
IJSART - Volume 7 Issue 6 – JUNE 2021 ISSN [ONLINE]: 2395-1052

Page | 417 www.ijsart.com

A Tracker To Protect Authorization Codes In SMS

Using Code inject Method

Rubina Ariff1, Sabaria. S2

1Dept of Computer Applications
2Assistant Professor, Dept of Computer Applications

1, 2 B. S. Abdur Rahman Crescent Institute of Science & Technology, Vandalur,Chennai-600 048, India

Abstract- Now a days, Mobile applications have brought

tremendous impact to businesses, social, and lifestyle in recent

years. Various mobile applications markets offer a wide range

of apps from entertainment, business, health care and social

life. Many online banking services are developed in worldwide

and mostly using the otpsms to transact the payment from the

user bank, but that otp is traced out by the unauthorised apps.

More researches are carried out to secure the otpsms from the

unauthorised app, then also can't protect the otp from

anonymous user apps. To solve this problem and protect the

sms, we proposed the CodeInject method, which inject the

code into the otp. The otp sending through the sms is not the

original otp, it is modified otp by CodeInject method. The

authorised apps only have the technique to get the original otp

from the modified otp. With the modified otp, the app cant

transact the amount from bank. CodeInject method consists of

Operation function choose and the critical number generate,

this will generate the modified otp for the original otp.

Keywords- Code Inject, Mobile Applications, Authorized

Apps, Otp.

I. INTRODUCTION

 Smartphones are widely used in our daily life.

Increasingly more users leverage smartphones for online

transactions, bank transfers and other operations.

Simultaneously, increasingly more websites and applications

(apps for short) leverage codes delivered via short message

service (SMS) messages to authorize users. We call this type

of code an authorization code in this paper. For instance, an

SMS authorization code can be required when users log into a

banking application or reset their passwords. SMS

authorization codes play a crucial role within the application

ecosystem, as variety of transactions (e.g., personal

identification and online banking) require users to supply a

code for authorization purposes. However, authorization codes

in SMS messages are often stolen and forwarded by attackers,

which introduces serious security concerns.In this project, we

propose Code Tracker, a lightweight approach to track and

protect SMS authorization codes. In Specific, we leverage the

taint tag technique to mark the authorization code with taint

tags at the origin of the incoming SMS messages (taint

sources), and then, we propagate the tags in the system. To

this end, we modify the related array structure, array

operations, string operations, IPC mechanism, and file

operations for auxiliary storage of SMS authorization codes to

make sure that the taint tags cannot be removed. The

authorised apps only have the technique to get the original otp

from the modified otp. With the modified otp, the app cant

transact the amount from bank. CodeInject method consists of

Operation function choose and the critical number generate,

this will generate the modified otp for the original otp. More

researches are carried out to secure the otp sms from the

unauthorised app, then also can't protect the otp from

anonymous user apps. To solve this problem and protect the

SMS.

II. RELATED WORKS

A. SECURITY OF SMS MESSAGES

An assortment of frameworks have been intended to

forestall SMS messages from being spilled in cell phones. For

instance, Secure SMS and other comparable frameworks

influence cryptographic calculations to scramble the SMS

messages for confidentiality, honesty and verification

administrations, which is an alternate objective contrasted

with CodeTracker. SecureSMS endeavors to secure SMS

messages by changing the applications getting grouping of

instant messages in the framework so that the default SMS

application can get the instant message. Then, at that point, it

blocks the SMS broadcasting to forestall noxious applications

from getting the message. Notwithstanding, Secure SMS just

works in Android variants before 4.4.Different frameworks

have likewise been proposed to forestall phishing messages.

Specifically, these frameworks search the substance of SMS

messages to URLs that may connection to malignant

applications for establishment and afterward block clients

perilous activities. Rather than these applications,

CodeTracker plans to give security to approval codes in SMS

messages.

