
IJSART - Volume 7 Issue 3 – MARCH 2021 ISSN [ONLINE]: 2395-1052

Page | 915 www.ijsart.com

Scheduling Job Based on Priority Allocation With
Machine Variability

R.Nithya
Dept of M.E

A.R.J College of Engineering and Technology

Abstract- Research focus on today's large-scale data
analytics, approximation jobs that allow partial execution of
their many tasks to achieve valuable results have played a
significant role. This fact can be utilized to maximize the
system utility of a big data computing cluster by choosing
proper tasks in scheduling for each approximation job. The
job execution can be based on the dependencies of the each
job. Each and every job contains individual sub tasks. Each
job execution based on the dependencies of the other job. The
independent of the job can be executed first and then other job
can be executed. The dependencies can be categorized into
two types one is direct dependencies and other one is indirect
dependencies. The proposed method can be allocating the
resource can be based on the dependencies and the particular
job execution and its weight of the each job. The job can be
either it is single job or batch based job.

Keywords- Job Scheduling, performance evaluation, mean-
field limit.

I. INTRODUCTION

Over the past decade, big data computing clusters
with hundreds or thousands of servers have become
increasingly common. Such data-parallel clusters usually
deploy highly scalable computing frameworks like Map
Reduce and Apache Tez to run data-intensive parallel jobs for
improving utilization and cost efficiency. The performance of
parallel jobs is often constrained by the cluster’s hard-to-scale
network for several reasons. First, jobs use network to read
input data, as the input is randomly spread across several
machines in a cluster. Second, jobs usually consist of
intermediate data shuffle phases such as shuffle and join.
Finally, when data flows generated by consecutive jobs are
dependent, network is also used for answering dependent data
between jobs. Meanwhile, recent researches have shown that
cross-rack network traffic is much higher than the cross-node
traffic in clusters. Thus, our goal is to reduce cross-rack
network traffic by improving rack-level data locality. To
improve the locality, several previous job schedulers employ
techniques like delay scheduling to optimize input data
locality, but do not address other network-intensive phases.
Recent effort Shuffle Watcher attempts to localize.

II. BACKGROUND THEORY

Cloud computing is the on-demand availability
of computer system resources, especially data
storage and computing power, without direct active
management by the user. The term is generally used to
describe data centers available to many users over the Internet.
Large clouds, predominant today, often have functions
distributed over multiple locations from central servers. If the
connection to the user is relatively close, it may be designated
an edge server. Clouds may be limited to a single organization
enterprise clouds, or be available to many organizations public
cloud. Cloud computing relies on sharing of resources to
achieve coherence and economies of scale. Advocates of
public and hybrid clouds note that cloud computing allows
companies to avoid or minimize up-front IT
infrastructure costs. Proponents also claim that cloud
computing allows enterprises to get their applications up and
running faster, with improved manageability and less
maintenance, and that it enables IT teams to more rapidly
adjust resources to meet fluctuating and unpredictable
demand. Cloud providers typically use a "pay-as-you-go"
model, which can lead to unexpected operating
expenses if administrators are not familiarized with cloud-
pricing models. The availability of high-capacity networks,
low-cost computers and storage devices as well as the
widespread adoption of hardware virtualization, service-
oriented architecture and autonomic and utility computing has
led to growth in cloud computing.[6][7][8] By 2019, Linux was
the most widely used operating system, including in
Microsoft's offerings and is thus described as dominant. Cloud
Service Provider will screen, keep up and gather data about
the firewalls, intrusion identification or/and counteractive
action frameworks and information stream inside the
network.Job scheduling is a critical and challenging task for
computer systems since it involves a complex allocation of
limited resources such as CPU/GPU, memory and IO among
numerous jobs. It is one of the major tasks of the scheduler in
a computer system’s Resource Management System (RMS),
especially in high-performance computing (HPC) and cloud
computing systems, where inefficient job scheduling may
result in a significant waste of valuable computing resources.
Data centers, including HPC systems and cloud computing

