
IJSART - Volume 7 Issue 5 – MAY 2021 ISSN [ONLINE]: 2395-1052

Page | 628 www.ijsart.com

Implementation of Enterprise Application Using Micro

services on Kubernetes High Availability Cluster

Rishabh Pandey1, Kartik Kumbhakarna2, Gitesh Brahmankar3, Mayur Baravkar4, Vishakha Bhadane5
1, 2, , 4 Dept of Computer Engineering

5Assistant Professor, Dept of Computer Engineering
1, 2, 3, 4, 5 Jawahar Education Society'sInstitute of Technology, Management & Research, Nashik

Abstract- Small and loosely coupled modules can be

developed and deployed independently to compose an

application this is represented by a new architectural style

called Microservices. Maintainability, flexibility and scaling

can be achieved using this method and also this aims at

decreasing downtime in case of upgrade or failure.

Kubernetes is one of the Enablers, which is an open-source

platform that provides mechanisms including deployment,

maintenance, and scaling containerized applications across a

knot of hosts. To improve the availability of applications,

Kubernetes allows healing through failure recovery actions.

As our ultimate goal is to originate architectures to enable

high availability (HA) with Kubernetes for micro service

based application.

Keywords- Micro services; Containers; Orchestration; Docker;

Kubernetes; Failure; Availability

I. INTRODUCTION

 By using APIs, a micro service can be built around a

separate business functionality, it runs in its own process and

communicates through lightweight mechanisms. Micro

services, comprising of an application, can be written using

different programming languages and different storage

technologies can be used. The drawbacks of the monolithic

approach can be approached by Micro services, where the

application is a single deployable unit suffering from”

dependency hell” and creates barriers for scalability and high

availability. Micro services increase velocity and quality. By

being small, they can restart faster after upgrade or for failure

recovery. Micro services are loosely coupled and failure of

one micro service will not affect other micro services of the

application. These factors impact the availability of

applications as they decrease inaction.Moreover, the fine-

grained architecture makes scaling flexible as each service can

evolve at its own workload pace. To leverage all these

benefits, one needs to use technologies lined up with the

characteristics of the architectural style. Containers are

lightweight and have faster start up than virtual machines

(VMs). Thus, the containerization of micro services can help

to speed up the restart after upgrade or for failure recovery. In

our experiments, we use Docker, the leading container

platform. There is also a need for an orchestration platfom to

manage the deployment and operations of containers.

Kubernetes is an open-source platform that manages Docker

containers in a cluster. Along with the automateddeployment

and scaling of containers, the healing is provided by

Kubernetes automatically and it restarts failed containers and

rescheduling them when their hosts die. This capability

improves the application’s availability. The architectural style

of micro services is being adopted by practitioners and

investigated from different perspectives by researchers in

academia as well. In, the authors assessed the effectiveness of

the HA mechanisms offered by Kubernetes while setting its

monitoring intervals to their minimum values. The authors

concluded that Kubernetes still needs improvement to provide

HA. Such a configuration is not recommended and may lead

to false node failure detection.

