
IJSART - Volume 7 Issue 5 – MAY 2021 ISSN [ONLINE]: 2395-1052

Page | 669 www.ijsart.com

Novel High Speed Vedic Mathematics Multiplier Using
Mathematics

T.Sowmya1, K. Anitha2, G.Vinatha3

1, 2, 3 Dept of ECE
1, 2, 3 St. Martin’s Engineering College, Dhulapally (v), Kompally, Secunderabad-500100, Telangana State, India.

Abstract- With the advent of new technology in the fields of
VLSI and communication, there is also an ever-growing
demand for high-speed processing and low area design. It is
also a well-known fact that the multiplier unit forms an
integral part of processor design. Due to this regard, high
speed multiplier architectures become the need of the day. In
this project, we introduce a novel architecture to perform high
speed multiplication using ancient Vedic maths techniques. A
new high-speed approach utilizing 4:2 compressors and novel
7:2 compressors for addition has also been incorporated in
the same and has been explored. Upon comparison, the
compressor-based multiplier introduced in this project, is
almost two times faster than the popular methods of
multiplication. With regards to area, a 1% reduction is seen.
The design and experiments were carried out on a Xilinx
14.7i.

Keywords- 4:2 Compressors, 7:2 Compressor, Booth’s
Multiplier, High Speed Multiplier, Modified Booth’s
Multiplier, UrdhwaTiryakbhyam Sutra, Vedic Mathematics

I. INTRODUCTION

The speed of a processor greatly depends on its
multiplier’s performance. This in turn increases the demand
for high speed multipliers, at the same time keeping in mind
low area and moderate power consumption [2]. Over the past
few decades, several new architectures of multipliers have
been designed and explored. Multipliers based on the Booth’s
and modified Booth’s algorithm is quite popular in modern
VLSI design but come along with their own set of
disadvantages. In these algorithms, the multiplication process,
involves several intermediate operations before arriving at the
final answer. The intermediate stages include several
comparisons, additions and subtractions which reduce the
speed exponentially with the total number of bits present in
the multiplier and the multiplicand [5]. Since speed is our
major concern, utilizing such type of architectures is not a
feasible approach since it involves several time consuming
operations. In order to address the disadvantages with respect
to speed of the above mentioned methods, and explored a new
approach to multiplier design based on ancient Vedic
Mathematics. Vedic Mathematics is an ancient and eminent

approach which acts as a foundation to solve several
mathematical challenges encountered in the current day
scenario.

II. VEDIC MULTIPLICATION TECHNIQUE

The use of Vedic mathematics lies in the fact that it
reduces the typical calculations in conventional mathematics
to very simple one. This is so because the Vedic formulae are
claimed to be based on the natural principles on which the
human mind works. Vedic Mathematics is a methodology of
arithmetic rules that allow more efficient speed
implementation. It also provides some effective algorithms
which can be applied to various branches of engineering such
as computing.

A. Urdhva Tiryakbhyam Sutra

The proposed Vedic multiplier is based on the
“Urdhva Tiryakbhyam” sutra (algorithm). These Sutras have
been traditionally used for the multiplication of two numbers
in the decimal number system. In this work, we apply the
same ideas to the binary number system to make the proposed
algorithm compatible with the digital hardware. It is a general
multiplication formula applicable to all cases of
multiplication. It literally means “Vertically and crosswise”. It
is based on a novel concept through which the generation of
all partial products can be done with the concurrent addition of
these partial products. The algorithm can be generalized for n
x n bit number. Since the partial products and their sums are
calculated in parallel, the multiplier is independent of the
clock frequency of the processor. Due to its regular structure,
it can be easily layout in microprocessors and designers can
easily circumvent these problems to avoid catastrophic device
failures. The processing power of multiplier can easily be
increased by increasing the input and output data bus widths
since it has a quite a regular structure. Due to its regular
structure, it can be easily layout in a silicon chip. The
Multiplier based on this sutra has the advantage that as the
number of bits increases, gate delay and area increases very
slowly as compared to other conventional multipliers.