IJSART - Volume 7 Issue 3 – MARCH 2021 ISSN [ONLINE]: 2395-1052

Page | 916 www.ijsart.com

systems, have become progressively more complex in their
architecture, configuration (e.g., special visualization nodes in
a cluster) and the size of work and workloads received, all of
which increase the job scheduling complexities sharply.The
undoubted importance of job scheduling has fueled interest in
the scheduling algorithms on data centers. At present, the
fundamental scheduling methodologies, such as FCFS (first-
come-first-serve), backfilling, and priority queues that are
commonly deployed in data centers are extremely hard and
time-consuming to configure, severely compromising system
performance, flexibility and usability. To address this
problem, several researchers have proposed data-driven
machine learning methods that are capable of automatically
learning the scheduling policies, thus reducing human
interference to a minimum. Specifically, a series of policy
based deep reinforcement learning approaches have been
proposed to manage CPU and memory for incoming jobs,
schedule time-critical workloads, handle jobs with
dependency, and schedule data centers with hundreds of
nodes.Despite the extensive research into job scheduling,
however, the increasing heterogeneity of the data being
handled remains a challenge. These difficulties arise from
multiple issues. First, policy gradient DRL method based
scheduling method suffers from a high variance problem,
which can lead to low accuracy when computing the gradient.
Second, previous work has relied on used Monte Carlo (MC)
method to update the parameters, which involved massive
calculations, especially when there are large numbers of jobs
in the trajectory.To solve the above-mentioned challenges, we
propose a policy-value based deep reinforcement learning
scheduling method called A2cScheduler, which can satisfy the
heterogeneous requirements from diverse users, improve the
space exploration efficiency, and reduce the variance of the
policy. A2cScheduler consists of two agents named actor and
critic respectively, the actor is responsible for learning the
scheduling policy and the critic reduces the estimation error.
The approximate value function of the critic is incorporated as
a baseline to reduce the variance of the actor, thus reducing
the estimation variance considerably. A2cScheduler updates
parameters via the multi-step Temporal-difference (TD)
method, which speeds up the training process markedly
compared to conventional MC method due to the way TD
method updates parameters.Job scheduling is the process of
allocating system resources to many different tasks by an
operating system (OS). The system handles prioritized job
queues that are awaiting CPU time and it should determine
which job to be taken from which queue and the amount of
time to be allocated for the job. This type of scheduling makes
sure that all jobs are carried out fairly and on time. Most OSs
like Unix, Windows, etc., include standard job-scheduling
abilities. A number of programs including database
management systems (DBMS), backup, enterprise resource

planning (ERP) and business process management (BPM)
feature specific job-scheduling capabilities as well. Job
scheduling is performed using job schedulers. Job schedulers
are programs that enable scheduling and, at times, track
computer "batch" jobs, or units of work like the operation of a
payroll program. Job schedulers have the ability to start and
control jobs automatically by running prepared job-control-
language statements or by means of similar communication
with a human operator. Generally, the present-day job
schedulers include a graphical user interface (GUI) along with
a single point of control.

Organizations wishing to automate unrelated IT
workload could also use more sophisticated attributes from a
job scheduler, for example:

 Real-time scheduling in accordance with external,
unforeseen events

 Automated restart and recovery in case of failures

 Notifying the operations personnel

 Generating reports of incidents

 Audit trails meant for regulation compliance
purposes

In-house developers can write these advanced
capabilities; however, these are usually offered by providers
who are experts in systems-management software. In
scheduling, many different schemes are used to determine
which specific job to run. Some parameters that may be
considered are as follows:

 Job priority

 Availability of computing resource

 License key if the job is utilizing a licensed software

 Execution time assigned to the user

 Number of parallel jobs permitted for a user

 Projected execution time

 Elapsed execution time

 Presence of peripheral devices

 Number of cases of prescribed events

Scheduling is a decision-making process that plays an
important role in most manufacturing and service industries. It
is used in procurement and production, in transportation and
distribution, and in information processing and
communication.

The scheduling function usually uses mathematical
techniques or heuristic methods to allocate limited resources
to the processing of tasks. A proper allocation of resources
enables the company to optimize its objectives and achieve its

IJSART - Volume 7 Issue 3 – MARCH 2021 ISSN [ONLINE]: 2395-1052

Page | 917 www.ijsart.com

goals. Resources may be machines in a workshop, runways at
an airport, or crews at a construction set. Tasks may be
operations in a workshop, takeoff and landings at an airport, or
stages in a construction project. Each task may have a priority
level, an earliest possible starting time, and a due date. The
objectives may also take many forms, such as minimizing the
time to complete all tasks or minimizing the worst
performance of the schedule. Many approaches from
operations research and artificial intelligence are employed to
deal with scheduling problem.