B. STATIC AND DYNAMIC ANALYSIS SYSTEMS

IJSART - Volume 7 Issue 6 – JUNE 2021 ISSN [ONLINE]: 2395-1052

Page | 418 www.ijsart.com

To comprehend the chance of protection spillages, a

number of data flow examination frameworks have been

proposed by scientists. These frameworks can be classified

into two primary types. One sort incorporates static

examination frameworks that perform examination on the

dismantled codes of applications, including FlowDroid,

ComDroid, AmanDroid , Droid- Power, CHEX , and so on In

any case, the constraint of static examination frameworks is

that they can't recognize runtime data divulgence .Accordingly

,dynamic investigation frameworks have been proposed to

follow the data flows at runtime in applications. For instance,

TaintDroid and a few expanded frameworks (counting

DataChest, NDroid, DroidBox , and so on can uphold corrupt

following for continuous protection observing on inheritance

Dalvik (however not ART) runtime in Android. TaintART and

ART are two powerful frameworks planned for the recently

presented ART runtime in Android and can be utilized to

follow and secure touchy information (counting approval

codes) in cell phones. In any case, as referenced in Section I,

TaintART experiences the issue of extensibility, what's more,

ART doesn't perform well for between application following,

which block their utilization for following and securing SMS

approval codes. A few other unique examination frameworks

focusing on malware have likewise been proposed. For

instance, Droid Ranger incorporates an authorization based

conduct foot printing plan to identify new examples of known

Android malware families; it applies a heuristics-based

filtering plan to distinguish certain characteristic practices of

obscure noxious families. Malton gives an exhaustive

perspective on malware practices by directing multi-facet

observing furthermore, data ow following, just as efficient

way investigation. Conversely, CodeTracker has an alternate

objective of giving following to and insurance of approval

codes in SMS messages.

C. IMPRISONMENT OF SMARTPHONE APPS

Various frameworks have been carried out to restrict

applications admittance to touchy information. For instance,

Kirin applications by forestalling outsider applications from

getting to private information. FlaskDroid accomplishes this

objective by snaring Android framework administrations.

AppCage use two free client level sandboxes to mediate and

manage an application's admittance to delicate APIs. To

forestall potential security spillage, Aurasium, AppGuard,

TISSA, furthermore, RetroSkeleton have been proposed to

uphold gained access control on delicate information. This

load of frameworks might have the option to be utilized to

give assurance to touchy information (counting SMS approval

codes) on heritage runtimes (i.e., Dalvik) in Android, however

not on the ART runtime. Conversely, CodeTracker works well

on Android's ART runtime and can give security just as

following for approval codes in SMS messages.

III. EXISTINGMETHODOLOGY

Code an approval code in this paper. For example, a

SMS approval code can be required when clients sign into a

financial application or reset their passwords. Utilizing SMS

codes for approval is helpful; nonetheless, it might introduce

security concerns. On the off chance that the code is taken by

assailants, it can cause monetary misfortunes to clients.

Another framework used to ensure SMS messages by

changing the Android system. Specifically, when a SMS

message shows up, Secures sms look through the message

text.

DISADVANTAGES

 Malicious applications could capture SMS messages to

recover approval codes and afterward block the SMS

broadcasting covertly without educating clients.

 Malicious applications can't impede SMS broadcasting,

and the framework SMS application will get the SMS

messages.

IV. PROPOSEDMETHOD

First, Code Tracker is designed for the protection of

SMS authorization codes, not for the protection of general text

messages. However, in our DE compilation process, we found

that many malware apps steal general messages.

We can easily extend Code Tracker into a prototype

system to protect all text messages by applying the taint tags

to SMS messages and changing the security policies

accordingly. Second, Code Tracker requires changes to the

underlying framework; it cannot be transparently supported as

a user-level solution.

ADVANTAGES

• Dynamic lightweight approach for tracking and

protecting authorization codes in Android.

• Specifically, we leverage the taint tracking technique

and mark authorization codes with taint tags at the

origin of the incoming SMS messages and propagate

the tags through the system. Then, we apply security

policies at the endpoints where the tainted

authorization code is being sent out.

IJSART - Volume 7 Issue 6 – JUNE 2021 ISSN [ONLINE]: 2395-1052

Page | 419 www.ijsart.com

Architecture Diagram

V. MODULES

User Module

In this module, the user interface design to develop to

add user details. Also, the user interface design to develop to

add user details. This modules help to create saving bank

accounts for costumers .it stores all the basic information of

costumers. this feature is characterized by an authentication

process that ensures that the user logging into the system is a

registered customer. The user has to login with a valid

username and password otherwise, access will be denied. This

is a security mechanism to ensure that only authorized users

can access the system

Money Transfer

In this module money can be transfer from one user

account to another user account. This would be the main part

of the system where a user inputs the type of transfer to be

carried out (it could be payment of utility bills or a transfer of

a certain amount as payment for goods bought or a number of

other types). This would also include the part where the user

would also input the amount to be transferred. From the

transaction page, the system would get the input necessary for

the transfer to occur.