B. Multiplication of Two Decimal Numbers 252 x 846

IJSART - Volume 7 Issue 5 – MAY 2021 ISSN [ONLINE]: 2395-1052

Page | 670 www.ijsart.com

To illustrate this scheme, let us consider the
multiplication of two decimal numbers 252x846 by Urdhva-
Tiryakbhyam method as shown in Fig. 1. The digits on the
both sides of the line are multiplied and added with the carry
from the previous step. This generates one of the bits of the
result and a carry. This carry is added in the next step and
hence the process goes on. If more than one line are there in
one step, all the results are added to the previous carry. In each
step, least significant bit acts as the result bit and all other bits
act as carry for the next step. Initially the carry is taken to be
zero.

III. PROPOSED SYSTEM

I. Vedic Multiplier for 8x8 bit Module:

The 8x8 bit Vedic multiplier module as shown in the
block diagram in Fig. 6 can be easily implemented by using
four 4x4 bit Vedic multiplier modules as discussed in the
previous section. Let’s analyze 8x8 multiplications, say A=
A7 A6 A5 A4 A3 A2 A1 A0 and B= B7 B6 B5B4 B3 B2
B1B0. The output line for the multiplication result will be of
16 bits as – S15 S14 S13 S12 S11 S10 S9 S8 S7 S6S5S4 S3
S2 S1 S0. Let’s divide A and B into two parts, say the 8-bit
multiplicand A can be decomposed into pair of 4 bits AH-AL.
Similarly, multiplicand B can be decomposed into BH-BL.
The 16-bit product can be written as:

Using the fundamental of Vedic multiplication,
taking four bits at a time and using 4-bit multiplier block as
discussed, we can perform the multiplication. The outputs of
4x4 bit multipliers are added accordingly to obtain the final
product. Here total three 8-bit Ripple-Carry Adders are
required as shown in Fig.1

Fig: 1.1 Block Diagram of 8x8 bit Vedic Multiplier

II. Vedic Multiplier for 4X4 bit Module:

Urdhava Tiryakbhyam is a Sanskrit word which
means vertically and crosswire in English. The method is a
general multiplication formula applicable to all cases of
multiplication. It is based on a novel concept through which
all partial products are generated concurrently. Fig
3.2demonstrates a 4 x 4 binary multiplication using this
method. The method can be generalized for any N x N bit
multiplication. This type of multiplier is independent of the
clock frequency of the processor because the partial products
and their sums are calculated in parallel. The net advantage is
that it reduces the need of microprocessors to operate at
increasingly higher clock frequencies. As the operating
frequency of a processor increases the number of switching
instances also increases. This results in more power
consumption and also dissipation in the form of heat which
results in higher device operating temperatures. Another
advantage of Urdhva Tiryakbhyam multiplier is its scalability.
The processing power can easily be increased by increasing
the input and output data bus widths since it has a regular
structure, Due to its regular structure, it can be easily layout in
a silicon chip and also consumes optimum area. As the
number of input bits increase, gate delay and area increase
very slowly as compared to other multipliers. Therefore,
Urdhava Tiryakbhyam multiplier is time, space and power
efficient. The line diagram in fig 3.2 illustrates the algorithm
for multiplying two 4-bitbinary numbers and. The procedure is
divided into 7 steps and each step generates partial products.
Initially as shown in step 1 of fig 3.2, the least significant bit
(LSB) of the multiplier is multiplied with least significant bit
of the multiplicand vertical multiplication). This result forms
the LSB of the product. Instep 2 next higher bit of the
multiplier is multiplied with the LSB of the multiplicand and
the LSB of the multiplier is multiplied with the next higher bit
of the multiplicand(crosswire multiplication).

These two partial products are added and the LSB of
the sum is the next higher bit of the final product and the
remaining bits are carried to the next step. For example, if in
some intermediate step, we get the result as 1101, then 1 will
act as the result bit (referred as rn) and 110 as the carried out
as indicated by the line diagram. The important feature is that
all the partial products and their sums for every step can be
calculated in parallel. Thus, every step has a corresponding
expression as follows:

r0=a0b0. (1)
c1r1=a1b0+a0b1. (2)
c2r2=c1+a2b0+a1b1 + a0b2. (3)
c3r3=c2+a3b0+a2b1 + a1b2 + a0b3. (4)
c4r4=c3+a3b1+a2b2 + a1b3. (5)
c5r5=c4+a3b2+a2b3. (6)
c6r6=c5+a3b3 (7)

