Flastici	v(kN/mm2)	205	Denstwike	m31 7833	41	CTTT I
Poisson	1	0.3	Alpha	1.2e-	-005	STEEL
11						Assion Material

Figure 11:- Property of the beam

tower -	Beam			×
Geometry	Property	Loading	Shear Bending Deflection	
			Beam no. = 109	
- 🗀 🛛	.oad Case	1		
			Select Load Case : 1:DEAD LOAD \sim	
			Add new load item	
			Remove Selected load item	
			Edt Selected load tem	

Figure 12:-Loading of the beam

Figure13:-Shear bending of beam

	Loading Sh	ear Bending	Deflection	
		Be	am No = 109	
2				
-0.394				3
				-1.877
Realize			Dist.	Disp.
enection		2007 P	m	mm
Dist	Displ	^	0.000	-0.394
	-1.439		Coloriso Turo	
1.3333333333	4 500		Selection Type	
1.3333333333	-1.566			Laninan
1.333333333 1.5 1.6666666666	-1.715		1:0	CHO LOND
1.333333333 1.5 1.6666666666 1.833333333	-1.568 -1.715 -1.813		Global Defect	on OXDr
1.333333333 1.5 1.6666666666 1.833333333 2	-1.588 -1.715 -1.813 -1.877		Global Deflect	
1.333333333 1.5 1.6666666666 1.833333333 2	-1.588 -1.715 -1.813 -1.877		Global Deflect	ion OXDr OYDr
1.333333333 1.5 1.6666666666 1.833333333 2	-1.588 -1.715 -1.813 -1.877		Global Deflect O Local Deflection	tion O X Dir O Y Dir on O Z Dir

Figure 14:-Deflection of the beam

VI. RESULTS FOR WIND SPEED

Analysis of tower is carried out by considering all types of loading, different types of bracings systems. All loads are calculated manually as per IS 802 (part 1 and 2): 1995, IS 5613 (part 2): 1985, IS 875- 2015. The tower is analyzed and designed using STAAD Pro.

Nos	Types of structure	Failed members	Failed section's
01	Single web horizontal bracing	00	_
02	Single web diagonal pattern bracing	00	
03	Warren type bracing	20-leg members 6- bracings	180x180x20 200x200x16 150x150x10

Nos	Types of structure	Failed members	Failed section's
01	Single web horizontal bracing	00	53
02	Single web diagonal pattern bracing	00	75
03	Warren type bracing	13-leg members 6- bracings	180x180x20 200x200x16 150x150x10

-	A		4.77
Hor	winds	need	4/m/s
		poou	

No's	Types of structure	Failed members	Failed section's
01	Single web horizontal bracing	00	6.576
02	Single web diagonal pattern bracing	01	200x200x16
03	Warren type bracing	20-leg members 6- bracings	180x180x20 200x200x16 150x150x10

VII. FOOTING DESIGN

The footing for the transmission line tower is designed in Staad foundation. For the four legs isolated footing for each is designed using the Indian Standards Codes.

ISSN [ONLINE]: 2395-1052

Figure 15:- Isolated footings geometry

Footing	oting Group Founda		ion Geometry		
-	-	Length	Width	Thickness	
1	1	4.800 m	4.800 m	0.505 m	
2	2	0.000 m	0.000 m	0.000 m	
3	3	6.400 m	6.400 m	0.505 m	
4	4	0.000 m	0.000 m	0.000 m	

Figure 16:- Plan and Elevation of Footing

IJSART - Volume 7 Issue 7 – JULY 2021

Table 6:- Footing Dimension

Design Type :	Calculate Dimension
Footing Thickness (Ft) :	305.000 mm
Footing Length - X (Fl) :	1000.000 mm
Footing Width - Z (Fw) :	1000.000 mm
Eccentricity along X (Oxd) :	0.000 mm
Eccentricity along Z (Ozd) :	0.000 mm