Cloud computing is a popular networking paradigm
that provides resources via Internet . Cloud computing helps
web service providers reduce hardware infrastructure expenses
for deploying their applications. In addition, easy resource
management and fast response time are the other interesting
characteristics that bring the attentions to the cloud computing
the focus is on cloud Infrastructure-as-a Service (IaaS), where
infrastructure resources such as network, computing, database,
etc. are offered by cloud providers. Cloud providers usually
offer two types of IaaS resource provisioning plans, reserved
and on demand plans, to web service providers that have
different charging schemes based on the resource usage. The
reserved plans are often offered for relatively long-term
contracts. Using reserved plans, web service providers can get
discount rates on reserved resources and pay once for the
contract time period (e.g. one-year contract or three-year
contract for Amazon EC2). Through on-demand plans, cloud
providers offer more flexible resource pricing strategies. On-
demand plans charge cloud web service providers on a pay-as
yougo basis and enable them to start or terminate instances at
any moment according to their needs without paying any
penalty. However, comparing the costs of resources per unit of
time, on-demand resources are often more expensive than the
reserved ones. With the reserved plans, web service providers
reserve instances in advance for long-term contracts. Due to
ignorance of demand uncertainty in the reserved plans,
resource provisioning only with the reserved instances is a
challenging task. The purchased resources may not be enough
to handle the demands all the time that leads to
underprovisioning. This may result in failure in meeting web
service providers’ Quality of Service (QoS) criteria which is a
crucial concern for both cloud providers and web service
providers in presence of the uncertainty in the demands [9].
On the other hand, over-provisioning may happen if the
allocated resources are excessive to handle actual arrived
demands most of the time , leading to unnecessary costs.
Recently, some research studies have addressed cloud
resource allocation, as optimizing resource provisioning costs
has become important for cloud web service providers. Most
of the existing approaches in cloud resource allocation, model
resource allocation problem as a single phase algorithm. In

these works, the authors ignore demand uncertainty by
assuming deterministic values for demands. Therefore, the
elastic nature of cloud-based applications is not considered. To
address the demand uncertainties, in, several dynamic resource
allocation algorithms are developed. These algorithms are
more flexible and allocate cloud resources dynamically to
optimize resource provisioning costs. However, these works
do not often exploit the cost benefits of the reserved plans that
are offered by the cloud providers. Therefore, they may fail to
achieve economical solutions. The propose a hybrid method to
allocate cloud resources for deploying cloud-based web
applications dynamically. To take advantage of reserved and
on-demand resources and achieve a hybrid solution that
minimizes total deployment cost and guarantees the QoS
under demand uncertainties.

2.1 Major contributions

The Proposing Dynamic Cloud Resource Allocation
(DCRA) algorithm that solves the resource provisioning in
two reserved and dynamic provision phases, developing a
stochastic optimization approach to model the user demands
as random variables, and achieving 10% improvement in total
deployment costs.

The proposed DCRA algorithm is evaluated using
two different benchmark workloads in Amazon Web Services
(AWS) [7] and Microsoft Azure cloud [6] as the cloud
providers. The results show that the proposed DCRA
algorithm finds solutions that minimize total deployment costs
under the uncertainties in users’ demands.

2.2 Dynamic Cloud Resource Allocation

The existing cloud resource allocation we aim to
provide dynamic cloud resource allocation that considers the
dual price plan from cloud providers and finds the balance
between reserved and on-demand resources. The propose is
Dynamic Cloud Resource Allocation (DCRA) algorithm, a
two-phase algorithm that minimizes the cost of the web
service deployment. The first phase (referred to as the
reservation phase), resources from the reserved plan are
allocated for web application deployment to meet the
minimum QoSrequirements.The second phase (referred to as
the dynamic provision phase), non-deterministic user demands
are modeled as random variables. A stochastic optimization
approach is proposed to dynamically allocate on-demand
resources to minimize deployment costs under the on-demand
plan subject to QoS requirements.