II. LITERATURE SURVEY

1)The paper titled OpenStack and Docker: building a high-

performance IaaS platform for interactive social media

applications describes about the Nova-Docker plugin which

enables the fast and efficient provisioning of computing

resources which can run as a Hypervisor that helps to manage

the growth of application users. This is built using an

OpenStack IaaS which enables to control data centers for

cloud computing. OpenStack standard architecture contains

three important roles: Nova, that manages the computation,

storage resources are managed by Cinder. The entire

networking resources are managed by Neutron across multiple

data center. NUBOMEDIA is another approach which enables

(PaaS) interactive social media through cloud. The major

technologies adopted are Kornet Media Server (KMS) which

provides interactive communications through WebRTC media

server. Open Baton which manages the lifecycle of media

server capabilities using Docker containers. In order to host

applications which consumes media server capabilities, Open

Shift Origin is enabled. Developers and Administrators are

interested more in Docker container than Kernel-based Virtual

machine mainly for its Fast Boot time, Direct Access to

containers, it can be run on any hardware that supports Linux

IJSART - Volume 7 Issue 5 – MAY 2021 ISSN [ONLINE]: 2395-1052

Page | 629 www.ijsart.com

based OS. Docker containers are lightweight, minimizing the

bandwidth needed for deployment using required resources

2) The paper titled Evaluation of Docker as Edge Computing

Platform describes about how to overcome problems such as

High latency, network bottleneck and network congestion. We

can achieve this from moving centralized to decentralized

paradigm, Edge computing will be able to reduce application

response time for better user experience. Edge computing is

enabled with Docker, a platform of container-based

technology that has more advantages over VM based Edge

computing. This paper mainly evaluates the fundamental

requirement for EC that are 1) Deployment and Termination

which mainly describes the platform that provides an easy way

to manage, install and configure services to deploy the low-

end devices. 2) Resource and Service Management that allows

users to use the services even when the resources are out of

limit. 3) Fault Tolerance which relies on the High availability

and reliability to the user. 4) Caching allows the user to

experience better performance where Docker images can

cache at the Edge. One such that enables Docker concept

which was applied on Hadoop Streaming which reduces the

setup time and configuration errors. Overall, there are areas of

improvement yet, it provides elasticity and good performance

3)The paper titled Model-Driven Management of Docker

Containers focuses on management of docker containers,

mainly where users findlow-level system issues and it

describes how modelling Docker containers helps to achieve

sustainable deployment and management of Docker

containers. Indeed, Docker system has more advantages than

cloud-computing like Azure, Amazon; the Docker containers

attains drawbacks in synchronizing between deployed and

designed containers. This paper provides a model driven

approach to manage not just to design the containers

architecture but also represents the deployed containers in

target systems. The motivation for this model-driven approach

is that present docker containers lacks verification and

resource management. The overview of the architecture

described in this paper tells us about the three components

Docker Model, Connector and Execution Environment.

III. IDENTITY, RESEARCH AND COLLECT IDEA

A software requirements speciation (SRS) is a

detailed description of a software system to be developed with

its functional and non-functional requirements. The SRS is

developed based the agreement between customer and

contractors. It may include the use cases of how user is going

to interact with software system. The software requirement

speciation document consistent of all necessary requirements

required for project development. To develop the software

system, we should have clear understanding of Software

system. To achieve this, we need to continuous

communication with customers to gather all requirements. A

good SRS dene the how Software System will interact with all

internal modules, hardware, communication with other

programs and human user interactions with wide range of real

life scenarios. Using the Software requirements

specication(SRS) document on QA lead, managers create test

plan. It is very important that testers must be cleared with

every detail species in this document in order to avoid faults in

test cases and its expected Results

3.1.1 Project Scope

The main futuristic perspective behind this project is

to develop a Kubernetes enables healing through its failure

recovery actions and they are often evaluated through internal

operations. For these types of operations, Kubernetes reacts

reasonably well in comparison with its reaction to failures

resulting from external triggers. According to our experiments,

in the latter, the downtime is significantly higher

3.1.2 User Classes and characteristics

1)The class diagram is a static diagram. It represents the static

view of an application. Class diagram is not only used for

visualizing, describing and documenting different aspects of a

system but also for constructing executable code of the

software application.

2)The class diagram describes the attributes and operations of

a class and also.

3.1.3 Assumptions and Dependencies

Assumptions An assumption is something that you

assume to be the case, even without proof. For example,

people might make the assumption that you’re a nerd if you

wear glasses, even though that’s not true or very nice. What

are Dependencies in Project Management? Each item relies on

the output of another activity in some way and contributes to

the end result of the project. The relationship between two

tasks is dened as the dependency between them.

3.2 FUNCTIONAL REQUIREMENT

A functional requirement denes a function of system

or its component, where function is described as speciation of

behavior between output and input. It involve technical details

data manipulation and processing and other specific

functionality that dene system is supposed to accomplish.

3.2.1 Pods failure Detection and Identification

IJSART - Volume 7 Issue 5 – MAY 2021 ISSN [ONLINE]: 2395-1052

Page | 630 www.ijsart.com

This is the basic and initiative functionality of the

proposed idea.this functional requirement mainly deals The

common way of showing Kubernetes’ reaction to pod failure

is to delete the pod using the administrative commands in the

CL.

3.2.2 Scale down and Scale up

In the pod failure Scenario I, the reaction time is

0.041 seconds which is significantly better than the 0.496

seconds of the pod process failure (Scenario II). The reason is

that in the former, the termination is triggered from inside of

Kubernetes, which then reacts according to the termination

procedure, while in the latter it is up to the Kubelet’s health

check to detect that the pod is no longer present and this

depends on how close to the next health check the failure

happens.