Table 7 Concrete and Rebar Properties

Unit Weight of Concrete :	25.000 kN/m ³
Strength of Concrete :	25.000 N/mm ²
Yield Strength of Steel :	415,000 N/mm ²
Minimum Bar Size :	T 6
Maximum <mark>Bar</mark> Size :	T32
Minimum Bar Spacing :	50.000 mm
Maximum Bar Spacing :	500.000 mm
Pedestal Clear Cover (P, CL) :	50.000 mm
Footing Clear Cover (F, CL) :	50.000 mm

es
)

Soil Type :	Drained
Unit Weight :	22.000 kN/m ³
Soil Bearing Capacity :	100.000 kN/m ²
Soil Surcharge :	0.000 kN/m ²
Depth of Soil above Footing :	0.000 mm
Cohesion :	0.000 kN/m ²
Min Percentage of Slab :	0.000

Table 9:-Sliding and Overturning

Coefficient of Friction :	0.500	
Factor of Safety Against Sliding :	1.500	
Factor of Safety Against Overturning :	1.500	

Table 10:-Design Calculations

Length $(L_2) =$	4.800	m	Governing Case :	Load	#1
Width $(W_2) =$	4.800	m	Governing Case :	Load	#1
Depth (D ₂) =	0.505	m	Governing Case :	Load	#1
Area (A2) =	23.040	m ²			

Table 11:-Final Footing Dimensions

Reduction of force due to buoyancy =	0.000 kN		
Effect due to adhesion =	0.000 kN		
Area from initial length and width, $A_0 =$	$L_{o} * W_{o}$ 1.000 m ²		
Min area required from bearing pressure, Amin =	$P / q_{max} = 10.565 m^2$		

Table 12:-Summary of Adjusted Pressures at Four Corners

Load Case	Pressure at corner 1 (q ₁) (kN/m ²)	Pressure at corner 2 (q ₂) (kN/m ²)	Pressure at corner 3 (q ₁) (kN/m ²)	Pressure at corner 4 (q ₄) (kN/m ²)	Area of footing in uplift (A _u) (m ²)
2	50.2961	46.0101	41.4158	45.7018	0.000
2	50.2961	46.0101	41.4158	45.7018	0.000
2	50.2961	46.0101	41.4158	45.7018	0.000
2	50.2961	46.0101	41.4158	45.7018	0.000

ISSN [ONLINE]: 2395-1052

IJSART - Volume 7 Issue 7 – JULY 2021

Load Case	Pressure at corner 1 (q _i) (kN/m ²)	Pressure at corner 2 (q ₂) (kN/m ²)	Pressure at corner 3 (q ₁) (kN/m ²)	Pressure at corner 4 (q ₄) (kN/m ²)
2	50.2961	46.0101	41.4158	45.7018
2	50.2961	46.0101	41.4158	45.7018
2	50.2961	46.0101	41.4158	45.7018
2	50.2961	46.0101	41.4158	45.7018

Table13:-Summary of Adjusted Pressures at Four Corners

Table 14Factor of safety against sliding

-	Factor of safety against sliding		Factor of safety against overturning	
Load Case No.	Along X- Direction	Along Z- Direction	About X- Direction	About Z- Direction
1	36.358	36.491	467.766	466.150
2	5.589	7.363	59.887	64.195
3	12.215	1.969	18.725	118.796

Table 15:-Critical load case and the governing factor of safety for overturning and sliding -X Direction

Critical Load Case for Sliding along X-Direction :	2
Governing Disturbing Force	-94.510 kN
Governing Restoring Force :	528.261 kN
Minimum Sliding Ratio for the Critical Load Case :	5.589
Critical Load Case for Overturning about X- Direction :	3
Governing Overturning Moment :	62.711 kNm
Governing Resisting Moment :	1174.247 kNm
Minimum Overturning Ratio for the Critical Load Case :	18.725

ISSN [ONLINE]: 2395-1052

Table 16:-Critical load case and the governing factor of safety	
for overturning and sliding -Z Direction	