IJSART - Volume 7 Issue 5 – MAY 2021 ISSN [ONLINE]: 2395-1052

Page | 671 www.ijsart.com

With c6r6r5r4r3r2r1r0 being the final product. Hence
this is the general mathematical formula applicable to all cases
of multiplication and its hardware architecture is shown in
fig3.1. In order to multiply two 8-bit numbers using 4-bit
multiplier we proceed as follows. Consider two 8-bitnumbers
denoted as AHAL and BHBL where AH and BH corresponds
to the most significant 4 bits, AL and BL are the least
significant 4 bits of an 8-bit number. When the numbers are
multiplied according to Urdhava Tiryakbhyam (vertically and
crosswire) method, we get,

AH AL
BH BL

(AH x BH) + (AH x BL + BH x AL) + (AL x BL).

Thus, we need four 4-bit multipliers and two adders
to add the partial products and 4-bit intermediate carry
generated. Since product of a 4 x 4 multiplier is8 bits long, in
every step the least significant 4 bits correspond to the product
and there maining 4 bits are carried to the next step. This
process continues for 3 steps in this case. Similarly, 16-bit
multiplier has four 8 x 8 multiplier and two 16-bit adders with
8bit carry. Therefore, we see that the multiplier is highly
modular in nature. Hence it leads to regularity and scalability
of the multiplier layout.

Each block as shown above is 2x2 bit Vedic
multiplier. First 2x2 bit multiplier inputs are A1A0 and B1B0.
The last block is 2x2 bit multiplier with inputs A3 A2 and B3
B2. The middle one shows two 2x2 bit multiplier with inputs
A3 A2 & B1B0 and A1A0 & B3 B2. So, the final result of
multiplication, which is of 8 bit, S7 S6S5S4 S3 S2 S1 S0. To
understand the concept, the Block diagram of 4x4 bit Vedic
multiplier is shown in Fig. 5. To get final product (S7 S6 S5
S4 S3 S2 S1 S0), four 2x2 bit Vedic multiplier (Fig. 3) and
three 4-bit Ripple-Carry (RC) Adders are required. The
proposed Vedic multiplier can be used to reduce delay. Early
literature speaks about Vedic multipliers based on array
multiplier structures. On the other hand, we proposed a new
architecture, which is efficient in terms of speed. The
arrangements of RC Adders shown in Fig. 5, helps us to
reduce delay. Interestingly, 8x8 Vedic multiplier modules are
implemented easily by using four 4x4 multiplier modules.

Fig: 1.2 Block Diagram of 4x4 bit Vedic Multiplier

IV. WORKING OF PROPOSED SYSTEM:

Project Navigator Overview

Project Navigator organizes your design files and
runs processes to move the design from design entry through
implementation to programming the targeted Xilinx device.
Project Navigator is the high-level manager for your Xilinx
FPGA and CPLD designs, which allows you to do the
following:

1. Add and create design source files, which appear in
the Sources window

2. Modify your source files in the Workspace
3. Run processes on your source files in the Processes

window
4. View output from the processes in the Transcript

window

The following Fig 4.1 shows the Project Navigator
main window, which allows you to manage your design
starting with design entry through device configuration

IJSART - Volume 7 Issue 5 – MAY 2021 ISSN [ONLINE]: 2395-1052

Page | 672 www.ijsart.com

Fig: 1.3 Project Navigator window

1. Toolbar
2. Sources window
3. Processes window
4. Workspace
5. Transcript window

The first step in implementing your design for a
Xilinx FPGA or CPLD is to assemble the design source files
into a project. The Sources tab in the Sources window shows
the source files you create and add to your project, as shown in
the following fig. For information on creating projects and
source files, see Creating a Project and Creating a Source File.

Fig: 1.4 Design view drop down list

BLOCK DIAGRAM (8X8)

Fig: 1.5 block diagram of top level model

After the HDL synthesis phase of the synthesis
process , we can display the schematic representation by
selecting implementation in the source tab from the design
view drop-down list. Now select the top module in the
processes tab expand synthesize-XST. Double click view
schematic, the source file is displayed in schematic form in the
work space. It is nothing but register transfer level (RTL)
viewer ,this view displays gates and elements.(The fig 5.1
show the RTL schematic diagram of 8X8 multiplier).