Taint Tag Generation

The length of OTP is 4 and the set size of all possible

characters in the OTP is 62. So the total number of possible

sets of the pair of OTPs are 6212. Some of them are –

[{456789, 456788}, {456789, 456789}] But the possible sets

of equal pair of OTPs are:626. Some of them are – [{456788,

456788}, {456789, 456789}]. Hence the probability of

collision of two OTPs is:

626 / 6212 = 1 / 626 = 1 / 56800235584 = 1.7605561-11

So the probability of two OTPs colliding are as less probable

as the existence of your life on earth (Ratio of the number of

years you will live to the number of years from the start of the

universe and everything in existence). So yes, OTPs are way

more secure than static passwords ! By using the Code Inject

method, we are creating a onetime password on the user side

(instead of server side) through a smartphone application. This

means that users always have access to their one time

password. So it prevents the server from sending a text

message every time user tries to login. Also, the generated

password changes after a certain time interval, so it behaves

like a one time password.

Identify The SMS Authorization Code

To identify an SMS authorization code and then

apply the taint tag, our system has to determine whether an

SMS message contains an authorization code. First, we need

to decide when to identify the authorization code. Note that

the Android SMS system mainly obtains SMS messages via

SMS broadcasting or by reading from the SMS database.

Therefore, we only need to determine whether an SMS

message contains an authorization code before the SMS

broadcasting and after the message is fetched from the SMS

database. However, because the framework layer of Android

will not have decoded the message content before the SMS

broadcasting, it is difcult for us to recognize the authorization

code by searching the content of the message. Therefore, we

leverage the sender address of the SMS message to determine

whether the message possibly contains an authorization code;

if so, we mark it as a potential SMS authorization code. We

maintain a list of sender addresses of SMS authorization

codes, and we treat all the SMS messages that originate from

these addresses as messages potentially containing SMS

authorization codes. After the SMS message can be read from

the SMS database, we search the content of the message to

obtain the string pattern of the authorization code to determine

whether the message contains an authorization code. After

identifying an SMS message that contains an authorization

code (or potentially contains such a code), we mark and track

the message by adding a tag (or taint tag) to it (the marked

message is called a taint source). It is important to note that if

we add tags to all the variables in the system, it can better

track the data, but the memory overhead will become a

concern. We observe that an SMS message is generally stored

IJSART - Volume 7 Issue 6 – JUNE 2021 ISSN [ONLINE]: 2395-1052

Page | 420 www.ijsart.com

in a character or byte array; therefore, we only need to add

tags in character and byte arrays. In addition, we add one tag

for each array to reduce the memory overhead.

Verification of SMS Authorization code

The malicious apps could forward the stolen SMS

authorization code through Sms Manager or network interface

(taint sinks). Therefore, to catch such behaviors, we need to

modify the corresponding interfaces in Android's framework

layer and apply corresponding security policies. When it

forwards the message through the Sms Manager, we extract

the tag of the data to be sent. When it forwards the data

through the network interface, it could be in several ways, e.g.,

by email, with HTTP request, and with TCP/UDP sockets.

However, in any way, the network data will eventually be

submitted to the system call of the kernel, which is performed

through the Posix class. Therefore, we could detect and protect

the SMS authorization data by monitoring the network-related

operations in the Posix class. If we get a taint tag from a byte

or character array, we may possibly get several values. Among

these values, 0x00000000 (i.e., t_n) represents that the data do

not contain any taint tags; 0x00000001 (i.e., t_p) represents

that the data potentially contain an authorization code and that

the data are directly obtained through SMS broadcasting;

0x00000002 (i.e., t_d) and 0x00000003 (i.e., t_d|p) represent

that the data are fetched from the SMS database; and

0x000000007 (i.e., t_a|d|p) represents that the data are fetched

from the SMS database and contain an authorization code.

When the value is 0x00000001 or 0x00000007, we manipulate

the data according to our pre-defined rules (e.g., prohibit

sending, warn the user, or send a bogus value). It is important

to note that if an app sends out data with a tag of 0x00000001

(i.e., t_p), we think that it is a dangerous operation. This is

because the data are directly obtained through SMS

broadcasting, and then, the app is attempting to send it out.

