Structural Design of Multistorey Building With Shear Walls At Different Locations

Amitkumar Jadhav¹, Prof. Girish H Sawai²

^{1, 2} Dept of Civil Engineering

^{1, 2} Vmit, Nagpur

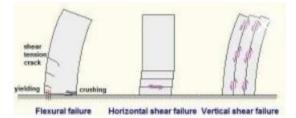
Abstract- In this project, a Research has been carried out to determine the structural configuration of a multistory building by changing the shear wall locations radically. Four different cases of shear wall position for G+10 storey building with keeping zero eccentricity between mass center and hardness center have been analyzed and designed as a frame system by computer application software ETABS. The comparison of these models for different parameters like Displacement, Storey Drift, Story Shear and Overturning turning has been presented.

Keywords- ETABS, Story Drift, Story Shear and Overturning Moment

I. INTRODUCTION

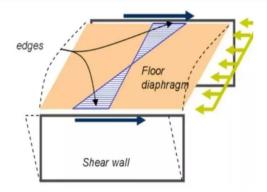
A shear wall is a structural component often provided to multistoreyed or tall buildings or buildings in areas of high wind velocity or seismic activity. The purpose of a shear wall is to resist the lateral loads that are imposed on the structure due to wind, earthquake or sometimes due to hydrostatic or lateral earth pressure.

Such loads tend to act along the direction of movement of wind or vibrations of the earthquake and they act laterally to the building along one of the two directions.

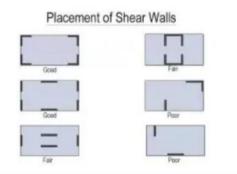

Forces on shear walls and corresponding failure modes:

Such loads induce the following to the shear wall in plane with their direction of action:

- 1. In plane shear.
- 2. Flexure.


Hence, shear walls are structural elements meant to resist the effect of mainly two things, they are: in plane shear and in plane bending action due to moment from shear. Though in addition to these, the shear wall, as a structural element, tends also to resist in plane shear in vertical direction (as a direct consequence to shear in the horizontal direction) and the buckling effect of dead loads coming from top. Accordingly, a shear wall may fail either in 1 of these three modes or by buckling. The modes are:

- Flexural shear failure.
- Horizontal shear failure.
- Vertical shear failure.


In order to resist these forces, a shear wall is designed and built so that it has:

- Large in plane shear resistance in the horizontal direction
- Large in plane shear resistance in the vertical direction
- Large flexural strength in the direction of flexure.
- Buckling strength to resist buckling due to dead loads from top.
- The loads from the building to the shear wall is usually transferred via a structural component known as diaphragm. These are stiff horizontal structures having connections throughout with the shear wall. In addition to acting as a load

transferring mechanism they also double up as floor/roof of the building.

• Other than these, many alternative arrangements for the placement of shear walls are possible.

II. PROBLEM FORMULATION

Description of the structure

The typical framing plan of G+10 storey structure with rectangular in plan.

Length and width of the building structure is considered as 28m and 20m respectively. First story which is of 3.6m and Remaining Each storey height is considered as 3m.

Height of the building structure is 33.6m. (Approx. 35m) Spacing of frame along length and width is 4m.

Material grades of M35& Fe500 were used for the design.

Building properties

Site Properties:

Details of building:: G+10 Outer wall thickness:: 230mm Inner wall thickness:: 230mm Soft storey height :: 3.6m Floor height :: 3 m Depth of foundation :: 3000mm **Seismic Properties** Seismic zone:: III Zone factor:: 0.16 Importance factor:: 1.0 Response Reduction factor R:: 3 Soil Type:: medium

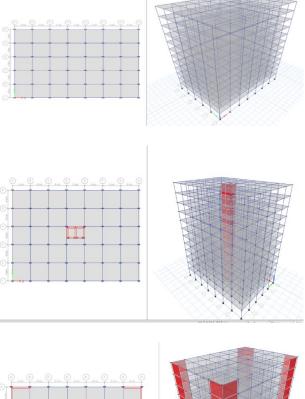
Preliminary Sizes of members

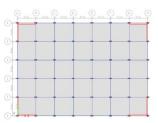
Column::300mm x 600mm Beam :: 300mm x 500mm Slab Thickness:: 125mm Shear wall Thickness:: 300mm Wind load not considered

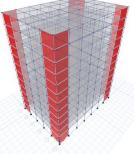
Loading on structure

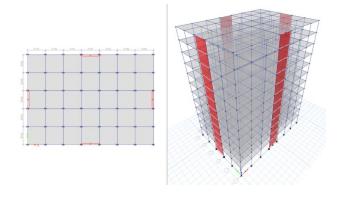
Dead load :: self-weight of structure Weight of 230mm wall Live load:: Floor 3 kN/m² Roof 2 kN/m² Wind load :: Not considered Seismic load:: Seismic Zone II

III. MODELLING IN ETABS


For this project, four models[M] were made. Their description is as follows:


[M-1] Conventional Frame


[M-2] Building with Box-type Shear Wall at the centerof the geometry


[M-3] Building with Shear Walls on Periphery atCorners

[M-4] Building with Shear Walls on Periphery at Centers

IV. ANAYLSIS

The behavior of all the framing systems is taken as a basic study on the modeled structure. The Story Drift is checked as per the IS-1893:2002 The following factors were considered to study a comparison between the different frames:

- 1. Maximum Storey Displacement
- 2. Storey Shear
- 3. Maximum Storey Drift
- 4. Storey Overturning Moment

The following load combinations are considered during the analysis of the model:

1. 1.5 DL + 1.5 LL 2. 1.2 DL + 1.2 LL 3. 1.2 DL + 1.2 LL + 1.2 EQX 4. 1.2 DL + 1.2 LL - 1.2 EQX 5. 1.2 DL + 1.2 EQX 6. 1.2 DL - 1.2 EQX


For asserting the simplest yet reliable method for analysis, the combined action of DL, LL & EQ forces are considered i.e. 1.2 DL + 1.2 LL + 1.2 EQX. The structure with different framing system has been modeled using ETABS software with the above mentioned load conditions and combinations.

V. INTERPREATATION OF RESULTS:

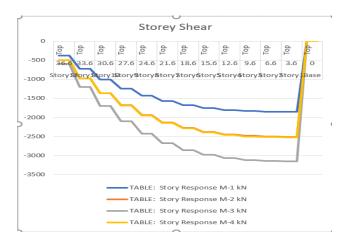

1. Max Storey Displacement

	TABLE: Story Response								
	Story	Elevation	Location	M-1	M-2	M-3	M-4		
		m		mm	mm	mm	mm		
	Story12	36.6	Тор	22.936	22.326	19.64	20.996		
	Story11	33.6	Тор	22.238	21.104	18.029	19.703		
	Story10	30.6	Тор	21.148	19.545	16.276	18.193		
	Story9	27.6	Тор	19.702	17.766	14.421	16.497		
	Story8	24.6	Тор	17.964	15.799	12.488	14.626		
	Story7	21.6	Тор	15.997	13.679	10.509	12.605		
)	Story6	18.6	Тор	13.856	11.458	8.528	10.477		
	Story5	15.6	Тор	11.593	9.194	6.595	8.302		
2	Story4	12.6	Тор	9.252	6.952	4.77	6.156		
5	Story3	9.6	Тор	6.87	4.81	3.119	4.128		
ŀ	Story2	6.6	Тор	4.484	2.865	1.719	2.338		
;	Story1	3.6	Тор	2.152	1.237	0.669	0.94		
5	Base	0	Тор	0	0	0	0		

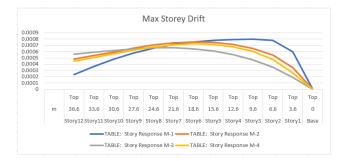

2. Storey Shear

TABLE: Story Response						
Story	Elevation	Location	M-1	M-2	M-3	M-4
	m		kN	kN	kN	kN
Story12	36.6	Тор	-374.5518	-494.59	-598.8	-493.2
		Bottom	-374.5518	-494.59	-598.8	-493.2
Story11	33.6	Тор	-722.5379	-969.37	-1200	-971.4
		Bottom	-722.5379	-969.37	-1200	-971.4
Story10	30.6	Тор	-1011.158	-1363.2	-1698	-1368
		Bottom	-1011.158	-1363.2	-1698	-1368
Story9	27.6	Тор	-1245.96	-1683.5	-2104	-1691
		Bottom	-1245.96	-1683.5	-2104	-1691
Story8	24.6	Тор	-1432.492	-1938	-2426	-1947
		Bottom	-1432.492	-1938	-2426	-1947
Story7	21.6	Тор	-1576.302	-2134.2	-2674	-2145
		Bottom	-1576.302	-2134.2	-2674	-2145
Story6	18.6	Тор	-1682.94	-2279.7	-2858	-2291
		Bottom	-1682.94	-2279.7	-2858	-229:
Story5	15.6	Тор	-1757.952	-2382.1	-2988	-2394
		Bottom	-1757.952	-2382.1	-2988	-2394
Story4	12.6	Тор	-1806.887	-2448.8	-3072	-2462
		Bottom	-1806.887	-2448.8	-3072	-2462
Story3	9.6	Тор	-1835.294	-2487.6	-3121	-250:
		Bottom	-1835.294	-2487.6	-3121	-250:
Story2	6.6	Тор	-1848.721	-2505.9	-3145	-2519
		Bottom	-1848.721	-2505.9	-3145	-2519
Story1	3.6	Тор	-1852.79	-2511.5	-3152	-2525
		Bottom	-1852.79	-2511.5	-3152	-2525
Base	0	Тор	0	0	0	(
		Bottom	0	0	0	

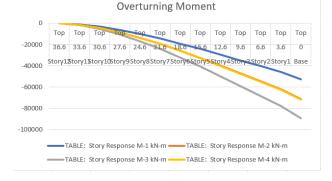

3.Max Storey Drift.