An important observation on the experiments is

shown in Fig. 2. Although the pod process is failed forcefully

in case of Scenario II the orphaned application container of the

pod receives a graceful termination signal. Thus, the pod

process failure is detected by the Kubelet, which waits for

Docker and will not start the repair process before it makes

sure that the application container of the pod is terminated as

well. This means graceful termination of the application

container whose duration depends on Docker’s configuration,

impacts and delays the service recovery time begin center

3.2.3 High Availability cluster

High availability clusters are groups of hosts

(physical machines) that act as a single system and provide

continuous availability. High availability clusters are used for

mission critical applications like databases, eCommerce

websites, and transaction processing systems. High

availability clusters are typically used for load balancing,

backup, and failover purposes. To successfully configure a

high availability (HA) cluster, all hosts in the cluster must

have access to the same shared storage. In any case of failure,

a virtual machine (VM) on one host can failover to another

host, without any downtime. The number of nodes in a high

availability cluster can vary between two to dozens of nodes,

but storage administrators should be aware that adding too

many virtual machines and hosts to one HA cluster can make

load balancing difficult.

4.2 FUNCTION MODEL AND DESCRIPTION

4.2.1 Data Flow Diagram

4.2.2 Data Flow Diagram Level 0

A level 0 data flow diagram (DFD), also known as a

context diagram, shows a data system as a whole and

emphasizes the way it interacts with external entities. This

DFD level 0 example shows how such a system might

function within a typical retail.

Figure 4.3: Data Flow Diagram

Level 0

4.2.3Data Flow Diagram Level 1

As described previously, context diagrams (level 0

DFDs) are diagrams where the whole system is represented as

a single process. A level 1 DFD notates each of the main sub-

processes that together form the complete system. We can

think of a level 1 DFD as an view” of the context diagram.

Figure 4.4: Data Flow Diagram Level 1

4.3 ACTIVITY DIAGRAM

An activity diagram visually presents a series of

actions or ow of control in a system similar to aowchart or a

data ow diagram. Activity diagrams are often used in business

process modeling. They can also describe the steps in a use

case diagram.

IJSART - Volume 7 Issue 5 – MAY 2021 ISSN [ONLINE]: 2395-1052

Page | 631 www.ijsart.com

Activities modeled can be sequential and concurrent.

Client-side: Front-end App and Browser Extension.

API Gateways: Auth API and Main API

Micro services: Sign in, photo and payment Micro services

4.4 ARCHITECTURAL DESIGN

4.4.1 Architectural Description

Goal Initialization:- Users can have one of two goals:

1) Deploying containerized applications in Kubernetes cluster

running in a private cloud

2) Evaluation of the availability of micro service based

applications deployed with Kubernetes.

Figure 4.6: Architectural View

We used the architecture in Our cluster is composed

of three VMs running on an OpenStack cloud. Ubuntu 16.04 is

the OS on all VMs and Docker 17.09 is running as the

container engine. Kubernetes 1.8.2 is running on all nodes.

Network Time Protocol (NTP) is used for time

synchronization between nodes in the cluster. The

microservice we use in these experiments is VLC video

streaming. The pod template provided to the deployment

controller contains the container image of the streaming

server, which once deployed will stream from a file. In our

experiments, the desired number of pods that the deployment

controller needs to maintain is one. This can help to

understand the achievable availability through the Kubernetes’

repair action by itself. Our video streaming micro service is

stateless and in case of failure, the video will restart from the

beginning of the file. We identified two sets of failure

scenarios. In the first set, an application failure is due to a pod

failure whereas in the second set it is due to a node failure. In

each set, we distinguish between two failure scenarios.

Scenario I designates a failure simulated by an administrative

operation internal to Kubernetes while Scenario II is simulated

by a trigger external to Kubernetes. Below, we explain each

failure scenario in details. The results of our experiments for

these failure scenarios are presented in

IV. APPLICATIONS DEPLOYED

WITH KUBERNETES

Availability is a nonfunctional requirement which is

measured as the outage time over a given period [10]. High

availability is achieved when the system is available at least

99.999per year . Some characteristics of micro services and

containers such as being small and lightweight naturally

contribute to improving availability when supported by

Kubernetes’ healing capability . In this section, we describe

the experiments we conducted to evaluate from an availability

perspective the deployment of a micro service based

application in a Kubernetes cluster running in a private cloud

Kubernetes reacts to a pod failure by automatically starting a

new pod and therefore it is expected to improve the

availability of the service provided by the pod. The common

practice to evaluate Kubernetes’ reaction to failure is to

simulate failures through administrative operations (e.g. delete

the pod or the node) using the Kubernetes command line

interface (CLI). Due to the use of Kubernetes’ administrative

operations, such a “failure” is not a spontaneous event that

Kubernetes needs to detect and react to. Instead, the operation

is executed by Kubernetes in due order often in a graceful

manner. Therefore, these operations cannot reflect common

execution failure scenarios, which are anything but graceful

and happen spontaneously as a result of external failure events

(e.g. process or physical node crash). Drawing conclusions

based on such administrative operations would not be

accurate.