IJSART - Volume 7 Issue 3 – MARCH 2021 ISSN [ONLINE]: 2395-1052

Page | 918 www.ijsart.com

Fig 2.2Cloud Resource Allocation

III. COMPARATIVE STUDY

The Comparative Methodologies:

 The realization of the SA algorithm

 Differential evolution (DE) meta heuristic search
algorithm

 Estimation of distribution algorithm(EDA)

 Nash Equilibrium (NE)

3.1The realization of the SA algorithm

Approach

Real-life problems also belong to natural processing -
hard issues and have a high dimensional data. Work schedules
tasks can be defined as one of the most important optimization
problems because plans and schedules need to be organized in
all fields. Such tasks, as a rule, are usually modeled as the job-
shop scheduling the job problem, which deals with planning
multi-stage service systems. However, this view ignores the
cyclic nature of the tasks. Since production processes are cycle
after-cycle often, it is necessary to make a plan not for a single
execution but for multiple ones. In this paper, we deal with a
modification of the job-shop scheduling problem for the cyclic
production and we substantiate the claim that an optimal
solution of the cyclic job-shop task is not limited to the cyclic
using a solution of the usual job-shop task. For the purpose of
experimental research, the Simulated Annealing (SA)
algorithm is used.

Architectural View:

Fig 3.1 SA algorithm architecture

Algorithm:

Start annealing algorithm
{
/* initialization */
temperature ← INITIAL_TEMPERATURE
solution ← initialize()
current_value = schedule_length(solution)
counter_steps ← 0
while (counter_steps< COOLING_STEPS)
temperature ← temperature* COOLING_FRACTION
start_value = current_value
counter_steps_temp ← 0
while(counter_steps_temp< STEPS_TEMP)
{

/* pick randomly two elements of a schedule to swap
r1 ← random_integer(1, N)
r2 ← random_integer(1, N)

/*create a new schedule and find it’s length */
solution ← swap_schedule(solution, r1, r2)
new_value = schedule_length(solution)
delta = new_value – current_value
if (delta < 0) /*find a better solution*/
{
current_value = new_value

IJSART - Volume 7 Issue 3 – MARCH 2021 ISSN [ONLINE]: 2395-1052

Page | 919 www.ijsart.com

} else /*find a worse solution, use a randomize chose */
{
ex = exp((-delta/current_value)/(KT*temperature))
if (ex >randon_float(0,1)) /*accept new solution */
{

current_value = new_value
}
else /* reject */
{
solution ← swap_schedule(solution, r2, r1)
}
counter_steps_temp ← counter_steps_temp + 1
}
/* restore temperature if progress has been mad */
if ((current_value - start_value) < 0.0)
{ temperature ← temperature/COOLING_FRACTION;
}
counter_steps ← counter_steps + 1
}
}
End annealing algorithm

3.2 Differential evolution (DE) Meta heuristic search
algorithm

Approach

Differential evolution (DE) Meta heuristic search
algorithm that optimizes a problem by iteratively improving a
candidate solution based on an evolutionary process. Such
algorithms make few or no assumptions about the underlying
optimization problem and can quickly explore very large
design spaces. Approach to induce oblique decision trees
(DTs) is described. This type of decision trees uses a linear
combination of attributes to build oblique hyper planes
dividing the instance space. Oblique decision trees are more
compact and accurate than the traditional univariate decision
trees. On the other hand, as differential evolution (DE) is an
efficient evolutionary algorithm (EA) designed to solve
optimization problems with real-valued parameters, and since
finding an optimal hyperplane is a hard computing task, this
meta heuristic (MH) is chosen to conduct an intelligent search
of a near-optimal solution. Two methods are described in this
chapter: one implementing a recursive partitioning strategy to
find the most suitable oblique hyperplane of each internal
node of a decision tree, and the other conducting a global
search of a near-optimal oblique decision tree. A statistical
analysis of the experimental results suggests that these
methods show better performance as decision tree induction
procedures in comparison with other supervised learning
approaches.

Architectural View:

Fig 3.2 Differential evolution (DE) architecture

Algorithm :

3.3 Estimation of distribution algorithm

Approach

An effective estimation of distribution algorithm
(EDA) is proposed to solve the flexible job scheduling
problem with fuzzy processing time. A probability model is
presented to describe the probability distribution of the
solution space. A mechanism is provided to update the
probability model with the elite individuals. By sampling the
probability model, new individuals can be generated among
the search region with promising solutions. Moreover, a left-
shift scheme is employed for improving schedule solution
when idle time exists on the machine. In addition, some fuzzy
number operations are used to calculate scheduling objective
value. The influence of parameter setting is investigated based

IJSART - Volume 7 Issue 3 – MARCH 2021 ISSN [ONLINE]: 2395-1052

Page | 920 www.ijsart.com

on the design of experiment, and a suitable parameter setting
is suggested. Numerical testing results and comparisons with
some existing algorithms are provided, which demonstrate the
effectiveness of the EDA. Estimation of distribution algorithm
(EDA) is a relatively new paradigm in the field of
evolutionary algorithms, which employs explicit probability
distributions in optimization Different from the GA that
reproduces a new population with the crossover and mutation
operators, the EDA does it implicitly. With the tool of
statistical analysis, the EDA tries to estimate the underlying
probability distribution of the potential individuals and builds
a probability model of the most promising area by statistical
information based on the search experience. The probability
model is used for sampling to generate the new individuals
and is updated in each generation with the elite individuals of
the new population. In such an iterative way, the population
evolves, and finally satisfactory solutions can be obtained.