Technology Schematic

Fig: 1.6 Technological schematic of top level model
On double clicking the fig5.1 RTL schematic, the top-level
model as shown in fig5.2 is obtained.

V. SYNTHESIS RESULTS

HDL Synthesis Report
Macro Statistics
Xors : 55

IJSART - Volume 7 Issue 5 – MAY 2021 ISSN [ONLINE]: 2395-1052

Page | 673 www.ijsart.com

1-bit xor3 : 55

Device utilization summary:

Selected Device : 3s1200efg320-5
Number of Slices: 80 out of 8672 0%
Number of 4 input LUTs: 139 out of 17344 0%
Number of IOs: 32
Number of bonded IOBs: 31 out of 250 12%

Summary

Delay : 31.663ns (Levels of
Logic = 26)
Source : a<1> (PAD)
Destination : p<15> (PAD)
Data Path : a<1> to p<15>

Gate Net
Cell: in->out fanout Delay Delay Logical Name (Net Name)

IBUF:I->O 14 1.106 1.002 a_1_IBUF (a_1_IBUF)
LUT4:I0->O 2 0.612 0.532 u1/co_and00001 (c1)
LUT4:I0->O 3 0.612 0.603 u3/co_and00001 (c3)
LUT4:I0->O 2 0.612 0.449u5/co1 (c5)
LUT3:I1->O 2 0.612 0.532 u7/Mxor_s_xo<0>1 (s4)
LUT4:I0->O 30.612 0.454 u9/Mxor_s_xo<0>1 (s6)
LUT4:I3->O 3 0.612 0.454 u12/Mxor_s_xo<0>1 (s8)
LUT4:I3->O 2 0.6120.532 u15/co_and00001 (c15)
LUT4:I0->O 3 0.612 0.603 u17/Mxor_s_xo<0>1
(s12)
LUT3:I0->O 2 0.612 0.449 u20/co1 (c20)
LUT3:I1->O 3 0.612 0.481 u23/Mxor_s_xo<0>1 (s17)
LUT3:I2->O 2 0.612 0.449 u27/co1 (c27)
LUT4:I1->O 2 0.612 0.532 u31/Mxor_s_xo<0>1 (s24)
LUT3:I0->O 2 0.612 0.532 u34/Mxor_s_xo<0>1 (s27)
LUT4:I0->O 2 0.612 0.532 u35/co_and00001 (c35)
LUT4:I0->O 2 0.612 0.410 u38/co1 (c38)
LUT3:I2->O 2 0.612 0.532 u42/Mxor_s_xo<0>1 (s33)
LUT4:I0->O 2 0.612 0.449 u45/Mxor_s_xo<0>1 (s36)
LUT3:I1->O 2 0.612 0.532 u46/co1 (c46)
LUT4:I0->O 2 0.612 0.532 u48/Mxor_s_xo<0>1 (s38)
LUT3:I0->O 2 0.612 0.449 u50/co1 (c50)
LUT4:I1->O 2 0.612 0.383 u52/Mxor_s_xo<0>1 (s41)
LUT4:I3->O 1 0.612 0.387 u54/co44_SW0 (N91)
LUT3:I2->O 2 0.612 0.532 u54/co44 (c54)
LUT3:I0->O 1 0.612 0.357 u56/co_and00001
(p_15_OBUF)
OBUF:I->O 3.169 p_15_OBUF (p<15>)
--
Total 31.663ns (18.963ns logic, 12.700ns route)

(59.9% logic, 40.1% route)

Simulation is performed to verify RTL code and to
confirm that the design is functioning as intended .So
behavioral simulation is performed by following the below
steps

1. Compiling the Verilog simulation library.
2. In the design panel ,Select behavioral simulation .
3. In the hierarchy pane , Select the test bench file to

simulate.
4. Click on the simulate behavioral model .

Fig: 1.7 8X8 bit multipler output waveform

a[7:0]=01100110 (the decimal representation for a is 102) and
b[7:0]=11000011(the decimal representation for a is 195).
On multiplying the above two inputs the result obtained is
p[15:0]=010011011011001(the decimal representation for a is
19890).

Fig: 1.8 8X8 bit multipler output waveform

a[7:0]=10101110 (the decimal representation for a is 174) and
b[7:0]=11010011(the decimal representation for a is 211).
On multiplying the above two inputs the result obtained
isp[15:0]=100011110110101 (the decimal representation for a
is 36714).