A. Availability metrics

The metrics we use to evaluate Kubernetes from

availability perspective are defined hereafter.

Reaction Time: The time between the failure event we

introduce and the first reaction of Kubernetes that reflects the

failure event was detected.

Repair Time: The time between the first reaction of

Kubernetes and the repair of the failed pod.

Recovery Time: The time between the first reaction of

Kubernetes and when the service is available again.

Outage Time: The duration in which the service was not

available. It represents the sum of the reaction time and the

recovery time.

4.4.4 Micro services

IJSART - Volume 7 Issue 5 – MAY 2021 ISSN [ONLINE]: 2395-1052

Page | 632 www.ijsart.com

Micro services” - yet another new term on the

crowded streets of software architecture. Although our natural

inclination is to pass such things by with a contemptuous

glance, this bit of terminology describes a style of software

systems that we are finding more and more appealing. We’ve

seen many projects use this style in the last few years, and

results so far have been positive, so much so that for many of

our colleagues this is becoming the default style for building

enterprise applications. Sadly, however, there’s not much

information that outlines what the micro service style is and

how to do it. In short, the micro service architectural style is

an approach to developing a single application as a suite of

small services, each running in its own process and

communicating with lightweight mechanisms, often an HTTP

resource API. These services are built around business

capabilities and independently deployable by fully automated

deployment machinery. There is a bare minimum of

centralized management of these services, which may be

written in different programming languages and use different

data storage technologies.

4.4.5 Container Deployment

Container Deployment is the next step in the drive to

create a more flexible and efficient model. Much like VMs,

containers have individual memory, system files, and

processing space. However, strict isolation is no longer a

limiting factor. Multiple applications can now share the same

underlying operating system. This feature makes containers

much more efficient than full-blown VMs. They are portable

across clouds, different devices, and almost any OS

distribution.

4.4.6 Containers Orchestration

Container orchestration is all about managing the

lifecycles of containers, especially in large, dynamic

environments. Software teams use container orchestration to

control and automate many tasks:

Provisioning and deployment of containers.

Redundancy and availability of containers.

Scaling up or removing containers to spread application load

evenly across host infrastructure.

Movement of containers from one host to another if there is a

shortage of resources in a host, or if a host die.

V. CONCLUSION

Kubernetes enables healing through its failure

recovery actions and they are often evaluated through internal

operations. For these types of operations, Kubernetes reacts

reasonably well in comparison with its reaction to failures

resulting from external triggers. It is important to note that the

default configuration of Kubernetes results in a significant

service outage in case of externally triggered node failure. As

our measurements show for these types of failures, the outage

time is about 5 minutes, which is equivalent to the amount of

downtime allowed in a one-year period for a highly available

system. These differences indicate that high availability

requirements are not satisfied automatically by deploying an

application or a micro service with Kubernetes.

REFERENCES

[1] S. Newman, Building Microservices: Designing Fine-

Grained Systems. O’Reilly Media, Inc., 2015.

[2] “Microservices,” martinfowler.com. [Online]. Available:

https://martinfowler. com/articles/microservices.html.

[Acc.: 06-Feb-18].

[3] N. Dragoni et al., “Microservices: Yesterday, Today, and

Tomorrow,” in Present and Ulterior Software

Engineering, Springer, Cham, 2017, pp. 195–216.

[4] D. Jaramillo, D. V. Nguyen, and R. Smart, “Leveraging

microservices architecture by using Docker technology,”

in SoutheastCon 2016, 2016, pp. 1–5

[5] Kanso, H. Huang, I. T. J. Watson, and A. Gherbi, “Can

Linux Containers Clustering Solutions offer High

Availability?,” p. 6.

[6] “Docker - Build, Ship, and Run Any App, Anywhere.”

[Online]. Available: https://www.docker.com/. [Acc.: 02-

Jan-18].

[7] “Kubernetes,” Kubernetes. [Online]. Available:

https://kubernetes.io/. [Acc.:

[8] 24-Jan-18].