Architectural View:

Fig 3.3 EDA architecture

Algorithm:

Step 1: t=0
Step 2: Initialize a probability model p(x,t) (usually a uniform
distribution).
Step 3: Generate an infinite sized sample X t from p(x,t) .
Step 4: Evaluate X t in the objective function(s) and
constraint(s).
Step 5: Compute the selection distribution ps (x,t) , and use it
as the new search distribution. Step 6: Then: p(x,t+1) = ps (x,t)
. (Selection and model rcomputation step)
Step 7: t=t+1
Step 8: 1If the stop criterion is not reached go to Step 3

4.4 Nash Equilibrium (NE)

Overloaded gateway verifies the estimated QoS index
with the prespecified expected value for including only the
truthful gateways in the auction process. We, further, establish
the existence of Nash Equilibrium (NE) in the proposed
scheme. We theoretically analyze the upper and lower pricing
limits, and prove that the algorithm reaches optimality. We
extend the solution for multiple users’ load increment in the
presence of multiple misbehaving gateways We summarize
the main contributions of this paper as follows:

 We, theoretically, prove the requirement of load
sharing in case of increase in demand by a user in
MCN environment.

 We design a utility maximization problem for
qualityassured secured load sharing (QuaLShare) in
MCN with overloaded demand of a gateway.

 We analyze the optimality criteria and the existence
of Nash Equilibrium for the proposed scheme,
QuaLShare.

 We extend the solution for the multiple users’
demand increment problem, followed by its
theoretical analysis, for checking the optimality and
Nash Equilibrium.

Architectural View:

IJSART - Volume 7 Issue 3 – MARCH 2021 ISSN [ONLINE]: 2395-1052

Page | 921 www.ijsart.com

Fig 4.4 Nash Equilibrium architecture

Algorithm:

Adaptive task scheduler
Step 1: Receiving task details from all nodes;
Step 2: if A load from the node in rack iindicating free
resource then
Step 3: Update online plan;
Step 4: Balance online plan;
Step 5: if Network Saturated is True then
Step 6: for each job in the parallel jobs do
Step 7: Select the preferred rack with the smallest work load ;
Step8: end for

IV. CONCLUSION

In today’s clusters, many real-world workloads
inherently exhibit strong inter-job data dependency. However,
existing network-aware job schedulers ignore the
dependencies and Schedule the jobs independently to one
another. Driven by the intuition that aggregating and co-
locating the data and tasks of dependent jobs offers an extra
opportunity of data locality, we proposed and developed
Dawn, a dependency aware network adaptive scheduler for
data intensive parallel jobs with dependencies. Dawn is able to

determine the optimal racks for each job and adaptively
choose the most suitable job to schedule based on the network
status. This helps it to maximally exploit rack-level data
locality while at the same time smooth network traffic to
improve utilization. We implemented Dawn on Apache Yarn.
Our experiments show that Dawn can significantly enhance
the job performance compared to two state-of-art approaches .

REFERENCES

[1] W. Chen, A. Pi, S. Wang, and X. Zhou, “Characterizing
scheduling delay for low-latency data analytics
workloads,” in Proc. IEEE Int. Symp. Parallel Distrib.
Process., 2018.

[2] The Cyclic Job-Shop Scheduling Problem: The New
Subclass Of The Job-Shop Problem And Applying The
Simulated Annealing To Solve It: P. V. Matrenin;V. Z.
Manusov_2016

[3] A flexible job-shop scheduling for small batch
customizing Hu Li;ZheLi; RuiduanYang; HuaweiLu;
Youchao Zhang_2016

[4] Job scheduling integrated with imperfect preventive
maintenance considering time-varying operating
condition: J. Hu;Z. Jiang_2017

[5] Event-driven dynamic job shop scheduling execution
based on improved genetic algorithm and ontology:
Lingling Xue; PengWang; Haibo Cheng ; Peng Zeng;
Haibin Yu_ 2017

