
IJSART - Volume 7 Issue 6 – JUNE 2021 ISSN [ONLINE]: 2395-1052

Page | 225 www.ijsart.com

A Collaborative Auditing Blockchain For Trustworthy
Data Integrity And Recovery In The Cloud Computing

System
S.Sriram1, Mr.S.J.Vivekanandan2

1Dept of Computer Science and Engineering
2Assistant Professor, Dept of Computer Science and Engineering

1, 2 Chennai, Tamilnadu,India

Abstract- In this paper, we propose a privacy-preserving
mechanism that supports public auditing on shared data
stored in the cloud. The existing system doesn’t support
multiple auditing tasking which makes it difficult for auditors
to verify shared data. All the user data gets leaked to the
auditor due to which there is data integrity and privacy issues.
In order to audit shared data integrity without retrieving the
entire data and distinguish the signer, we construct
homomorphism authenticators using MD5 and SHA-256. With
our mechanism, the identity of the signer on each block in
shared data is kept private from public verifiers, who are able
to efficiently verify shared data integrity without retrieving the
entire file. In addition, our mechanism is able to perform
multiple auditing tasks simultaneously instead of verifying
them one by one to support batch auditing. In our future work,
we will continue to study impact of traceability, which means
the ability for the group manager to reveal the identity of the
signer based on verification of metadata in some special
situations.

Keywords- Advanced Encrypted Standard, Cloud comput-
ing,Data Integrity,Message-Digest 5 Algorithm

I. INTRODUCTION

CLOUD service provider offers data storage services
in an efficient and scalable way with a much lower marginal
cost than traditional approaches. The shared file is divided into
a number of small blocks, where each block is independently
signed by two users with existing public auditing solutions.
Once a block is modified by a user, the user needs to sign the
modified block using his/her private key. Eventually, different
blocks are signed by different users due to the modification
introduced by these two different users. Hence, to correctly
audit the integrity of the entire data, a public verifier needs to
choose the appropriate public key for each block (e.g., a block
signed by Alice can only be correctly verified by Alice’s
public key). Then the unique binding between an identity and
a public key via digital certificates under public key

infrastructure (PKI) helps the public verifier to identify the
signer on each block.

In this paper, we mainly focus on solving the privacy
issue on shared data using privacy-preserving public auditing
mechanism. The public verifier is able to verify the integrity
of shared data without retrieving the entire data, also by
keeping the identity of the signer on each block in shared data,
private from the public verifier.

II. EXISTING SYSTEM

The existing mechanism has a significant privacy
issue. In the case of shared data, the information of the users is
leaked to public verifiers. As users no longer physically
possess the storage of their data, traditional cryptographic
primitives for the purpose of data security protection cannot be
directly adopted.

The traditional approach for checking data
correctness is to retrieve the entire data from the cloud, and
then verify data integrity by checking the correctness of
signatures. To securely introduce an effective third-party
auditor (TPA), the following two fundamental requirements
have to be met:

 TPA should be able to efficiently audit the cloud data
storage without demanding the local copy of data, and
introduce no additional on-line burden to the cloud user

 The third-party auditing process should bring in no new
vulner- abilities towards user data privacy

III. PROPOSED SYSTEM

The proposed system uses a privacy-preserving
public au- diting mechanism for shared data in the cloud. In
order to audit shared data integrity without retrieving the
entire data and distinguish the signer, we construct
homomorphism authenticators using Message- Digest
algorithm 5 (MD5) and SHA-256. We further extend our

IJSART - Volume 7 Issue 6 – JUNE 2021 ISSN [ONLINE]: 2395-1052

Page | 226 www.ijsart.com

•

•
•

•mechanism to support batch auditing to improve the efficiency
of verifying multiple auditing tasks. In our system admin
generates a key and it reaches the users with SMTP (Simple
Mail Transfer Protocol). Basically, SMTP are a set of
commands that certify and direct the transfer of electronic
message. Once configured the settings for your e-mail
program, you always ought to set the SMTP server to your
native net Service Provider’s SMTP settings. However, the
incoming mail server (POP3 or IMAP) ought to be set to your
mail account’s server, which can differ based on the SMTP
server.

IV. REQUIREMENT SPECIFICATION

A. Hardware Requirements
• 4GB RAM
• 80GB Hard Disk
• Above 2GHZ Processor

B. Software Requirements
• Language – Java (JDK 1.7)
• OS – Windows 7 32bit
• Database – MySQL Server
• IDE – NetBeans IDE 7.1.2

C. Technologies

JAVA - The Java programming language is a high- level
language that can be characterized by all of the following
buzzwords:

• Simple
• Architecture neutral
• Object oriented
• Portable
• Distributed
• High performance

In Java programming language, all source codes are
developed in Eclipse IDE. Those source files are then
compiled into .class files by the javac compiler A .class file
does not contain code that is native to your processor; it
instead contains byte codes that is executed by Java Virtual
Machine (JVM). The java launcher tool then runs your
application with an instance of the JVM.