TABLE: Story Response							
Story	Elevation	Location	M-1	M-2	M-3	M-4	
	m						
Story12	36.6	Тор	0.000234	0.00048	0.000558	0.000447	
Story11	33.6	Тор	0.000363	0.00054	0.000588	0.000504	
Story10	30.6	Тор	0.000482	0.000593	0.000618	0.000565	
Story9	27.6	Тор	0.000579	0.000656	0.000644	0.000624	
Story8	24.6	Тор	0.000656	0.000706	0.00066	0.000674	
Story7	21.6	Тор	0.000714	0.00074	0.00066	0.000709	
Story6	18.6	Тор	0.000754	0.000755	0.000644	0.000725	
Story5	15.6	Тор	0.00078	0.000747	0.000609	0.000717	
Story4	12.6	Тор	0.000794	0.000714	0.000552	0.000678	
Story3	9.6	Тор	0.000796	0.000649	0.000467	0.000601	
Story2	6.6	Тор	0.000781	0.000543	0.000353	0.000474	
Story1	3.6	Тор	0.000598	0.000344	0.000186	0.000261	
Base	0	Тор	0	0	0	0	

4. Overturning Moment

TABLE: St	ory Respor	nse				
Story	Elevation	Location	M-1	M-2	M-3	M-4
	m		kN-m	kN-m	kN-m	kN-m
Story12	36.6	Тор	0	0	0	0
Story11	33.6	Тор	-1123.66	-1483.76	-1796.46	-1479.54
Story10	30.6	Тор	-3291.27	-4391.88	-5395.71	-4393.79
Story9	27.6	Тор	-6324.74	-8481.37	-10490.2	-8497.99
Story8	24.6	Тор	-10062.6	-13531.9	-16801.1	-13570.3
Story7	21.6	Тор	-14360.1	-19346	-24078.4	-19411.6
Story6	18.6	Тор	-19089	-25748.7	-32100.7	-25845.8
Story5	15.6	Тор	-24137.8	-32587.9	-40675.4	-32719.7
Story4	12.6	Тор	-29411.7	-39734.2	-49638.8	-39902.9
Story3	9.6	Тор	-34832.3	-47080.7	-58855.7	-47287.8
Story2	6.6	Тор	-40338.2	-54543.5	-68219.7	-54789.8
Story1	3.6	Тор	-45884.4	-62061.3	-77653.3	-62347.2
Base	0	Тор	-52554.4	-71102.8	-88999.3	-71436.4

VI. SUMMARY AND CONCLUSION

In above study it is clear that buildings with Shear walls behaves better than conventional bare frames model. The Following observations were seen-:

- 1. The Buildings with Shear walls are more Safer as compared to building without Shear walls, although they are costly but gives more Structural stability to building.
- 2. It is mandatory to provide Shear Walls in Earthquake Prone Zones.
- 3. Storey Drift is within Permissible limit as per IScode 1893.
- Storey Displacement and Storey Drift givesModel 3 with better Results and Model 2 and Model 4 with Close results.
- 5. Storey Shear finalizes model 3 as case with lower values and works out best out of all and model 2 and model 4 as case with close Results
- 6. Overturning moment is less in model 1 but model 1 Outperform in others factors storeyshear,Storey Displacement and Storey Drift.

REFERENCES

- Syed Ehtesham Ali, Mohd Minhaj Uddin Aquil
 "Study of Strength of RC Shear Wall at Different Location on Multi-Storied Residential Building"Syed Ehtesham Ali Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 9(Version 5), September 2014, pp.134-141.
- [2] P. S. Kumbhare1 , A. C. Saoji2 "Effectiveness of Reinforced Concrete Shear Wall for Multi-storeyed Building"International Journal of Engineering Research & Technology (IJERT) Vol. 1 Issue 4, June – 2012.
- [3] Prakash A N"Analysis of a multi storied building with and without shear wall"International Journal for Research in Engineering Application & Management (IJREAM) ISSN: 2454-9150 Vol-04, Issue-03, June 2018.
- [4] Priyanka Kosare1, Deepti Hazari2, "Study of Behaviour of Multi-Storey Building with Shear Walls"International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 07 | July 2019.
- [5] Megha K Hallikeri1, Chandrashekar A R2, Chetan Gonni S3 "A COMPARATIVE STUDY ON SEISMIC BEHAVIOUR OF MULTI-STOREYED RC BUILDING IN DIFFERENT ZONES CONSIDERING SHEAR WALL"International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 07 Issue: 08 | Aug 2020.

- [6] TarunMagendra, 2Abhyuday Titiksh and 3A.A. Qureshi, "Optimum Positioning of Shear Walls in Multistorey Buildings"
 International Journal of Trend in Research and Development, Volume 3(3), ISSN: 2394-9333.
- [7] Rutvij Kadakia1, Dr Vatsal Patel2 and Ansu Arya3 "Modelling and Analysis of Irregular Geometrical Configured RCC MultiStorey Building Using Shear Wall"Kalpa Publications in Civil Engineering Volume 1, 2017, Pages 388–397 ICRISET2017. International Conference on Research and Innovations in Science, Engineering &Technology. Selected papers in Civil Engineering.