Critical Load Case for Sliding along Z-Direction :	3
Governing Disturbing Force	124.260 kN
Governing Restoring Force :	244.639 kN
Minimum Sliding Ratio for the Critical Load Case :	1.969
Critical Load Case for Overturning about Z- Direction :	2
Governing Overturning Moment :	39.499 kNm
Governing Resisting Moment :	2535.605 kNm
Minimum Overturning Ratio for the Critical Load Case :	64.195

Table 17

Critical Load Case	-#2				
Area within cuncai permeter A _n -		- 1.855	M.TS		
V _{max} -	$P_r \times (B \times H - \Lambda_n)$	- 703.998	kN		
v	$\frac{\sqrt{max}}{2 \times (b + h - 6 \times c) \times d}$	- 291.098	kN/m ²		
V.1=	mm(IIX √f _{eu} . >)	4000.000	kN/m ²	18456 2000	
	$V_{u} \approx V_{t1}$	$V_m \sim V_{cl}$	hence, safe		0
Critical Parimate r P_ =	$2 \times (b + h + \epsilon \times d)$	5.118	m	3	
Val	بر × ۲., × ۱	285.888	1.13/m ²		
v1-	nin(pt _{teqd} ,3)	0.145	N/mm	2	
V2-	$\max\left(\frac{400}{8},1\right)$	1.000	31./ m.m 2		
v,	$\min\left(\frac{t_{ou}, 40}{25}\right)^{\frac{1}{3}}$	1.000	N/mm 2	20	
ve-	$1.79 \times (V1)^{\frac{1}{7}} \times (V2)^{\frac{1}{4}} \times (V2)^{\frac{1}{4}}$	/3) ^{5 5 2 2 5 4}	kiN/m ²	2	
	$v_{mi} \leftarrow v_{i}$	hence, cafe			
	1,e>=1,e		hence, safe		

VIII. CONCLUSIONS

Self-supporting transmission line tower is analyzed and designed using hot-rolled steel sections. Transmission Line Towers constitute about 28 to 42 percent of the total cost of the Transmission Lines. Tower is designed and compared for weight parameters and absolute displacement variation along with its height.

- 1. Wind load has significant unfavourable influence on resistance of transmission tower subjected to ground motion.
- 2. Warren type bracing are not structurally stable as compare to other types of bracings.
- 3. Single web horizontal type bracings are structurally safe as compare to warren type and single web diagonal type bracing.

X bracing structural is light weight and more economical as compare to K bracing structure.

REFERENCES

- Gopi SudamPunse, "Analysis and Design of Transmission Tower", 2014, International Journal Of Modern Engineering Research (IJMER), Vol. 4 ISSN: 2249–6645, pg 116-138.
- [2] D. B. Sonowal, J.D. Bharali, M. K. Agarwalla, N. Sarma, P. Hazarika, "Analysis and Design of 220 kV Transmission Line Tower (A conventional method of analysis and Indian Code based Design)", IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-ISSN : 2278-1684, p-ISSN : 2320–334X PP 40 -49.
- [3] N. Prasad Rao, G. M. Samuel Knight, S. J. Mohan, N. Lakshmanan, "Analysis and Design of Three and Four Legged 400KV Steel Transmission Line Towers: Comparative Study", International Journal of Earth Sciences and Engineering 691 ISSN 0974-5904, Volume 04, No 06 SPL, October 2011, pp 691-694.
- [4] M. Selvaraj, S. M. Kulkarni, R. Ramesh Babu, "Behavioral Analysis of built up transmission line tower from FRP pultruded sections" Central Power Research Institute, ISSN 2250-2459, Volume 2, Issue 9, September 2012.
- [5] G. Visweswara Rao, "OPTIMUM DESIGNS FOR TRANSMISSION LINE TOWERS" Senior research Analyst, Engineering Mechanics Research India, 907 Barton Centre Bangalore-560 001, India Computer & Structures vol.57.No.1.pp.81-92, 1995.
- [6] F. Albermani and M. Mahendran "Upgrading Of Transmission Towers Using Of Diaphragm Bracing

System", Queensland University of Technologcomment, then don't forget to get clarity about that comment.