Fig. 1: An overview of the software development process

Java Server Pages (JSP) - Java Server Pages (JSP) is a Java
technology that are used by software developers to
dynamically generate XML, HTML or other types of
documents in response to a Web client request. The
technology allows Java code and certain pre-defined actions to
be embedded into static content.

The JSP syntax adds additional XML-like tags, called
JSP actions, that invokes built-in functionality. In addition, the
technology allows for the creation of JSP tag libraries that act
as extensions to the standard XML or HTML tags. Tag
libraries provide platform independent way to extend the
capabilities of a Web server.

JSPs are compiled into Java Servlet by a JSP
compiler to generate a servlet in Java code which is compiled
by the Java compiler, or it may generate byte code for the
servlet directly. JSPs can also be interpreted on-the-fly that
reduces the time taken to reload changes. Java Server Pages
(JSP) technology provides a simplified and fast way to create
dynamic web content. JSP enables rapid development of web-
based applications that are server and platform-independent

Fig. 2: Architecture of JSP

database, regardless of what database management software
is used to control the database. In this way, JDBC is platform
independent

V. SYSTEM OVERVIEW

Fig. 3: System Architecture

In this system, admin has complete access to register
and generate IDs and file keys for Data owners, users and
auditors. When the user wants the specific file, only the user’s
corresponding owner owns its right to upload the

IJSART - Volume 7 Issue 6 – JUNE 2021 ISSN [ONLINE]: 2395-1052

Page | 227 www.ijsart.com

•

•

corresponding file and sends the key and encrypted file to the
user, which the user will send it to auditor to verify the file for
security. Once the auditor checks the file, the auditor sends
back the file to the user in case of file is not corrupted. Else,
the auditor will retrieve the backup file and regenerate it and
send back to the user

A. Data Flow Diagram

Data flow diagrams (DFD) illustrate how data is
handled by a system in terms of inputs and outputs. Data flow
diagrams is used to provide a clear representation of any
business function. The technique starts with an overall picture
and continues by analyzing each of the functional areas of
interest. This analysis can be carried out in the level of detail
required. The technique makes use of a method called top-
down expansion to conduct the analysis. DFD is also known
as a Process Model.

Servlets – Front End - A Servlet is an object that receives a
request and generates a response. The basic Servlet package
defines Java objects based on Servlet requests and responses,
as well as objects to reflect the Servlet configuration
parameters and execution environment. Servlet may be
packaged in a WAR file as a Web application. Often Servlet
are used in addition with JSPs in a pattern called ”Model 2”,
which follows the model-view-controller (MVC) pattern. The
Servlet lifecycle consists of the following steps:

• Servlet class is loaded by the container during start-up
• The container calls the init() method which initializes the

Servlet and must be called before the Servlet can service
any requests. The init() method is called only once in the
entire lifecycle of a Servlet

• After initialization, servlet can process client requests
• The container calls the service() method of the Servlet for

every request which determines the kind of request being
made and sends it to an appropriate method to handle the
request

B. UML Diagrams

Fig. 4: DFD Level 0

• Finally, the container calls the destroy() method which
takes the Servlet out of service. The destroy() method can
also be called only once in the lifecycle of a Servlet
similar to init() method.

JDBC - Java Database Connectivity (JDBC) is a framework
for Java developers that access information stored in
databases, spreadsheets, and flat files. JDBC is commonly
used to connect a user program to

Unified Modeling Language (UML) is a standard
language for visualizing, documenting, specifying and
constructing the artifacts of software systems. UML can be
represented as a general-purpose visual modeling language to
specify, document, visualize and con- structs software system.
Although UML is generally used to model software systems, it
is not limited within this boundary.

C. Use Case Diagram

A Use Case is an explanation of a systems behavior
from a user standpoint. For system developer, this is a
valuable tool. it’s a standard technique for gathering system
requirements from a user’s perspective. A little stick figure is
used to recognize an actor and ellipse indicates use-case

D. Class Diagram

A class diagram shows the relationships and source
code dependencies among classes in the UML. In this context,
a class defines the variables and methods in an object, which
is a specific entity in a program or unit of code that denotes
that entity. Class diagrams are useful in all forms of object-
oriented programming (OOP).

E. Sequence Diagram

It shows the interaction between a set of objects,
through the messages that may be conveyed between them.
The diagrams consist of interacting objects and actors, with
messages in-between them it is common to focus the model on
scenarios specified by use-cases.

F. Collaboration Diagram

A collaboration diagram, also called a
communication diagram or interaction diagram, is an example
of the relationships and interactions among software objects in
the UML. The diagram mimics a flowchart that represent the
roles, functionality and behavior of individual objects as well
as the overall operation of the system in real time.