This is a malicious action, as a benign app always fetches an

SMS message from the SMS database and then sends it out.

Code Tracker. Secure SMS endeavors to secure SMS

messages by changing the applications getting grouping of

instant messages in the framework so that the default SMS

application can get the instant message. Then, at that point, it

blocks the SMS broadcasting to forestall noxious applications

from getting the message. Notwithstanding, Secure SMS just

works in Android variants before 4.4.Different frameworks

have likewise been proposed to forestall phishing messages.

Activity Diagram

VI. RESULT ANDDISCUSSION

The result that we are getting from our implemented

technique as reflected in figure our implemented technique

provides better results than previous technique term of

accuracy. Also, the implemented technique provides better

results when compared with other existing technique.

VII. CONCLUSION AND FUTURE WORK

We design a dynamic lightweight approach for

tracking and protecting authorization codes in Android, called

Code Tracker. Specifically, we leverage the taint tracking

technique and mark authorization codes with taint tags at the

origin of the incoming SMS messages and propagate the tags

through the system. Then, we apply security policies at the

endpoints where the tainted authorization code is being sent

out. The total computation cost of the proposed scheme is

reasonable and user-acceptable for online transactions, in that

2.82 ms at most are required for generating (and examining)

each verification message. Furthermore, the security

robustness against super-level malicious adversaries is

guaranteed with the derived formal analysis. In brief,

according to the analysis and evaluation results, we prove that

the proposed transaction scheme is practical for common

intelligent mobile devices (and mobile networks). In the

future, the system performance may be further improved with

IJSART - Volume 7 Issue 6 – JUNE 2021 ISSN [ONLINE]: 2395-1052

Page | 421 www.ijsart.com

the enhancement of the security components adopted in the

proposed scheme.

REFERENCES

[1] S. Al-Riyami and K. Paterson, “Certificateless public key

cryptography,” in Proc. Int. Conf. Theory Appl. Cryptol.

Inf. Security, 2003, pp. 452–473.

[2] X. Huang, Y. Mu, W. Susilo, D. S. Wong, and W. Wu,

“Certificateless signature revisited,” in Proc. 12th

Australasian Conf. Inf. Security Privacy, 2007, pp. 308–

322.

[3] K.-H. Yeh, “Cryptanalysis of Wang et al’s certificateless

signature scheme without bilinear pairings,” Nat. Dong

Hwa Univ., Hualien, Taiwan, Tech. Rep. NDHUIM-IS-

2017-001, 2016.

[4] I. Lacmanovi, B. Radulovi, and D. Lacmanovi,

“Contactless payment systems based on RFID

technology,” in Proc. 33rd Int. Conv. MIPRO, 2010, pp.

1114–1119.

[5] L. Mainetti, L. Patrono, and R. Vergallo, “IDA-Pay: An

innovative micropayment system based on NFC

technology for Android mobile devices,” in Proc. 20th

Int. Conf. Softw., Telecommun. Comput. Netw., 2012,

[6] B. Cha and J. W. Kim, “Design of NFC based micro-

payment to support MD authentication and privacy for

trade safety in NFC applica-tions,” in Proc. 7th Int. Conf.

Complex, Intell. Softw. Intensive Syst., 2013, pp. 710–

713.

[7] E. Kazan and J. Damsgaard, “A framework for analyzing

digital payment as a multi-sided platform: A study of

three european NFC solutions,” in Proc. Eur. Conf. Inf.

Syst., 2013, Paper 155.

[8] W.-D. Chen, K. E. Mayes, Y.-H. Lien, and J.-H. Chiu,

“NFC mobile payment with citizen digital certificate,” in

Proc. 2nd Int. Conf. Next Gener. Inf. Technol., 2011, pp.

120–126.

[9] E.-O. Blassa, A. Kurmusb, R. Molvac, and T. Strufed,

“PSP: Private and secure payment with RFID,” Comput.

Commun., vol. 36, no. 4, pp. 468– 480, 2013.

[10] T. Ali and M. A. Awal, “Secure mobile communication in

m-payment system using NFC technology,” in Proc. 2012

Int. Conf. Informat., Electron. Visi on, 2012, pp. 133–

136.