IJSART - Volume 7 Issue 5 – MAY 2021 ISSN [ONLINE]: 2395-1052

Page | 674 www.ijsart.com

BLOCK DIAGRAM(4X4)

Fig: 1.9 block diagram of top level model

After the HDL synthesis phase of the synthesis
process , we can display the schematic representation by
selecting implementation in the source tab from the design
view drop-down list. Now select the top module in the
processes tab expand synthesize-XST. Double click view
schematic, the source file is displayed in schematic form in the
workspace. It is nothing but register transfer level (RTL)
viewer ,this view displays gates and elements.(The fig 5.5
show the RTL schematic diagram of 4X4 multiplier).

Technology Schematic(4X4)

Fig: 1.10 Technological schematic of top level mo

HDL Synthesis Report
Macro Statistics
Xors : 12
1-bit xor2 : 4
1-bit xor3 : 8
Device utilization summary:
Selected Device : 3s1200efg320-5
Number of Slices :18 out of 8672 0%
Number of 4 input LUTs:31 out of 17344 0%
Number of IOs :16
Number of bonded IOBs :16 out of 250 6%

Delay :12.673ns (Levels of
Logic = 9)
Source:a<1> (PAD)
Destination :p<7> (PAD)
Data Path: a<1> to p<7>

Gate Net
Cell:in->out fanout Delay Delay Logical Name (Net
Name)

IBUF:I->O 6 1.106 0.721 a_1_IBUF (a_1_IBUF)
LUT4:I0->O 2 0.612 0.532 u1/co1 (c1)
LUT4:I0->O 3 0.612 0.603 u3/co1 (c3)
LUT4:I0->O 3 0.612 0.603 u5/co1 (c5)
LUT3:I0->O 2 0.612 0.532 u7/co1 (c7)
LUT3:I0->O 2 0.612 0.383 u11/Mxor_s_xo<0>1 (s7)
LUT4:I3->O 2 0.612 0.383 u12/co1 (c12)
LUT4:I3->O 1 0.612 0.357 u13/co1 (p_7_OBUF)
OBUF: I->O 3.169 p_7_OBUF (p<7>)
--
Total 12.673ns (8.559ns logic, 4.114ns route)
(67.5% logic, 32.5% route)

Simulation is performed to verify RTL code and to
confirm that the design is functioning as intended .So
behavioral simulation is performed by following the below
steps

1. Compiling the Verilog simulation library.
2. In the design panel ,Select behavioral simulation .
3. In the hierarchy pane , Select the test bench file to

simulate.
4. Click on the simulate behavioral model .

Fig: 1.11 4X4 bit multipler output waveform

a[3:0]= 1110(the decimal representation for a is 14) and
b[3:0]= 1010(the decimal representation for a is 10).

IJSART - Volume 7 Issue 5 – MAY 2021 ISSN [ONLINE]: 2395-1052

Page | 675 www.ijsart.com

On multiplying the above two inputs the result obtained is
p[7:0]=10001100(the decimal representation for p is 140).

Fig: 1.12 4X4 bit multipler output waveform

a[3:0]=1110 (the decimal representation for a is 14) and
b[3:0]=0101(the decimal representation for a is 5).
On multiplying the above two inputs the result obtained is
p[7:0]=01000110(the decimal representation for p is 70).

VI. CONCLUSION

This paper presents a highly efficient method of
multiplication – “Urdhva Tiryakbhyam Sutra” based on Vedic
mathematics. It gives us method for hierarchical multiplier
design and clearly indicates the computational advantages
offered by Vedic methods. Hence our motivation to reduce
delay is finely fulfilled. Therefore, we observed that the Vedic
multiplier is much more efficient than Array and Booth
multiplier in terms of execution time (speed). An awareness of
Vedic mathematics can be effectively increased if it is
included in engineering education. In future, all the major
universities may set up appropriate research centers to
promote research works in Vedic mathematics. Vedic
multiplier has regular and coherent in its structure so that it
can be easily laid on silicon and also it takes less power
compared to normal booth multiplier. Future work lies in the
direction of introducing pipeline stages in the multiplier
architecture for maximizing throughput and also, we can
implement for 64 – bit also.