G. Activity Diagram

IJSART - Volume 7 Issue 6 – JUNE 2021 ISSN [ONLINE]: 2395-1052

Page | 228 www.ijsart.com

Activity diagrams represent the workflow behavior of
a system. Activities, branches (selections or conditions),
transitions, forks and joins are the main elements in activity
diagram. it is also used to research use case by narrates a
complicated sequential algorithm, what actions need to take
place, when they should occur, and modeling applications
with parallel processes.

VI. SYSTEM IMPLEMENTATION

A. User Registration Module

For the registration of user with identity ID the group
manager randomly selects a number. In the traceability phase,
the group manager adds into the group user list. After the
registration, user receives a private key which is utilized for
group signature generation and file decryption.

B. Public Auditing Module

Homomorphic authenticators are unforgeable
verification. To achieve privacy-preserving public auditing,
we propose to uniquely integrate the Homomorphic
authenticator with MD5 and SHA 256. Homomorphic
authenticators are unforgeable verification metadata generated
from individual data blocks, which can be se- curely
accumulated in such a way to assure an auditor that a linear
combination of data blocks is correctly computed by verifying
only the aggregated authenticator. In our protocol, the linear
combination of sampled blocks in the server’s response is
concealed with ran- domness created by a pseudo random
function (PRF). The proposed scheme is as - Setup Phase and
Audit Phase

C. Sharing Data Module

The canonical application is data sharing. The public
auditing property is beneficial when we expect the delegation
to be systematic and flexible. The schemes enable a content
provider to share data in a confidential and selective way, with
a fixed and small ciphertext expansion, by distributing to each
authorized user a single and small aggregate key.

D. Integrity Checking Module

Supporting data dynamics for privacy-preserving
public risk auditing is of at most importance. In this module,
instead of auditor downloading all the user data and verifying
information for a particular user, he/she can validate particular
user information. This technique achieves privacy- preserving
public risk auditing with support of data dynamics including
block level operations of modification, deletion and insertion.

VII. CONCLUSION

 We proposed a novel privacy-preserving mechanism that
sup- ports public auditing on shared data stored in the
cloud based on blockchain to mainly achieve trustworthy
data integrity as well as the recovery.

 For the future research, our work will be towards how to
avoid this type of re-computation introduced by dynamic
groups while still preserving identity privacy from the
public verifier during the process of public auditing on
shared data.

REFERENCES

[1] B. Wang, B. Li, and H. Li, “Certificateless Public Auditing
for Data Integrity in the Cloud,” Proc. IEEE Conf. Comm.
and Network Security (CNS’13), pp. 276- 284, 2013

[2] B. Wang, B. Li and H. Li, “Public Auditing for Shared
Data with Efficient User Revocation in the Cloud”, Proc.
IEEE INFOCOM, pp. 2904-2912, 2013

[3] C. Wang, S.S. Chow, Q. Wang, K. Ren, and W. Lou,
“Privacy – Preserving Public Auditing for secure cloud
storage”, IEEE Trans. Computers, vol. 62, no. 2, pp. 362-
375, Feb 2013

[4] Cong Wang, Student Member, IEEE, Sherman S.-M.
Chow, Qian Wang, Student Member, IEEE, Kui Ren,
Member, IEEE, and Wenjing Lou, Member, IEEE]

[5] Efficient and Secure Multi-Keyword Search on Encrypted
Cloud Data (Y. Prasanna, Ramesh)

[6] Oruta: Privacy-Preserving Public Auditing for Shared Data
in the Cloud (Boyang Wang, Baochun Li and Hui Li State
Key Laboratory of Inte- grated Services Networks, Xidian
University, Xi’an, China Department of Electrical and
Computer Engineering, University of Toronto,
Toronto,Canada

[7] Panda: Public Auditing for Shared Data with Efficient
User Revocation in the Cloud. (Boyang Wang, Baochun
Li, Member, IEEE, and Hui Li, Member, IEEE)

[8] Remote Data Checking for Network Coding-based
Distributed Storage Systems (Bo Chen, Reza Curtmola
Department of Computer Science New Jersey Institute of
Technology, Giuseppe Ateniese, Randal Burns Department
of Computer Science Johns Hopkins University

[9] Short Group Signatures (Dan Boneh, Stanford University,
Xavier Boyen, and Hovav Shacham, Stanford University)

[10] Storing Shared Data on the Cloud via Security-
Mediator (Boyang Wang, Sherman S.M. Chow, Ming Li,
and Hui Li State Key Laboratory of Integrated Service
Networks, Xidian University, Xi’an, China Department of
Information Engineering, Chinese University of Hong
Kong, Hong Kong Department of Computer Science, Utah
State University, Logan, Utah, USA)

IJSART - Volume 7 Issue 6 – JUNE 2021 ISSN [ONLINE]: 2395-1052

Page | 229 www.ijsart.com

[11] The MD5 Message-Digest Algorithm (RFC1321),
2014