REFERENCES

[1] Jagadguru Swami, Sri Bharati Krishna, Tirthaji Maharaja,
“Vedic Mathematics or Sixteen Simple Mathematical
Formulae from the Veda, Delhi (1965)”, Motilal
Banarsidas, Varanasi, India, 1986.

[2] M. Morris Mano, “Computer System Architecture”, 3rd
edition, Prientice-Hall, New Jersey, USA, 1993, pp. 346-
348.

[3] H. Thapliyal and H.R Arbania. “A Time-Area-Power
Efficient Multiplier and Square Architecture Based on
Ancient Indian Vedic Mathematics”, Proceedings of the
2004 International Conference on VLSI (VLSI’04), Las
Vegas, Nevada, June 2004, pp. 434-439.

[4] P. D. Chidgupkar and M. T. Karad, “The Implementation
of Vedic Algorithms in Digital Signal Processing”, Global
J. of Engg. Edu, Vol.8, No.2, 2004, UICEE Published in
Australia.

[5] Thapliyal H. and Srinivas M.B, “High Speed Efficient
NxN Bit Parallel Hierarchical Overlay Multiplier
Architecture Based on Ancient Indian Vedic
Mathematics”, Transactions on Engineering, Computing
and Technology, 2004, Vol.2.

[6] Harpreet Singh Dhillon and Abhijit Mitra, “A Reduced–
Bit Multiplication Algorithm for Digital Arithmetics”,
International Journal of Computational and Mathematical
Sciences 2.2 @ www.waset.orgSpring2008.

[7] Honey Durga Tiwari, Ganzorig Gankhuyag, Chan Mo
Kim and Yong Beom Cho, “Multiplier design based on
ancient Indian Vedic Mathematician”, International SoC
Design Conference, pp. 65- 68, 2008.

[8] Parth Mehta and Dhanashri Gawali, “Conventional versus
Vedic mathematics method for Hardware implementation
of a multiplier”, International conference on Advances in
Computing, Control, and Telecommunication
Technologies, pp. 640-642, 2009.

[9] Ramalatha, M.Dayalan, K D Dharani, P Priya, and S
Deoborah, “High Speed Energy Efficient ALU Design
using Vedic Multiplication Techniques”, International
Conference on Advances in Computational Tools for
Engineering Applications (ACTEA) IEEE, pp. 600-603,
July 15-17, 2009.

[10] Sumita Vaidya and Deepak Dandekar, “Delay-Power
Performance comparison of Multipliers in VLSI Circuit
Design”, International Journal of Computer Networks &
Communications (IJCNC), Vol.2, No.4, pp. 47-56, July
2020.

[11] S.S.Kerur, Prakash Narchi, Jayashree C N, Harish
MKittur and Girish V A “Implementation of Vedic
Multiplier For Digital Signal Processing” International
conference on VLSI communication & instrumentation
(ICVCI), 2011.

[12] Asmita Haveliya, “A Novel Design for High-Speed
Multiplier for Digital Signal Processing Applications
(Ancient Indian Vedic mathematics approach)”,
International Journal of Technology and Engineering
System (IJTES), Vol.2, No.1, pp. 27-31, Jan-March,
2011.

[13] Prabha S., Kasliwal, B.P. Patil and D.K. Gautam,
“Performance Evaluation of Squaring Operation by Vedic

IJSART - Volume 7 Issue 5 – MAY 2021 ISSN [ONLINE]: 2395-1052

Page | 676 www.ijsart.com

Mathematics”, IETE Journal of Research, vol.57, Issue 1,
Jan-Feb 2018.

[14] Aniruddha Kanhe, Shishir Kumar Das and Ankit Kumar
Singh, “Design and Implementation of Low Power
Multiplier Using Vedic Multiplication Technique”,
(IJCSC) International Journal of Computer Science and
Communication Vol. 3, No. 1, pp. 131-132, January-June
2012.

[15] Umesh Akare, T.V. More and R.S. Lonkar, “Performance
Evaluation and Synthesis of Vedic Multiplier”, National
Conference on Innovative Paradigms in Engineering &
Technology (NCIPET-2012), Proceedings published by
International Journal of Computer Applications (IJCA),
pp. 20-23, 2012.

